CN102706627B  The damaged cable of temperature variation hybrid monitoring and support angular displacement identification method  Google Patents
The damaged cable of temperature variation hybrid monitoring and support angular displacement identification method Download PDFInfo
 Publication number
 CN102706627B CN102706627B CN201210172192.5A CN201210172192A CN102706627B CN 102706627 B CN102706627 B CN 102706627B CN 201210172192 A CN201210172192 A CN 201210172192A CN 102706627 B CN102706627 B CN 102706627B
 Authority
 CN
 China
 Prior art keywords
 cable
 temperature
 data
 vector
 evaluation
 Prior art date
 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
 Expired  Fee Related
Links
 238000006073 displacement reactions Methods 0.000 title claims abstract description 168
 238000004364 calculation methods Methods 0.000 claims abstract description 145
 239000011159 matrix materials Substances 0.000 claims abstract description 44
 238000011156 evaluation Methods 0.000 claims description 219
 238000005259 measurement Methods 0.000 claims description 110
 230000000875 corresponding Effects 0.000 claims description 47
 238000009826 distribution Methods 0.000 claims description 40
 239000002965 rope Substances 0.000 claims description 38
 230000003862 health status Effects 0.000 claims description 35
 239000000463 material Substances 0.000 claims description 21
 238000009659 nondestructive testing Methods 0.000 claims description 16
 239000000203 mixture Substances 0.000 claims description 15
 238000000034 method Methods 0.000 claims description 10
 206010022114 Injury Diseases 0.000 claims description 9
 230000035852 Tmax Effects 0.000 claims description 8
 229910052799 carbon Inorganic materials 0.000 claims description 7
 230000001771 impaired Effects 0.000 claims description 6
 229910000975 Carbon steel Inorganic materials 0.000 claims description 5
 238000009413 insulation Methods 0.000 claims description 5
 238000004458 analytical method Methods 0.000 claims description 4
 239000010962 carbon steel Substances 0.000 claims description 4
 239000002131 composite material Substances 0.000 claims description 4
 125000004122 cyclic group Chemical group 0.000 claims description 4
 238000004519 manufacturing process Methods 0.000 claims description 4
 239000010902 straw Substances 0.000 claims description 4
 238000000547 structure data Methods 0.000 claims description 2
 238000005457 optimization Methods 0.000 abstract description 10
 238000007796 conventional method Methods 0.000 description 7
 238000009529 body temperature measurement Methods 0.000 description 3
 238000004891 communication Methods 0.000 description 3
 230000005540 biological transmission Effects 0.000 description 2
 VTYYLEPIZMXCLOUHFFFAOYSAL calcium carbonate Chemical compound   [Ca+2].[O]C([O])=O VTYYLEPIZMXCLOUHFFFAOYSAL 0.000 description 2
 230000000694 effects Effects 0.000 description 2
 238000005516 engineering process Methods 0.000 description 2
 238000003860 storage Methods 0.000 description 2
 239000000725 suspension Substances 0.000 description 2
 229960003563 Calcium Carbonate Drugs 0.000 description 1
 206010043431 Thinking abnormal Diseases 0.000 description 1
 241001234523 Velamen Species 0.000 description 1
 230000001133 acceleration Effects 0.000 description 1
 230000004075 alteration Effects 0.000 description 1
 229910000019 calcium carbonate Inorganic materials 0.000 description 1
 230000002068 genetic Effects 0.000 description 1
 230000005484 gravity Effects 0.000 description 1
 238000009434 installation Methods 0.000 description 1
 230000001537 neural Effects 0.000 description 1
 239000007787 solid Substances 0.000 description 1
 230000001360 synchronised Effects 0.000 description 1
 239000000700 tracer Substances 0.000 description 1
 230000017105 transposition Effects 0.000 description 1
 238000005303 weighing Methods 0.000 description 1
Abstract
The damaged cable of temperature variation hybrid monitoring and support angular displacement identification method are based on hybrid monitoring, the Mechanics Calculation benchmark model needing to upgrade Cable Structure is determined whether by monitoring Cable Structure temperature and environment temperature, obtain the Mechanics Calculation benchmark model of the Cable Structure counting Cable Structure temperature and environment temperature, the basis of this model calculates and obtains unit damage monitored amount unit change matrix.Calculate the noninferior solution of the current nominal fatigue vector of evaluation object with the linear approximate relationship existed between monitored amount current initial value vector, unit damage monitored amount unit change matrix, unit damage or unit angular displacement vector sum evaluation object current nominal fatigue vector to be asked according to monitored amount current value vector, can, when there being temperature variation, the suitable algorithms such as multiobjective optimization algorithm be utilized to identify angular displacement of support and damaged cable fast accordingly.
Description
Technical field
The Cable Structure such as cablestayed bridge, suspension bridge, truss Cable Structure have a common ground, be exactly that they have many parts bearing tensile load, as suspension cable, main pushtowing rope, hoist cable, pull bar etc., the common ground of such Cable Structure is with rope, cable or only bears the rod member of tensile load for support unit, and such Cable Structure is expressed as " Cable Structure " by this method for simplicity.Along with the change of environment temperature, the temperature of Cable Structure also can change, when Cable Structure temperature changes, there being angular displacement of support, (such as bearing is around coordinate axis X, Y, the rotation of Z, in fact be exactly that bearing is around coordinate axis X, Y, the angular displacement of Z) time, based on hybrid monitoring, this method identifies that the supporting system of Cable Structure (refers to all ropeway carryingropes, and all rod members only bearing tensile load play supporting role, for simplicity, whole support units of such Cable Structure are collectively referred to as " cable system " by this patent, but in fact cable system not only refers to support cable, also the rod member only bearing tensile load is comprised, censure all ropeway carryingropes and all rod members only bearing tensile load play supporting role with " support cable " this noun in this method) in damaged cable (the impaired rod member only bearing tensile load is just referred to truss Cable Structure) and angular displacement of support, belong to engineering cable structure health monitoring field.
Background technology
Impaired and the bearing generation angular displacement of support cable is safely a significant threat to Cable Structure, and the damaged cable identifying in the cable system of angular displacement of support and Cable Structure based on cable structure health monitoring technology is a kind of method of great potential.When there is displacement in bearing, or the health status of cable system change (such as damaging) time, or when two kinds of situations occur simultaneously, the change of the measurable parameter of Cable Structure can be caused, such as can cause the change of Suo Li, distortion or the strain of Cable Structure can be affected, shape or the volume coordinate of Cable Structure can be affected, the change of the angle coordinate of any imaginary line of the every bit of the Cable Structure (change of the angle coordinate of the straight line of any this point of mistake in the section of such as Cable Structure surface any point can be caused, or the change of the angle coordinate of the normal of Cable Structure surface any point), these all changes all contain the health status information of cable system, in fact the change of these measurable parameters contains the health status information of cable system, contain angular displacement of support information, that is the measurable parameter of Cable Structure can be utilized to identify angular displacement of support and damaged cable, therefore the health status of Cable Structure can be judged by the hybrid monitoring of the change of the characteristic parameter to these dissimilar Cable Structure, all monitored Cable Structure characteristic parameters are referred to as " monitored amount " by this method, because now monitored amount is made up of the dissimilar measurable parameter mixing of Cable Structure, this method claims this to be hybrid monitoring, that is hybrid monitoring can be utilized to identify damaged cable and angular displacement of support.Monitored amount is except the impact by cable system health status and angular displacement of support; also can be subject to the impact of Cable Structure temperature variation (usually can occur); under the condition that Cable Structure temperature changes; if can based on the identification of the support cable realized the monitoring of monitored amount unsoundness problem and angular displacement of support; to the safety of Cable Structure, there is important value, also do not have a kind of disclosed, effective health monitoring systems and method to solve this problem at present.
Summary of the invention
Technical matters: this method disclose a kind of based on hybrid monitoring, the health monitor method that can identify angular displacement of support and damaged cable rationally and effectively.
Technical scheme: this method is made up of three parts.Method, knowledge based storehouse (containing parameter) and actual measurement the Cable Structure health state evaluation method of monitored amount, the software and hardware part of health monitoring systems of setting up knowledge base needed for cable structure health monitoring system and parameter respectively.
If the quantity sum of the angular displacement of support component of the quantity of the support cable of Cable Structure and Cable Structure is N.For sake of convenience, this method unitedly calls evaluated support cable and angular displacement of support to be " evaluation object ", total N number of evaluation object.To evaluation object serial number, this numbering will be used for generating vector sum matrix in subsequent step.
Monitored multiclass parameter can comprise: Suo Li, strain, angle and volume coordinate, be described below respectively:
If total Q root support cable in cable system, the monitored rope force data of Cable Structure is by M in Cable Structure
_{1}the M of individual appointment rope
_{1}individual rope force data describes, and the change of Cable Structure Suo Li is exactly the change of the Suo Li of all appointment ropes.Each total M
_{1}individual cable force measurement value or calculated value characterize the rope force information of Cable Structure.M
_{1}it is an integer being not less than 0.
The monitored strain data of Cable Structure can by K in Cable Structure
_{2}the L of individual specified point and each specified point
_{2}the strain of individual assigned direction describes, and the change of Cable Structure strain data is exactly K
_{2}the change of all tested strain of individual specified point.Each total M
_{2}(M
_{2}=K
_{2}× L
_{2}) individual strain measurement value or calculated value characterize Cable Structure strain.M
_{2}it is an integer being not less than 0.
The monitored angledata of Cable Structure is by K in Cable Structure
_{3}individual specified point, cross the L of each specified point
_{3}the H of individual appointment straight line, each appointment straight line
_{3}individual angle coordinate component describes, and the change of Cable Structure angle is exactly the change of all specified points, all appointment straight line, all angle coordinate component of specifying.Each total M
_{3}(M
_{3}=K
_{3}× L
_{3}× H
_{3}) individual angle coordinate component measurement value or calculated value characterize the angle information of Cable Structure.M
_{3}it is an integer being not less than 0.
The monitored shape data of Cable Structure is by K in Cable Structure
_{4}the L of individual specified point and each specified point
_{4}the volume coordinate of individual assigned direction describes, and the change of Cable Structure shape data is exactly K
_{4}the change of all coordinate components of individual specified point.Each total M
_{4}(M
_{4}=K
_{4}× L
_{4}) individual coordinates measurements or calculated value characterize Cable Structure shape.M
_{4}it is an integer being not less than 0.
Comprehensive abovementioned monitored amount, whole Cable Structure has M (M=M
_{1}+ M
_{2}+ M
_{3}+ M
_{4}) individual monitored amount, definition parameter K(K=M
_{1}+ K
_{2}+ K
_{3}+ K
_{4}), K and M must not be less than N.
Comprehensive abovementioned monitored amount, whole Cable Structure has M monitored amount, and M must not be less than the quantity N of evaluation object.
For simplicity, in the method by " monitored all parameters of Cable Structure " referred to as " monitored amount ".To M monitored amount serial number, this numbering will be used for generating vector sum matrix in subsequent step.This method represents this numbering, j=1,2,3 with variable j ..., M.
The Part I of this method: the method setting up knowledge base needed for cable structure health monitoring system and parameter.Specific as follows:
The first step, inquiry or actual measurement obtain the temperature variant thermal conduction study parameter of environment residing for Cable Structure composition material and Cable Structure, utilize the geometry measured data of the design drawing of Cable Structure, asconstructed drawing and Cable Structure, utilize these data and parameter to set up the Thermodynamic calculation model of Cable Structure.Inquiry Cable Structure location is no less than the meteorological data in recent years of 2 years, the statistics cloudy quantity obtained is during this period of time designated as T cloudy day, statistics obtains 0 highest temperature after sunrise moment next day between 30 minutes and the lowest temperature at each cloudy day in T cloudy day, the sunrise moment refers to the sunrise moment on the meteorology that base area revolutions and revolution rule are determined, data can be inquired about or calculated sunrise moment of each required day by conventional meteorology, 0 highest temperature after sunrise moment next day between 30 minutes at each cloudy day deducts the maximum temperature difference that the lowest temperature is called the daily temperature at this cloudy day, there is T cloudy day, just there is the maximum temperature difference of the daily temperature at T cloudy day, the maximal value of getting in the maximum temperature difference of the daily temperature at T cloudy day is reference temperature difference per day, Δ T is designated as with reference to temperature difference per day
_{r}.Be no less than between inquiry Cable Structure location and Altitude Region, place temperature that the meteorological data in recent years of 2 years or actual measurement obtain environment residing for Cable Structure in time with delta data and the Changing Pattern of sea level elevation, calculate to be no less than 2 years between Cable Structure location and Altitude Region, place Cable Structure in recent years residing for the temperature of environment about the maximum rate of change Δ T of sea level elevation
_{h}, get Δ T for convenience of describing
_{h}unit be DEG C/m.The surface of Cable Structure is got " R Cable Structure surface point ", the temperature of this R Cable Structure surface point will be obtained below by actual measurement, claiming to survey the temperature data obtained is " R Cable Structure surface temperature measured data ", if utilize the Thermodynamic calculation model of Cable Structure, obtained the temperature of this R Cable Structure surface point by Calculation of Heat Transfer, just claim the temperature data that calculates for " R Cable Structure land surface pyrometer count certificate ".When the surface of Cable Structure is got " R Cable Structure surface point ", the quantity of " R Cable Structure surface point " describes later with the condition that must meet that distributes.From the minimum height above sea level residing for Cable Structure to most High aititude, in Cable Structure, uniform choosing is no less than three different sea level elevations, at the sea level elevation place that each is chosen, two points are at least chosen at the intersection place on surface level and Cable Structure surface, from the outer normal of selected point straw line body structure surface, all outer normal directions chosen are called " measuring the direction of Cable Structure along the Temperature Distribution of wall thickness ", measure Cable Structure crossing with " intersection on surface level and Cable Structure surface " along the direction of the Temperature Distribution of wall thickness, in in the shade the outer normal direction of the measurement Cable Structure chosen along the sunny slope outer normal direction and Cable Structure that must comprise Cable Structure in the direction of the Temperature Distribution of wall thickness, three points are no less than along each measurement Cable Structure along direction uniform choosing in Cable Structure of the Temperature Distribution of wall thickness, especially, along each, Cable Structure is measured for support cable and only gets a point along the direction of the Temperature Distribution of wall thickness, namely the temperature of the surface point of support cable is only measured, measure all temperature be selected a little, the temperature recorded is called " Cable Structure is along the temperature profile data of thickness ", wherein along crossing with same " intersection on surface level and Cable Structure surface ", " measure the direction of Cable Structure along the Temperature Distribution of wall thickness " to measure " Cable Structure is along the temperature profile data of thickness " that obtain, be called in the method " identical sea level elevation Cable Structure is along the temperature profile data of thickness ", if have chosen the individual different sea level elevation of H, at each sea level elevation place, have chosen B and measure the direction of Cable Structure along the Temperature Distribution of wall thickness, in Cable Structure, E point is have chosen along each measurement Cable Structure along the direction of the Temperature Distribution of wall thickness, wherein H and E is not less than 3, B is not less than 2, especially, 1 is equaled for support cable E, what meter Cable Structure " measured the point of Cable Structure along the temperature profile data of thickness " adds up to HBE, the temperature of this HBE " measuring the point of Cable Structure along the temperature profile data of thickness " will be obtained below by actual measurement, claiming to survey the temperature data obtained is " HBE Cable Structure is along thickness temperature measured data ", if utilize the Thermodynamic calculation model of Cable Structure, obtain this HBE by Calculation of Heat Transfer and measure the temperature of Cable Structure along the point of the temperature profile data of thickness, the temperature data calculated just is claimed to be " HBE Cable Structure calculates data along thickness temperature ", the number temperature profile data at sea level elevation place " identical sea level elevation Cable Structure is along the temperature profile data of thickness " will chosen at each in this method ".Measure temperature in Cable Structure location according to meteorology to require to choose a position, obtain meeting the temperature that meteorology measures the Cable Structure place environment of temperature requirement by the actual measurement of this position, in the onsite spaciousness of Cable Structure, unobstructed place chooses a position, this position should each of the whole year day can obtain this ground the most sufficient sunshine of this day getable, at the flat board of this position of sound production one piece of carbon steel material, be called reference plate, the one side of this reference plate on the sunny side, be called sunny slope, the sunny slope of reference plate is coarse with dark color, the sunny slope of reference plate should each of the whole year day can obtain one flat plate on this ground the most sufficient sunshine of this day getable, the nonsunny slope of reference plate is covered with insulation material, RealTime Monitoring is obtained the temperature of the sunny slope of reference plate.Must not be greater than 30 minutes to the time interval between any twice measurement of same amount RealTime Monitoring in this method, the moment of survey record data is called the physical record data moment.
Second step, RealTime Monitoring obtains R Cable Structure surface temperature measured data of abovementioned R Cable Structure surface point, RealTime Monitoring obtains the temperature profile data of previously defined Cable Structure along thickness simultaneously, and RealTime Monitoring obtains meeting the temperature record that meteorology measures the Cable Structure place environment of temperature requirement simultaneously, the temperature measured data sequence of the Cable Structure place environment after sunrise moment next day between 30 minutes is obtained being carved at sunrise the same day by RealTime Monitoring, the temperature measured data sequence of Cable Structure place environment is arranged according to time order and function order by the temperature measured data of the Cable Structure place environment after being carved into the sunrise moment next day same day at sunrise between 30 minutes, find the maximum temperature in the temperature measured data sequence of Cable Structure place environment and minimum temperature, the maximum temperature difference be carved at sunrise on same day that minimum temperature obtains Cable Structure place environment after sunrise moment next day between 30 minutes is deducted by the maximum temperature in the temperature measured data sequence of Cable Structure place environment, be designated as Δ T
_{emax}, calculated the rate of change of temperature about the time of Cable Structure place environment by Conventional mathematical by the temperature measured data sequence of Cable Structure place environment, this rate of change is also along with time variations, the measured data sequence of the temperature of the sunny slope of the reference plate after sunrise moment next day between 30 minutes is obtained being carved at sunrise the same day by RealTime Monitoring, the measured data sequence of the temperature of the sunny slope of reference plate is arranged according to time order and function order by the measured data of the temperature of the sunny slope of the reference plate after being carved into the sunrise moment next day same day at sunrise between 30 minutes, find the maximum temperature in the measured data sequence of the temperature of the sunny slope of reference plate and minimum temperature, the maximum temperature difference be carved at sunrise on same day that minimum temperature obtains the temperature of the sunny slope of reference plate after sunrise moment next day between 30 minutes is deducted by the maximum temperature in the measured data sequence of the temperature of the sunny slope of reference plate, be designated as Δ T
_{pmax}, the Cable Structure surface temperature measured data sequence of all R Cable Structure surface points after sunrise moment next day between 30 minutes is obtained being carved at sunrise the same day by RealTime Monitoring, R Cable Structure surface point is had just to have R Cable Structure surface temperature measured data sequence, each Cable Structure surface temperature measured data sequence is arranged according to time order and function order by the Cable Structure surface temperature measured data after being carved into the sunrise moment next day same day of a Cable Structure surface point at sunrise between 30 minutes, find the maximum temperature in each Cable Structure surface temperature measured data sequence and minimum temperature, the maximum temperature difference be carved at sunrise on same day that minimum temperature obtains the temperature of each Cable Structure surface point after sunrise moment next day between 30 minutes is deducted by the maximum temperature in each Cable Structure surface temperature measured data sequence, there is R Cable Structure surface point just to have to be carved at sunrise R the same day maximum temperature difference numerical value between 30 minutes after sunrise moment next day, maximal value is wherein designated as Δ T
_{smax}, calculated the rate of change of temperature about the time of each Cable Structure surface point by Conventional mathematical by each Cable Structure surface temperature measured data sequence, the temperature of each Cable Structure surface point about the rate of change of time also along with time variations.Obtain being carved at sunrise the same day after sunrise moment next day between 30 minutes by RealTime Monitoring, at synchronization, after HBE " Cable Structure is along the temperature profile data of thickness ", calculate the difference amounting to maximum temperature in BE " identical sea level elevation Cable Structure is along the temperature profile data of thickness " and minimum temperature at the sea level elevation place that each is chosen, the absolute value of this difference is called " identical sea level elevation place Cable Structure thickness direction maximum temperature difference ", have chosen H different sea level elevation just to have H " identical sea level elevation place Cable Structure thickness direction maximum temperature difference ", the maximal value in this H " identical sea level elevation place Cable Structure thickness direction maximum temperature difference " is claimed to be " Cable Structure thickness direction maximum temperature difference ", be designated as Δ T
_{tmax}.
3rd step, survey calculation obtains Cable Structure steady temperature data, first, determine the moment obtaining Cable Structure steady temperature data, the condition relevant to the moment determining to obtain Cable Structure steady temperature data has six, Section 1 condition is moment of obtaining Cable Structure steady temperature data between after being carved into sunrise moment next day at sunset between 30 minutes on same day, the sunset moment refers to the sunset moment on base area revolutions and the meteorology determined of revolution rule, can inquire about data or be calculated sunset moment of each required day by conventional meteorology, the a condition of Section 2 condition be after being carved into sunrise moment next day at sunrise between 30 minutes on same day during this period of time in, reference plate maximum temperature difference Δ T
_{pmax}with Cable Structure surface maximum temperature difference Δ T
_{smax}all be not more than 5 degrees Celsius, the b condition of Section 2 condition be after being carved into sunrise moment next day at sunrise between 30 minutes on same day during this period of time in, the environment maximum error Δ T that survey calculation obtains above
_{emax}be not more than with reference to temperature difference per day Δ T
_{r}, and reference plate maximum temperature difference Δ T
_{pmax}Δ T is not more than after deducting 2 degrees Celsius
_{emax}, and Cable Structure surface maximum temperature difference Δ T
_{smax}be not more than Δ T
_{pmax}, one of only need meet in a condition of Section 2 and b condition is just called and meets Section 2 condition, Section 3 condition is when obtaining Cable Structure steady temperature data, and the temperature of Cable Structure place environment is not more than 0.1 degree Celsius per hour about the absolute value of the rate of change of time, Section 4 condition is when obtaining Cable Structure steady temperature data, and the temperature of each the Cable Structure surface point in R Cable Structure surface point is not more than 0.1 degree Celsius per hour about the absolute value of the rate of change of time, Section 5 condition is when obtaining Cable Structure steady temperature data, and the Cable Structure surface temperature measured data of each the Cable Structure surface point in R Cable Structure surface point is be carved into the minimal value after sunrise moment next day between 30 minutes the same day at sunrise, Section 6 condition is when obtaining Cable Structure steady temperature data, " Cable Structure thickness direction maximum temperature difference " Δ T
_{tmax}be not more than 1 degree Celsius, this method utilizes abovementioned six conditions, any one in following three kinds of moment is called " the mathematics moment obtaining Cable Structure steady temperature data ", the first moment meets the moment of the Section 1 in abovementioned " condition relevant to the moment determining to obtain Cable Structure steady temperature data " to Section 5 condition, the second moment is moment of the Section 6 condition only met in abovementioned " condition relevant to determining to obtain moment of Cable Structure steady temperature data ", simultaneously the third moment meets the moment of the Section 1 in abovementioned " condition relevant to the moment determining to obtain Cable Structure steady temperature data " to Section 6 condition, when the mathematics moment obtaining Cable Structure steady temperature data is exactly one in this method in the physical record data moment, the moment obtaining Cable Structure steady temperature data is exactly the mathematics moment obtaining Cable Structure steady temperature data, if the mathematics moment obtaining Cable Structure steady temperature data is not any one moment in this method in the physical record data moment, then getting this method closest to moment of those physical record data in the mathematics moment obtaining Cable Structure steady temperature data is the moment obtaining Cable Structure steady temperature data, the amount being used in the moment survey record obtaining Cable Structure steady temperature data is carried out Cable Structure relevant health monitoring analysis by this method, this method is similar to thinks that the Cable Structure temperature field in the moment obtaining Cable Structure steady temperature data is in stable state, and namely the Cable Structure temperature in this moment does not change in time, and this moment is exactly " obtaining the moment of Cable Structure steady temperature data " of this method, then, according to Cable Structure heat transfer characteristic, utilize " R the Cable Structure surface temperature measured data " and " HBE Cable Structure is along thickness temperature measured data " in the moment obtaining Cable Structure steady temperature data, utilize the Thermodynamic calculation model of Cable Structure, the Temperature Distribution of the Cable Structure in the moment obtaining Cable Structure steady temperature data is calculated by conventional heat transfer, now the temperature field of Cable Structure calculates by stable state, the temperature profile data of the Cable Structure in the moment in acquisition Cable Structure steady temperature data calculated comprises the accounting temperature of R Cable Structure surface point in Cable Structure, the accounting temperature of R Cable Structure surface point is called that R Cable Structure steadystate surface temperature calculates data, also comprise the accounting temperature of Cable Structure selected HBE " measuring the point of Cable Structure along the temperature profile data of thickness " above, the accounting temperature of HBE " measuring the point of Cable Structure along the temperature profile data of thickness " is called " HBE Cable Structure calculates data along thickness temperature ", when R Cable Structure surface temperature measured data and R Cable Structure steadystate surface temperature calculate data correspondent equal, and when " HBE Cable Structure is along thickness temperature measured data " and " HBE Cable Structure calculates data along thickness temperature " correspondent equal, the temperature profile data of the Cable Structure in the moment in acquisition Cable Structure steady temperature data calculated is called " Cable Structure steady temperature data " in the method, " R Cable Structure surface temperature measured data " is now called " R Cable Structure steadystate surface temperature measured data ", " HBE Cable Structure is along thickness temperature measured data " is called " HBE Cable Structure is along thickness steady temperature measured data ", when the surface of Cable Structure is got " R Cable Structure surface point ", the quantity of " R Cable Structure surface point " must meet three conditions with distribution, first condition is when Cable Structure temperature field is in stable state, when the temperature of Cable Structure any point be on the surface by " R Cable Structure surface point " in obtain with the observed temperature linear interpolation of the Cable Structure point that this arbitrfary point is adjacent on the surface time, the error of the Cable Structure that linear interpolation the obtains temperature of this arbitrfary point and the Cable Structure actual temperature of this arbitrfary point on the surface is on the surface not more than 5%, Cable Structure surface comprises support cable surface, second condition is not less than 4 in the quantity of the point of same sea level elevation in " R Cable Structure surface point ", and uniform along Cable Structure surface at the point of same sea level elevation in " R Cable Structure surface point ", " R Cable Structure surface point " is not more than 0.2 DEG C divided by Δ T along the maximal value Δ h in the absolute value of all differences of the sea level elevation of adjacent Cable Structure surface point between two of sea level elevation
_{h}the numerical value obtained, gets Δ T for convenience of describing
_{h}unit be DEG C/m, be m for convenience of describing the unit getting Δ h, " R Cable Structure surface point " along the definition of the adjacent between two Cable Structure surface point of sea level elevation refer to only consider sea level elevation time, in " R Cable Structure surface point ", there is not a Cable Structure surface point, the sea level elevation numerical value of this Cable Structure surface point is between the sea level elevation numerical value of adjacent Cable Structure surface point between two, 3rd condition is inquiry or obtains the rule at sunshine between Cable Structure location and Altitude Region, place by meteorology conventionally calculation, again according to geometric properties and the bearing data of Cable Structure, Cable Structure finds the annual position by sunshineduration those surface points the most sufficient, in " R Cable Structure surface point ", has at least a Cable Structure surface point to be annual by a point in sunshineduration the most fully those surface points in Cable Structure.
2. set up the initial mechanical Calculation Basis model A of Cable Structure
_{o}(such as finite element benchmark model) and current initial mechanical Calculation Basis model A
^{t} _{o}the method of (such as finite element benchmark model), sets up and A
_{o}corresponding monitored amount initial value vector C
_{o}method, set up and A
^{t} _{o}corresponding monitored amount current initial value vector C
^{t} _{o}method.A in the method
_{o}, C
_{o}, A
^{t} _{o}and C
^{t} _{o}constantly update.Set up and upgrade A
_{o}, C
_{o}, A
^{t} _{o}and C
^{t} _{o}method as follows.Monitored amount initial value vector C
_{o}the coding rule of coding rule and M monitored amount identical.
Set up initial mechanical Calculation Basis model A
_{o}time, when Cable Structure is completed, or before setting up cable structure health monitoring system, obtain " Cable Structure steady temperature data " according to " the temperature survey calculating method of the Cable Structure of this method " survey calculation (to measure by ordinary temperature measuring method, thermal resistance is such as used to measure), " Cable Structure steady temperature data " now use vector T
_{o}represent, be called initial Cable Structure steady temperature data vector T
_{o}.T is obtained in actual measurement
_{o}while, namely at the synchronization in the moment of acquisition Cable Structure steady temperature data, use the direct survey calculation of conventional method to obtain the initial number of all monitored amount of Cable Structure.Conventional method (consult reference materials or survey) is used to obtain temperature variant physical parameter (such as thermal expansivity) and the mechanical property parameters (such as elastic modulus, Poisson ratio) of the various materials that Cable Structure uses; Initial Cable Structure steady temperature data vector T is obtained at Actual measurement
_{o}while, namely at the synchronization in the moment of acquisition Cable Structure steady temperature data, use conventional method Actual measurement to obtain the Actual measurement data of Cable Structure.The Actual measurement data of Cable Structure comprise the measured data such as data, Cable Structure bearing initial angle displacement measurement data, the initial geometric data of Cable Structure, rope force data, drawbar pull data, Cable Structure support coordinate data, Cable Structure modal data, Cable Structure strain data, Cable Structure angle measurement data, Cable Structure volume coordinate measurement data that the Nondestructive Testing Data of support cable etc. can express the health status of rope.The initial geometric data of Cable Structure can be the spatial data that the spatial data of the end points of all ropes adds a series of point in Cable Structure, and object is the geometric properties according to these coordinate data determination Cable Structure.Cable Structure bearing initial angle displacement measurement data refer to setting up initial mechanical Calculation Basis model A
_{o}time, the angular displacement that Cable Structure bearing occurs relative to the bearing under Cable Structure design point.For cablestayed bridge, initial geometric data can be the spatial data that the spatial data of the end points of all ropes adds some points on bridge two ends, socalled bridge type data that Here it is.Utilize the Nondestructive Testing Data etc. of support cable can express the data of the health status of support cable and Cable Structure bearing initial angle displacement measurement data set up evaluation object initial damage vector d
_{o}(as the formula (1)), d is used
_{o}represent that Cable Structure is (with initial mechanical Calculation Basis model A
_{o}represent) the initial health of evaluation object.If there is no the Nondestructive Testing Data of support cable and other are when can express the data of the health status of support cable, or can think Cable Structure original state be not damaged without relaxed state time, vectorial d
_{o}in each element numerical value relevant to support cable get 0, if when there is no Cable Structure bearing initial angle displacement measurement data or can think that the displacement of Cable Structure bearing initial angle is 0, vectorial d
_{o}in each element numerical value relevant to Cable Structure angular displacement of support get 0.The temperature variant physical and mechanical properties parameter of the various materials utilizing the measured data of the design drawing of Cable Structure, asconstructed drawing and initial Cable Structure, the Nondestructive Testing Data of support cable, Cable Structure bearing initial angle displacement measurement data, Cable Structure to use and initial Cable Structure steady temperature data vector T
_{o}, utilize mechanics method (such as finite element method) to count " Cable Structure steady temperature data " and set up initial mechanical Calculation Basis model A
_{o}.
d
_{o}=[d
_{o1}d
_{o2}···d
_{ok}···d
_{oN}]
^{T}(1)
D in formula (1)
_{ok}(k=1,2,3 ...., N) represent initial mechanical Calculation Basis model A
_{o}in the original state of a kth evaluation object, if this evaluation object is a support cable (or pull bar) in cable system, so d
_{ok}represent its initial damage, d
_{ok}represent not damaged when being 0, when being 100%, represent that this rope thoroughly loses loadbearing capacity, represent the loadbearing capacity losing corresponding proportion time between 0 and 100%, if this evaluation object is angular displacement component, so a d of a bearing
_{ok}represent its initial displacement numerical value, T represents the transposition (same afterwards) of vector.
T is obtained in actual measurement
_{o}while, namely at the synchronization in the moment of acquisition Cable Structure steady temperature data, the initial value of all monitored amount of the Cable Structure using the direct survey calculation of conventional method to obtain, forms monitored amount initial value vector C
_{o}(see formula (2)).Require at acquisition A
_{o}while obtain C
_{o}, monitored amount initial value vector C
_{o}represent and correspond to A
_{o}the concrete numerical value of " monitored amount ".Because of subject to the foregoing, the Calculation Basis model based on Cable Structure calculates the monitored amount of gained reliably close to the measured data of initial monitored amount, in describing below, will represent this calculated value and measured value with prosign.
C
_{o}=[C
_{o1}C
_{o2}···C
_{oj}···C
_{oM}]
^{T}(2)
C in formula (2)
_{oj}(j=1,2,3 ...., M) be the original bulk of jth monitored amount in Cable Structure, this component corresponds to a specific jth monitored amount according to coding rule.
No matter which kind of method to obtain initial mechanical Calculation Basis model A by
_{o}, count " Cable Structure steady temperature data " (i.e. initial Cable Structure steady temperature data vector T
_{o}), based on A
_{o}the Cable Structure that calculates calculates data must closely its measured data, and error generally must not be greater than 5%.Like this can utility A
_{o}the Suo Li calculated under the analog case of gained calculates data, strain calculation data, Cable Structure shapometer count certificate and displacement meter counts certificate, Cable Structure angledata, Cable Structure spatial data etc., measured data when reliably truly occurring close to institute's analog case.Model A
_{o}the health status evaluation object initial damage vector d of middle evaluation object
_{o}represent, the initial Cable Structure steady temperature data vector T of Cable Structure steady temperature data
_{o}represent.Due to based on A
_{o}the initial value (actual measurement obtains) of the evaluation calculating all monitored amounts closely all monitored amounts, so also can be used in A
_{o}basis on, carry out Mechanics Calculation obtains, A
_{o}the evaluation of each monitored amount form monitored amount initial value vector C
_{o}.T
_{o}and d
_{o}a
_{o}parameter, alternatively C
_{o}by A
_{o}mechanics Calculation result composition.
Set up and upgrade current initial mechanical Calculation Basis model A
^{t} _{o}method be: initial time (namely first time set up A
^{t} _{o}time), A
^{t} _{o}just equal A
_{o}, A
^{t} _{o}corresponding " Cable Structure steady temperature data " are designated as " current initial Cable Structure steady temperature data vector T
^{t} _{o}", at initial time, T
^{t} _{o}just equal T
_{o}, vector T
^{t} _{o}definition mode and vector T
_{o}definition mode identical.A
^{t} _{o}the initial health of evaluation object and A
_{o}the health status of evaluation object identical, also use evaluation object initial damage vector d
_{o}represent, A in cyclic process below
^{t} _{o}the initial health of evaluation object use evaluation object initial damage vector d all the time
_{o}represent; Cable Structure is in A
^{t} _{o}during state, this method monitored amount current initial value vector C
^{t} _{o}represent the concrete numerical value of all monitored amounts, C
^{t} _{o}element and C
_{o}element one_to_one corresponding, represent that all monitored amounts are in A in Cable Structure respectively
^{t} _{o}and A
_{o}concrete numerical value during two states.At initial time, C
^{t} _{o}just equal C
_{o}, T
^{t} _{o}and d
_{o}a
^{t} _{o}parameter, C
^{t} _{o}by A
^{t} _{o}mechanics Calculation result composition; In Cable Structure military service process, the current data obtaining " Cable Structure steady temperature data " according to " the temperature survey calculating method of the Cable Structure of this method " continuous Actual measurement (is called " current cable structure steady temperature data vector T
^{t}", vector T
^{t}definition mode and vector T
_{o}definition mode identical); If T
^{t}equal T
^{t} _{o}, then do not need A
^{t} _{o}upgrade, otherwise need A
^{t} _{o}and T
^{t} _{o}upgrade, update method is: the first step calculates T
^{t}with T
_{o}difference, T
^{t}with T
_{o}difference be exactly the changes of current cable structure steady temperature data about initial Cable Structure steady temperature data, T
^{t}with T
_{o}difference represent with steady temperature change vector S, S equals T
^{t}deduct T
_{o}, S represents the change of Cable Structure steady temperature data; Second step is to A
_{o}in Cable Structure apply temperature variation, the numerical value of the temperature variation of applying just takes from steady temperature change vector S, to A
_{o}in Cable Structure apply temperature variation after obtain upgrade current initial mechanical Calculation Basis model A
^{t} _{o}, upgrade A
^{t} _{o}while, T
^{t} _{o}all elements numerical value also uses T
^{t}all elements numerical value correspondence replace, namely have updated T
^{t} _{o}, so just obtain and correctly correspond to A
^{t} _{o}t
^{t} _{o}; Upgrade C
^{t} _{o}method be: when renewal A
^{t} _{o}after, obtain A by Mechanics Calculation
^{t} _{o}in all monitored amounts, current concrete numerical value, these concrete numerical value composition C
^{t} _{o}.
In Cable Structure the currency of all monitored amounts form monitored amount current value vector C(definition see formula (3)).
C=[C
_{1}C
_{2}···C
_{j}···C
_{M}]
^{T}(3)
C in formula (3)
_{j}(j=1,2,3 ...., M) be the currency of jth monitored amount in Cable Structure, this component C
_{j}according to coding rule and C
_{oj}corresponding to same " monitored amount ".Current cable structure steady temperature data vector T is obtained in actual measurement
^{t}synchronization, actual measurement obtains the current measured value of all monitored amount of Cable Structure, forms monitored amount current value vector C.
3. set up and upgrade the method for Cable Structure unit damage monitored amount unit change matrix Δ C.
Cable Structure unit damage monitored amount unit change matrix Δ C constantly updates, namely at the current initial mechanical Calculation Basis model A of renewal
^{t} _{o}with monitored amount current initial value vector C
^{t} _{o}while, upgrade Cable Structure unit damage monitored amount unit change matrix Δ C.Concrete grammar is as follows:
At the current initial mechanical Calculation Basis model A of Cable Structure
^{t} _{o}basis on carry out several times calculating, calculation times numerically equals the quantity of all evaluation objects.Calculating hypothesis each time only has an evaluation object (to use vectorial d at initial damage
_{o}corresponding element represent) basis on increase unit damage or unit angular displacement again, concrete, if this evaluation object is a support cable in cable system, so just suppose that this support cable has unit damage (such as getting 5%, 10%, 20% or 30% equivalent damage is unit damage), if this evaluation object is the angular displacement component in a direction of a bearing, just suppose that this bearing is this sense of displacement generation unit angular displacement (such as getting 100,000/radian, 2/100000ths radians, 3/100000ths radians etc. for unit angular displacement), uses D
_{uk}record this unit damage or unit angular displacement, wherein k represents the numbering of the evaluation object that unit damage or unit angular displacement occur.With " unit damage or unit angular displacement vector D
_{u}" (as the formula (4)) record all unit damage or unit angular displacement.Occur in calculating each time that the evaluation object of unit damage or unit angular displacement is different from during other time calculates the evaluation object occurring unit damage or unit angular displacement, calculate the current calculated value all utilizing mechanics method (such as finite element method) to calculate all monitored amount of Cable Structure each time, the current calculated value of all monitored amount calculated each time forms a monitored amount calculation current vector, and (when supposing that a kth evaluation object has unit damage or unit angular displacement, available formula (5) represents monitored amount calculation current vector C
_{t} ^{k}); Calculate monitored amount calculation current vector C each time
_{t} ^{k}deduct monitored amount current initial value vector C
^{t} _{o}after calculate the unit damage supposed or unit angular displacement numerical value D divided by this time again
_{uk}, gained vector is exactly that the monitored amount unit change vector of (being numbered mark with what have an evaluation object of unit damage or unit angular displacement) (when a kth evaluation object has unit damage or unit angular displacement, uses δ C under this condition
_{k}represent monitored amount unit change vector, formula (6) is shown in definition), the Unit alteration amount of the monitored amount corresponding to this element that each element representation of monitored amount unit change vector causes owing to suppose there is the unit damage of that evaluation object of unit damage or unit angular displacement or unit angular displacement when calculating; N number of evaluation object is had just to have N number of monitored amount unit change vector, owing to there being M monitored amount, so each monitored amount unit change vector has M element, be made up of the monitored amount unit change matrix Δ C having M × N number of element successively this N number of monitored amount unit change vector, the definition of Δ C as the formula (6).
D
_{u}=[D
_{u1}D
_{u2}···D
_{uk}···D
_{uN}]
^{T}(4)
Unit damage or unit angular displacement vector D in formula (4)
_{u}element D
_{uk}(k=1,2,3 ...., N) represent unit damage or the unit angular displacement numerical value of a kth evaluation object.
Elements C in formula (5)
_{tj} ^{k}(k=1,2,3 ...., N; J=1,2,3 ...., M) represent due to a kth evaluation object have unit damage or a unit angular displacement time, according to the current calculated amount of the individual monitored amount of the jth corresponding to coding rule.
Δ C in formula (7)
_{j, k}(k=1,2,3 ...., N; J=1,2,3 ...., M) represent only due to kth velamen evaluation object have unit damage or unit angular displacement to cause, according to the unit change (algebraic value) of the calculating current value of the monitored amount of the jth corresponding to coding rule, monitored amount unit change vector δ C
_{k}be actually the row in matrix Δ C.
4. monitored amount current value vector C(calculates or actual measurement) with monitored amount current initial value vector C
^{t} _{o}, unit damage monitored amount unit change matrix Δ C, unit damage or unit angular displacement vector D
_{u}and the linear approximate relationship between evaluation object current nominal fatigue vector d, shown in (8) or formula (9).The definition of evaluation object current nominal fatigue vector d is see formula (10).
d=[d
_{1}d
_{2}···d
_{k}···d
_{N}]
^{T}(10)
D in formula (10)
_{k}(k=1,2,3 ...., N) be the current health state of a kth evaluation object in Cable Structure, if this evaluation object is a support cable (or pull bar) in cable system, so d
_{k}represent its current damage, d
_{k}represent not damaged when being 0, when being 100%, represent that this rope thoroughly loses loadbearing capacity, represent the loadbearing capacity losing corresponding proportion time between 0 and 100%, if this evaluation object is angular displacement component, so a d of a bearing
_{k}represent its current shift value.
The error of the linear relationship error vector e expression (8) that available formula (11) defines or the shown linear relationship of formula (9).
In formula (11), abs () is the function that takes absolute value, and takes absolute value to each element of the vector of trying to achieve in bracket.
The Part II of this method: the Cable Structure health state evaluation method of knowledge based storehouse (containing parameter) and the monitored amount of actual measurement.
There is certain error in the linear relationship represented by formula (8) or formula (9), therefore simply can not carry out direct solution according to formula (8) or formula (9) and actual measurement monitored amount current value vector C and obtain evaluation object current nominal fatigue vector d.If this has been doned, the element in the evaluation object obtained current nominal fatigue vector d even there will be larger negative value, namely negative damage, and this is obviously irrational.Therefore the acceptable solution of evaluation object current nominal fatigue vector d is obtained (namely with reasonable error, but position and the degree of injury thereof of damaged cable can be determined more accurately from cable system) become a rational solution, available formula (12) expresses this method.
In formula (12), abs () is the function that takes absolute value, and vectorial g describes the legitimate skew departing from ideal linearity relation (formula (8) or formula (9)), is defined by formula (13).
g=[g
_{1}g
_{2}···g
_{j}···g
_{M}]
^{T}(13)
G in formula (13)
_{j}(j=1,2,3 ...., M) describe the maximum allowable offset departing from formula (8) or the ideal linearity relation shown in formula (9).The error vector e tentative calculation that vector g can define according to formula (11) is selected.
At monitored amount current initial value vector C
^{t} _{o}, unit damage monitored amount unit change matrix Δ C, survey monitored amount current value vector C known time, suitable algorithm (such as multiobjective optimization algorithm) can be utilized to solve formula (12), obtain the acceptable solution of evaluation object current nominal fatigue vector d.
Definition evaluation object current actual damage vector d
^{a}(see formula (14)), can by d
^{a}determine the health status of evaluation object.
D in formula (14)
^{a} _{k}(k=1,2,3 ...., N) represent the current actual health status of a kth evaluation object, if this evaluation object is a support cable (or pull bar) in cable system, so d
^{a} _{k}represent its current actual damage, its definition is shown in formula (15), d
^{a} _{k}represent not damaged when being 0, when being 100%, represent that this rope thoroughly loses loadbearing capacity, time between 0 and 100%, represent the loadbearing capacity losing corresponding proportion; If this evaluation object is an angular displacement component of a bearing, its definition is shown in formula (15), so d
^{a} _{k}represent its current actual displacement angle numerical value, vectorial d
^{a}the coding rule of element and formula (1) in vectorial d
_{o}the coding rule of element identical.
D in formula (15)
_{ok}(k=1,2,3 ...., N) be vectorial d
_{o}a kth element, d
_{k}it is a kth element of vectorial d.
The Part III of this method: the software and hardware part of health monitoring systems.
Hardware components comprises monitoring system (comprising monitored amount monitoring system, temperature monitoring system), signal picker and computing machine etc.Require that RealTime Monitoring obtains temperature required measured data, require each monitored amount of RealTime Monitoring simultaneously.
Software should to complete in this method required, can by functions such as computer implemented monitoring, record, control, storage, calculating, notice, warnings.
This method specifically comprises:
A. for sake of convenience, this method unitedly calls evaluated support cable and angular displacement of support component to be evaluation object, if the quantity sum of the quantity of evaluated support cable and angular displacement of support component is N, namely the quantity of evaluation object is N; Determine the coding rule of evaluation object, evaluation objects all in Cable Structure numbered by this rule, this numbering will be used for generating vector sum matrix in subsequent step; This method variable k represents this numbering, k=1,2,3 ..., N; Specify when determining hybrid monitoring by the support cable of monitored Suo Li, if total Q root support cable in cable system, the monitored rope force data of Cable Structure is by M in Cable Structure
_{1}the M of individual appointment support cable
_{1}individual rope force data describes, and the change of Cable Structure Suo Li is exactly the change of the Suo Li of all appointment support cables; Each total M
_{1}individual cable force measurement value or calculated value characterize the rope force information of Cable Structure; M
_{1}it is an integer being not less than that 0 is not more than Q; Specify when determining hybrid monitoring by the measured point of monitored strain, the monitored strain data of Cable Structure can by K in Cable Structure
_{2}the L of individual specified point and each specified point
_{2}the strain of individual assigned direction describes, and the change of Cable Structure strain data is exactly K
_{2}the change of all tested strain of individual specified point; Each total M
_{2}individual strain measurement value or calculated value characterize Cable Structure strain, M
_{2}for K
_{2}and L
_{2}longpending; M
_{2}be be not less than 0 integer; Specify when determining hybrid monitoring by the measured point of monitored angle, the monitored angledata of Cable Structure is by K in Cable Structure
_{3}individual specified point, cross the L of each specified point
_{3}the H of individual appointment straight line, each appointment straight line
_{3}individual angle coordinate component describes, and the change of Cable Structure angle is exactly the change of all specified points, all appointment straight line, all angle coordinate component of specifying; Each total M
_{3}individual angle coordinate component measurement value or calculated value characterize the angle information of Cable Structure, M
_{3}for K
_{3}, L
_{3}and H
_{3}longpending; M
_{3}it is an integer being not less than 0; Specify when determining hybrid monitoring by monitored shape data, the monitored shape data of Cable Structure is by K in Cable Structure
_{4}the L of individual specified point and each specified point
_{4}the volume coordinate of individual assigned direction describes, and the change of Cable Structure shape data is exactly K
_{4}the change of all coordinate components of individual specified point; Each total M
_{4}individual coordinates measurements or calculated value characterize Cable Structure shape, M
_{4}for K
_{4}and L
_{4}longpending; M
_{4}it is an integer being not less than 0; The monitored amount of comprehensive abovementioned hybrid monitoring, whole Cable Structure has M monitored amount, and M is M
_{1}, M
_{2}, M
_{3}and M
_{4}sum, definition parameter K, K is M
_{1}, K
_{2}, K
_{3}and K
_{4}sum, K and M must not be less than the quantity N of evaluation object; Because M monitored amount is dissimilar, so this method is called " damaged cable of temperature variation hybrid monitoring and support angular displacement identification method "; For simplicity, in the method by monitored all parameters of Cable Structure " during the hybrid monitoring " listed by this step referred to as " monitored amount "; The quantity sum of all monitored amounts is designated as M, and M must not be less than N; Must not be greater than 30 minutes to the time interval between any twice measurement of same amount RealTime Monitoring in this method, the moment of survey record data is called the physical record data moment;
B. this method definition " the temperature survey calculating method of the Cable Structure of this method " is undertaken by step b1 to b3;
B1: inquiry or actual measurement obtain the temperature variant thermal conduction study parameter of environment residing for Cable Structure composition material and Cable Structure, utilize the geometry measured data of the design drawing of Cable Structure, asconstructed drawing and Cable Structure, utilize these data and parameter to set up the Thermodynamic calculation model of Cable Structure, inquiry Cable Structure location is no less than the meteorological data in recent years of 2 years, the statistics cloudy quantity obtained is during this period of time designated as T cloudy day, in the method daytime can not be seen one of the sun and be called the cloudy day all day, statistics obtains 0 highest temperature after sunrise moment next day between 30 minutes and the lowest temperature at each cloudy day in T cloudy day, the sunrise moment refers to the sunrise moment on the meteorology that base area revolutions and revolution rule are determined, do not represent that the same day necessarily can see the sun, data can be inquired about or calculated sunrise moment of each required day by conventional meteorology, 0 highest temperature after sunrise moment next day between 30 minutes at each cloudy day deducts the maximum temperature difference that the lowest temperature is called the daily temperature at this cloudy day, there is T cloudy day, just there is the maximum temperature difference of the daily temperature at T cloudy day, the maximal value of getting in the maximum temperature difference of the daily temperature at T cloudy day is reference temperature difference per day, Δ T is designated as with reference to temperature difference per day
_{r}, be no less than between inquiry Cable Structure location and Altitude Region, place temperature that the meteorological data in recent years of 2 years or actual measurement obtain environment residing for Cable Structure in time with delta data and the Changing Pattern of sea level elevation, calculate to be no less than 2 years between Cable Structure location and Altitude Region, place Cable Structure in recent years residing for the temperature of environment about the maximum rate of change Δ T of sea level elevation
_{h}, get Δ T for convenience of describing
_{h}unit be DEG C/m, the surface of Cable Structure is got " R Cable Structure surface point ", the Specific Principles getting " R Cable Structure surface point " describes in step b3, the temperature of this R Cable Structure surface point will be obtained below by actual measurement, claiming to survey the temperature data obtained is " R Cable Structure surface temperature measured data ", if utilize the Thermodynamic calculation model of Cable Structure, obtained the temperature of this R Cable Structure surface point by Calculation of Heat Transfer, just claim the temperature data that calculates for " R Cable Structure land surface pyrometer count certificate ", from the minimum height above sea level residing for Cable Structure to most High aititude, in Cable Structure, uniform choosing is no less than three different sea level elevations, at the sea level elevation place that each is chosen, two points are at least chosen at the intersection place on surface level and Cable Structure surface, from the outer normal of selected point straw line body structure surface, all outer normal directions chosen are called " measuring the direction of Cable Structure along the Temperature Distribution of wall thickness ", measure Cable Structure crossing with " intersection on surface level and Cable Structure surface " along the direction of the Temperature Distribution of wall thickness, in in the shade the outer normal direction of the measurement Cable Structure chosen along the sunny slope outer normal direction and Cable Structure that must comprise Cable Structure in the direction of the Temperature Distribution of wall thickness, three points are no less than along each measurement Cable Structure along direction uniform choosing in Cable Structure of the Temperature Distribution of wall thickness, especially, along each, Cable Structure is measured for support cable and only gets a point along the direction of the Temperature Distribution of wall thickness, namely the temperature of the surface point of support cable is only measured, measure all temperature be selected a little, the temperature recorded is called " Cable Structure is along the temperature profile data of thickness ", wherein along crossing with same " intersection on surface level and Cable Structure surface ", " measure the direction of Cable Structure along the Temperature Distribution of wall thickness " to measure " Cable Structure is along the temperature profile data of thickness " that obtain, be called in the method " identical sea level elevation Cable Structure is along the temperature profile data of thickness ", if have chosen the individual different sea level elevation of H, at each sea level elevation place, have chosen B and measure the direction of Cable Structure along the Temperature Distribution of wall thickness, in Cable Structure, E point is have chosen along each measurement Cable Structure along the direction of the Temperature Distribution of wall thickness, wherein H and E is not less than 3, B is not less than 2, especially, 1 is equaled for support cable E, what meter Cable Structure " measured the point of Cable Structure along the temperature profile data of thickness " adds up to HBE, the temperature of this HBE " measuring the point of Cable Structure along the temperature profile data of thickness " will be obtained below by actual measurement, claiming to survey the temperature data obtained is " HBE Cable Structure is along thickness temperature measured data ", if utilize the Thermodynamic calculation model of Cable Structure, obtain this HBE by Calculation of Heat Transfer and measure the temperature of Cable Structure along the point of the temperature profile data of thickness, the temperature data calculated just is claimed to be " HBE Cable Structure calculates data along thickness temperature ", the number temperature profile data at sea level elevation place " identical sea level elevation Cable Structure is along the temperature profile data of thickness " will chosen at each in this method ", measure temperature in Cable Structure location according to meteorology to require to choose a position, obtain meeting the temperature that meteorology measures the Cable Structure place environment of temperature requirement by the actual measurement of this position, in the onsite spaciousness of Cable Structure, unobstructed place chooses a position, this position should each of the whole year day can obtain this ground the most sufficient sunshine of this day getable, at the flat board of this position of sound production one piece of carbon steel material, be called reference plate, reference plate can not contact with ground, reference plate overhead distance is not less than 1.5 meters, the one side of this reference plate on the sunny side, be called sunny slope, the sunny slope of reference plate is coarse with dark color, the sunny slope of reference plate should each of the whole year day can obtain one flat plate on this ground the most sufficient sunshine of this day getable, the nonsunny slope of reference plate is covered with insulation material, RealTime Monitoring is obtained the temperature of the sunny slope of reference plate,
B2: RealTime Monitoring obtains R Cable Structure surface temperature measured data of abovementioned R Cable Structure surface point, RealTime Monitoring obtains the temperature profile data of previously defined Cable Structure along thickness simultaneously, and RealTime Monitoring obtains meeting the temperature record that meteorology measures the Cable Structure place environment of temperature requirement simultaneously, the temperature measured data sequence of the Cable Structure place environment after sunrise moment next day between 30 minutes is obtained being carved at sunrise the same day by RealTime Monitoring, the temperature measured data sequence of Cable Structure place environment is arranged according to time order and function order by the temperature measured data of the Cable Structure place environment after being carved into the sunrise moment next day same day at sunrise between 30 minutes, find the maximum temperature in the temperature measured data sequence of Cable Structure place environment and minimum temperature, the maximum temperature difference be carved at sunrise on same day that minimum temperature obtains Cable Structure place environment after sunrise moment next day between 30 minutes is deducted by the maximum temperature in the temperature measured data sequence of Cable Structure place environment, be called environment maximum temperature difference, be designated as Δ T
_{emax}, calculated the rate of change of temperature about the time of Cable Structure place environment by Conventional mathematical by the temperature measured data sequence of Cable Structure place environment, this rate of change is also along with time variations, the measured data sequence of the temperature of the sunny slope of the reference plate after sunrise moment next day between 30 minutes is obtained being carved at sunrise the same day by RealTime Monitoring, the measured data sequence of the temperature of the sunny slope of reference plate is arranged according to time order and function order by the measured data of the temperature of the sunny slope of the reference plate after being carved into the sunrise moment next day same day at sunrise between 30 minutes, find the maximum temperature in the measured data sequence of the temperature of the sunny slope of reference plate and minimum temperature, the maximum temperature difference be carved at sunrise on same day that minimum temperature obtains the temperature of the sunny slope of reference plate after sunrise moment next day between 30 minutes is deducted by the maximum temperature in the measured data sequence of the temperature of the sunny slope of reference plate, be called reference plate maximum temperature difference, be designated as Δ T
_{pmax}, the Cable Structure surface temperature measured data sequence of all R Cable Structure surface points after sunrise moment next day between 30 minutes is obtained being carved at sunrise the same day by RealTime Monitoring, R Cable Structure surface point is had just to have R Cable Structure surface temperature measured data sequence, each Cable Structure surface temperature measured data sequence is arranged according to time order and function order by the Cable Structure surface temperature measured data after being carved into the sunrise moment next day same day of a Cable Structure surface point at sunrise between 30 minutes, find the maximum temperature in each Cable Structure surface temperature measured data sequence and minimum temperature, the maximum temperature difference be carved at sunrise on same day that minimum temperature obtains the temperature of each Cable Structure surface point after sunrise moment next day between 30 minutes is deducted by the maximum temperature in each Cable Structure surface temperature measured data sequence, there is R Cable Structure surface point just to have to be carved at sunrise R the same day maximum temperature difference numerical value between 30 minutes after sunrise moment next day, maximal value is wherein called Cable Structure surface maximum temperature difference, be designated as Δ T
_{smax}, calculated the rate of change of temperature about the time of each Cable Structure surface point by Conventional mathematical by each Cable Structure surface temperature measured data sequence, the temperature of each Cable Structure surface point about the rate of change of time also along with time variations, obtain being carved at sunrise the same day after sunrise moment next day between 30 minutes by RealTime Monitoring, at synchronization, after HBE " Cable Structure is along the temperature profile data of thickness ", calculate the difference amounting to maximum temperature in BE " identical sea level elevation Cable Structure is along the temperature profile data of thickness " and minimum temperature at the sea level elevation place that each is chosen, the absolute value of this difference is called " identical sea level elevation place Cable Structure thickness direction maximum temperature difference ", have chosen H different sea level elevation just to have H " identical sea level elevation place Cable Structure thickness direction maximum temperature difference ", the maximal value in this H " identical sea level elevation place Cable Structure thickness direction maximum temperature difference " is claimed to be " Cable Structure thickness direction maximum temperature difference ", be designated as Δ T
_{tmax},
B3: survey calculation obtains Cable Structure steady temperature data, first, determine the moment obtaining Cable Structure steady temperature data, the condition relevant to the moment determining to obtain Cable Structure steady temperature data has six, Section 1 condition is moment of obtaining Cable Structure steady temperature data between after being carved into sunrise moment next day at sunset between 30 minutes on same day, the sunset moment refers to the sunset moment on base area revolutions and the meteorology determined of revolution rule, can inquire about data or be calculated sunset moment of each required day by conventional meteorology, the a condition of Section 2 condition be after being carved into sunrise moment next day at sunrise between 30 minutes on same day during this period of time in, reference plate maximum temperature difference Δ T
_{pmax}with Cable Structure surface maximum temperature difference Δ T
_{smax}all be not more than 5 degrees Celsius, the b condition of Section 2 condition be after being carved into sunrise moment next day at sunrise between 30 minutes on same day during this period of time in, the environment maximum error Δ T that survey calculation obtains above
_{emax}be not more than with reference to temperature difference per day Δ T
_{r}, and reference plate maximum temperature difference Δ T
_{pmax}Δ T is not more than after deducting 2 degrees Celsius
_{emax}, and Cable Structure surface maximum temperature difference Δ T
_{smax}be not more than Δ T
_{pmax}, one of only need meet in a condition of Section 2 and b condition is just called and meets Section 2 condition, Section 3 condition is when obtaining Cable Structure steady temperature data, and the temperature of Cable Structure place environment is not more than 0.1 degree Celsius per hour about the absolute value of the rate of change of time, Section 4 condition is when obtaining Cable Structure steady temperature data, and the temperature of each the Cable Structure surface point in R Cable Structure surface point is not more than 0.1 degree Celsius per hour about the absolute value of the rate of change of time, Section 5 condition is when obtaining Cable Structure steady temperature data, and the Cable Structure surface temperature measured data of each the Cable Structure surface point in R Cable Structure surface point is be carved into the minimal value after sunrise moment next day between 30 minutes the same day at sunrise, Section 6 condition is when obtaining Cable Structure steady temperature data, " Cable Structure thickness direction maximum temperature difference " Δ T
_{tmax}be not more than 1 degree Celsius, this method utilizes abovementioned six conditions, any one in following three kinds of moment is called " the mathematics moment obtaining Cable Structure steady temperature data ", the first moment meets the moment of the Section 1 in abovementioned " condition relevant to the moment determining to obtain Cable Structure steady temperature data " to Section 5 condition, the second moment is moment of the Section 6 condition only met in abovementioned " condition relevant to determining to obtain moment of Cable Structure steady temperature data ", simultaneously the third moment meets the moment of the Section 1 in abovementioned " condition relevant to the moment determining to obtain Cable Structure steady temperature data " to Section 6 condition, when the mathematics moment obtaining Cable Structure steady temperature data is exactly one in this method in the physical record data moment, the moment obtaining Cable Structure steady temperature data is exactly the mathematics moment obtaining Cable Structure steady temperature data, if the mathematics moment obtaining Cable Structure steady temperature data is not any one moment in this method in the physical record data moment, then getting this method closest to moment of those physical record data in the mathematics moment obtaining Cable Structure steady temperature data is the moment obtaining Cable Structure steady temperature data, the amount being used in the moment survey record obtaining Cable Structure steady temperature data is carried out Cable Structure relevant health monitoring analysis by this method, this method is similar to thinks that the Cable Structure temperature field in the moment obtaining Cable Structure steady temperature data is in stable state, and namely the Cable Structure temperature in this moment does not change in time, and this moment is exactly " obtaining the moment of Cable Structure steady temperature data " of this method, then, according to Cable Structure heat transfer characteristic, utilize " R the Cable Structure surface temperature measured data " and " HBE Cable Structure is along thickness temperature measured data " in the moment obtaining Cable Structure steady temperature data, utilize the Thermodynamic calculation model of Cable Structure, the Temperature Distribution of the Cable Structure in the moment obtaining Cable Structure steady temperature data is calculated by conventional heat transfer, now the temperature field of Cable Structure calculates by stable state, the temperature profile data of the Cable Structure in the moment in acquisition Cable Structure steady temperature data calculated comprises the accounting temperature of R Cable Structure surface point in Cable Structure, the accounting temperature of R Cable Structure surface point is called that R Cable Structure steadystate surface temperature calculates data, also comprise the accounting temperature of Cable Structure selected HBE " measuring the point of Cable Structure along the temperature profile data of thickness " above, the accounting temperature of HBE " measuring the point of Cable Structure along the temperature profile data of thickness " is called " HBE Cable Structure calculates data along thickness temperature ", when R Cable Structure surface temperature measured data and R Cable Structure steadystate surface temperature calculate data correspondent equal, and when " HBE Cable Structure is along thickness temperature measured data " and " HBE Cable Structure calculates data along thickness temperature " correspondent equal, the temperature profile data of the Cable Structure in the moment in acquisition Cable Structure steady temperature data calculated is called " Cable Structure steady temperature data " in the method, " R Cable Structure surface temperature measured data " is now called " R Cable Structure steadystate surface temperature measured data ", " HBE Cable Structure is along thickness temperature measured data " is called " HBE Cable Structure is along thickness steady temperature measured data ", when the surface of Cable Structure is got " R Cable Structure surface point ", the quantity of " R Cable Structure surface point " must meet three conditions with distribution, first condition is when Cable Structure temperature field is in stable state, when the temperature of Cable Structure any point be on the surface by " R Cable Structure surface point " in obtain with the observed temperature linear interpolation of the Cable Structure point that this arbitrfary point is adjacent on the surface time, the error of the Cable Structure that linear interpolation the obtains temperature of this arbitrfary point and the Cable Structure actual temperature of this arbitrfary point on the surface is on the surface not more than 5%, Cable Structure surface comprises support cable surface, second condition is not less than 4 in the quantity of the point of same sea level elevation in " R Cable Structure surface point ", and uniform along Cable Structure surface at the point of same sea level elevation in " R Cable Structure surface point ", " R Cable Structure surface point " is not more than 0.2 DEG C divided by Δ T along the maximal value Δ h in the absolute value of all differences of the sea level elevation of adjacent Cable Structure surface point between two of sea level elevation
_{h}the numerical value obtained, gets Δ T for convenience of describing
_{h}unit be DEG C/m, be m for convenience of describing the unit getting Δ h, " R Cable Structure surface point " along the definition of the adjacent between two Cable Structure surface point of sea level elevation refer to only consider sea level elevation time, in " R Cable Structure surface point ", there is not a Cable Structure surface point, the sea level elevation numerical value of this Cable Structure surface point is between the sea level elevation numerical value of adjacent Cable Structure surface point between two, 3rd condition is inquiry or obtains the rule at sunshine between Cable Structure location and Altitude Region, place by meteorology conventionally calculation, again according to geometric properties and the bearing data of Cable Structure, Cable Structure finds the annual position by sunshineduration those surface points the most sufficient, in " R Cable Structure surface point ", has at least a Cable Structure surface point to be annual by a point in sunshineduration the most fully those surface points in Cable Structure,
C. the Cable Structure steady temperature data under original state are obtained according to " the temperature survey calculating method of the Cable Structure of this method " direct survey calculation, Cable Structure steady temperature data under original state are called initial Cable Structure steady temperature data, are designated as " initial Cable Structure steady temperature data vector T
_{o}"; Survey or consult reference materials and obtain the temperature variant physical and mechanical properties parameter of the various materials that Cable Structure uses; T is obtained in actual measurement
_{o}while, namely at the initial Cable Structure steady temperature data vector T of acquisition
_{o}the synchronization in moment, direct survey calculation obtains the measured data of initial Cable Structure, and the measured data of initial Cable Structure comprises the Nondestructive Testing Data of the health status expressing support cable, Cable Structure bearing initial angle displacement measurement data, the initial value of all monitored amounts, the Initial cable force data of all support cables, initial Cable Structure modal data, initial Cable Structure strain data, initial Cable Structure geometric data, initial Cable Structure support coordinate data, initial Cable Structure angledata, initial Cable Structure spatial data; The initial value of all monitored amounts forms monitored amount initial value vector C
_{o}, monitored amount initial value vector C
_{o}the coding rule of coding rule and M monitored amount identical; Utilization can express the Nondestructive Testing Data of the health status of support cable and Cable Structure bearing initial angle displacement measurement data set up evaluation object initial damage vector d
_{o}, vectorial d
_{o}represent with initial mechanical Calculation Basis model A
_{o}the initial health of the evaluation object of the Cable Structure represented; Evaluation object initial damage vector d
_{o}element number equal N, d
_{o}element and evaluation object be onetoone relationship, vectorial d
_{o}the coding rule of element identical with the coding rule of evaluation object; If d
_{o}evaluation object corresponding to some elements be support cable, so a d in cable system
_{o}the numerical value of this element represent the initial damage degree of corresponding support cable, if the numerical value of this element is 0, represent that the support cable corresponding to this element is intact, do not damage, if its numerical value is 100%, then represent that the support cable corresponding to this element completely loses loadbearing capacity, if its numerical value is between 0 and 100%, then represent that this support cable loses the loadbearing capacity of corresponding proportion; If d
_{o}evaluation object corresponding to some elements be some angular displacement components of some bearings, so d
_{o}the numerical value of this element represent the initial value of this angular displacement component of this bearing; If there is no the Nondestructive Testing Data of support cable and other are when can express the data of the health status of support cable, or can think Cable Structure original state be not damaged without relaxed state time, vectorial d
_{o}in each element numerical value relevant to support cable get 0, if when there is no Cable Structure bearing initial angle displacement measurement data or can think that the displacement of Cable Structure bearing initial angle is 0, vectorial d
_{o}in each element numerical value relevant to Cable Structure angular displacement of support get 0; Initial Cable Structure support coordinate data refer to the support coordinate data under Cable Structure design point, and Cable Structure bearing initial angle displacement measurement data refer to setting up initial mechanical Calculation Basis model A
_{o}time, the angular displacement that Cable Structure bearing occurs relative to the bearing under Cable Structure design point;
Temperature variant physical and mechanical properties parameter, the initial Cable Structure steady temperature data vector T of the various materials d. used according to the measured data of the design drawing of Cable Structure, asconstructed drawing and initial Cable Structure, the Nondestructive Testing Data of support cable, Cable Structure bearing initial angle displacement measurement data, Cable Structure
_{o}with all Cable Structure data obtained with preceding step, set up the initial mechanical Calculation Basis model A counting the Cable Structure of " Cable Structure steady temperature data "
_{o}, based on A
_{o}the Cable Structure that calculates calculates data must closely its measured data, and difference therebetween must not be greater than 5%; Corresponding to A
_{o}" Cable Structure steady temperature data " be exactly " initial Cable Structure steady temperature data vector T
_{o}"; Corresponding to A
_{o}evaluation object health status with evaluation object initial damage vector d
_{o}represent; Corresponding to A
_{o}the initial value monitored amount initial value vector C of all monitored amount
_{o}represent; First time sets up the current initial mechanical Calculation Basis model A counting the Cable Structure of " Cable Structure steady temperature data "
^{t} _{o}, monitored amount current initial value vector C
^{t} _{o}" current initial Cable Structure steady temperature data vector T
^{t} _{o}"; Set up the current initial mechanical Calculation Basis model A of Cable Structure for the first time
^{t} _{o}with monitored amount current initial value vector C
^{t} _{o}time, the current initial mechanical Calculation Basis model A of Cable Structure
^{t} _{o}just equal the initial mechanical Calculation Basis model A of Cable Structure
_{o}, monitored amount current initial value vector C
^{t} _{o}just equal monitored amount initial value vector C
_{o}; A
^{t} _{o}corresponding " Cable Structure steady temperature data " are called " current initial Cable Structure steady temperature data ", are designated as " current initial Cable Structure steady temperature data vector T
^{t} _{o}", set up the current initial mechanical Calculation Basis model A of Cable Structure for the first time
^{t} _{o}time, T
^{t} _{o}just equal T
_{o}; A
^{t} _{o}the initial health of evaluation object and A
_{o}the health status of evaluation object identical, also use evaluation object initial damage vector d
_{o}represent, A in cyclic process below
^{t} _{o}the initial health of evaluation object use evaluation object initial damage vector d all the time
_{o}represent; T
_{o}and d
_{o}a
_{o}parameter, by A
_{o}the initial value of all monitored amount that obtains of Mechanics Calculation result and C
_{o}the initial value of all monitored amount represented is identical, therefore alternatively C
_{o}by A
_{o}mechanics Calculation result composition; T
^{t} _{o}and d
_{o}a
^{t} _{o}parameter, C
^{t} _{o}by A
^{t} _{o}mechanics Calculation result composition;
E. from entering the circulation being walked to m step by e here; In Cable Structure military service process, the current data of " Cable Structure steady temperature data " is constantly obtained according to " the temperature survey calculating method of the Cable Structure of this method " continuous Actual measurement, the current data of " Cable Structure steady temperature data " is called " current cable structure steady temperature data ", is designated as " current cable structure steady temperature data vector T
^{t}", vector T
^{t}definition mode and vector T
_{o}definition mode identical;
F. according to current cable structure steady temperature data vector T
^{t}, upgrade current initial mechanical Calculation Basis model A according to step f1 to f3
^{t} _{o}, monitored amount current initial value vector C
^{t} _{o}with current initial Cable Structure steady temperature data vector T
^{t} _{o};
F1. T is compared
^{t}with T
^{t} _{o}if, T
^{t}equal T
^{t} _{o}, then A
^{t} _{o}, C
^{t} _{o}and T
^{t} _{o}remain unchanged; Otherwise need to follow these steps to A
^{t} _{o}, U
^{t} _{o}and T
^{t} _{o}upgrade;
F2. T is calculated
^{t}with T
_{o}difference, T
^{t}with T
_{o}difference be exactly the changes of current cable structure steady temperature data about initial Cable Structure steady temperature data, T
^{t}with T
_{o}difference represent with steady temperature change vector S, S equals T
^{t}deduct T
_{o}, S represents the change of Cable Structure steady temperature data;
F3. to A
_{o}in Cable Structure apply temperature variation, the numerical value of the temperature variation of applying just takes from steady temperature change vector S, to A
_{o}in Cable Structure apply temperature variation after obtain upgrade current initial mechanical Calculation Basis model A
^{t} _{o}, upgrade A
^{t} _{o}while, T
^{t} _{o}all elements numerical value also uses T
^{t}all elements numerical value correspondence replace, namely have updated T
^{t} _{o}, so just obtain and correctly correspond to A
^{t} _{o}t
^{t} _{o}; Upgrade C
^{t} _{o}method be: when renewal A
^{t} _{o}after, obtain A by Mechanics Calculation
^{t} _{o}in all monitored amounts, current concrete numerical value, these concrete numerical value composition C
^{t} _{o}; A
^{t} _{o}the initial health of support cable use evaluation object initial damage vector d all the time
_{o}represent;
G. at current initial mechanical Calculation Basis model A
^{t} _{o}basis on carry out several times Mechanics Calculation according to step g 1 to g4, obtain Cable Structure unit damage monitored amount unit change matrix Δ C and unit damage or unit angular displacement vector D by calculating
_{u};
G1. Cable Structure unit damage monitored amount unit change matrix Δ C constantly updates, namely at the current initial mechanical Calculation Basis model A of renewal
^{t} _{o}, monitored amount current initial value vector C
^{t} _{o}with current initial Cable Structure steady temperature data vector T
^{t} _{o}afterwards, the vectorial D of Cable Structure unit damage monitored amount unit change matrix Δ C and unit damage or unit angular displacement must then be upgraded
_{u};
G2. at the current initial mechanical Calculation Basis model A of Cable Structure
^{t} _{o}basis on carry out several times Mechanics Calculation, calculation times numerically equals the quantity N of all evaluation objects, has N number of evaluation object just to have N calculating; According to the coding rule of evaluation object, calculate successively; Calculating hypothesis each time only has an evaluation object to increase unit damage or unit angular displacement again on the basis of original damage or angular displacement, concrete, if this evaluation object is a support cable in cable system, so just suppose that this support cable increases unit damage again, if this evaluation object is the angular displacement component in a direction of a bearing, just suppose that this bearing increases unit angular displacement again at this sense of displacement, use D
_{uk}record unit damage or the unit angular displacement of this increase, wherein k represents the numbering of the evaluation object increasing unit damage or unit angular displacement, D
_{uk}unit damage or unit angular displacement vector D
_{u}an element, unit damage or unit angular displacement vector D
_{u}the coding rule of element and vectorial d
_{o}the coding rule of element identical; The evaluation object increasing unit damage or unit angular displacement in calculating each time is different from during other time calculates the evaluation object increasing unit damage or unit angular displacement, calculate the current calculated value all utilizing mechanics method to calculate all monitored amount of Cable Structure each time, the current calculated value of all monitored amount calculated each time forms a monitored amount calculation current vector, element number rule and the monitored amount initial value vector C of monitored amount calculation current vector
_{o}element number rule identical;
G3. the monitored amount calculation current vector calculated each time deducts monitored amount current initial value vector C
^{t} _{o}obtain a vector, then each element of this vector is calculated the unit damage or unit angular displacement numerical value supposed divided by this time, obtain a monitored amount unit change vector, have N number of evaluation object just to have N number of monitored amount unit change vector;
G4. by the vectorial coding rule according to N number of evaluation object of this N number of monitored amount unit change, the Cable Structure unit damage monitored amount unit change matrix Δ C having N to arrange is formed successively; Each row of Cable Structure unit damage monitored amount unit change matrix Δ C correspond to a monitored amount unit change vector; Every a line of Cable Structure unit damage monitored amount unit change matrix Δ C corresponds to the different unit change amplitude of same monitored amount when different evaluation object increases unit damage or unit angular displacement; The coding rule of the row of Cable Structure unit damage monitored amount unit change matrix Δ C and vectorial d
_{o}the coding rule of element identical, the coding rule of the row of Cable Structure unit damage monitored amount unit change matrix Δ C is identical with the coding rule of M monitored amount;
H. current cable structure steady temperature data vector T is obtained in actual measurement
^{t}while, actual measurement obtains at acquisition current cable structure steady temperature data vector T
^{t}the current measured value of all monitored amount of Cable Structure of synchronization in moment, form monitored amount current value vector C; Monitored amount current value vector C and monitored amount current initial value vector C
^{t} _{o}with monitored amount initial value vector C
_{o}definition mode identical, the same monitored amount of element representation of three vectorial identical numberings is at not concrete numerical value in the same time;
I. evaluation object current nominal fatigue vector d is defined, the element number of evaluation object current nominal fatigue vector d equals the quantity of evaluation object, be onetoone relationship between the element of evaluation object current nominal fatigue vector d and evaluation object, the element numerical value of evaluation object current nominal fatigue vector d represents the nominal fatigue degree of corresponding evaluation object or nominal angular displacement; The coding rule of the element of vector d and vectorial d
_{o}the coding rule of element identical;
J. according to monitored amount current value vector C with monitored amount current initial value vector C
^{t} _{o}, Cable Structure unit damage monitored amount unit change matrix Δ C, unit damage or unit angular displacement vector D
_{u}and the linear approximate relationship existed between evaluation object to be asked current nominal fatigue vector d, this linear approximate relationship can be expressed as formula 1, and other amount in formula 1 except d is known, solves formula 1 and just can calculate evaluation object current nominal fatigue vector d;
K. evaluation object current actual damage vector d is defined
^{a}, evaluation object current actual damage vector d
^{a}element number equal the quantity of evaluation object, evaluation object current actual damage vector d
^{a}element and evaluation object between be onetoone relationship, evaluation object current actual damage vector d
^{a}element numerical value represent actual damage degree or the actual displacement angle of corresponding evaluation object; Vector d
^{a}the coding rule of element and vectorial d
_{o}the coding rule of element identical;
L. the evaluation object utilizing formula 2 to express current actual damage vector d
^{a}a kth element d
^{a} _{k}with evaluation object initial damage vector d
_{o}a kth element d
_{ok}with a kth element d of evaluation object current nominal fatigue vector d
_{k}between relation, calculate evaluation object current actual damage vector d
^{a}all elements;
formula 2
K=1 in formula 2,2,3 ...., N, d
^{a} _{k}represent the current actual health status of a kth evaluation object, if this evaluation object is support cable, so a d in cable system
^{a} _{k}represent its current actual damage, d
^{a} _{k}represent not damaged when being 0, when being 100%, represent that this support cable thoroughly loses loadbearing capacity, represent the loadbearing capacity losing corresponding proportion time between 0 and 100%, if this evaluation object is angular displacement component, so a d of a bearing
^{a} _{k}represent its current actual displacement angle numerical value; So according to evaluation object current actual damage vector d
^{a}impaired and the degree of injury of which support cable can be defined, define which bearing and there occurs angular displacement and numerical value thereof, namely achieve damaged cable and the angular displacement of support identification of Cable Structure;
M. get back to e step, start the circulation next time being walked to m step by e.
Beneficial effect: when the temperature field of Cable Structure is subject to affecting of the factor such as sunshine and environment temperature, the temperature field of Cable Structure is constantly change, the change of temperature field of Cable Structure must affect the monitored amount of Cable Structure, only have and monitored amount is rejected could carry out rational cable structure health monitoring based on monitored amount by temperature profile effect part, and the temperature field measurement of Cable Structure and calculating are very complicated, this method discloses to comprise and is a kind ofly suitable for the simple of cable structure health monitoring, economical, feasible, the cable structure health monitoring method of efficient Cable Structure Calculation Method of Temperature Field, adopt this method when angular displacement appears in Cable Structure bearing, many support cables of Cable Structure synchronous impaired time, and the temperature of Cable Structure along with time variations time, very monitor assessment can identify damaged cable and angular displacement of support, the effective health monitoring of system and method disclosed in this method to Cable Structure is highly profitable.
Embodiment
When temperature variation, for damaged cable and the angular displacement of support identification of Cable Structure, this method discloses a kind of system and method can monitoring the health status identifying each evaluation object in Cable Structure rationally and effectively.The following describes of embodiment of this method is in fact only exemplary, and object is never the application or the use that limit this method.
This method adopts a kind of algorithm, and this algorithm is for identifying damaged cable and angular displacement of support.During concrete enforcement, the following step is the one in the various steps that can take.
The first step: set the quantity sum of the quantity of the support cable of Cable Structure and the angular displacement of support component of Cable Structure as N.For sake of convenience, this method unitedly calls evaluated support cable and angular displacement of support to be " evaluation object ", total N number of evaluation object.To evaluation object serial number, this numbering will be used for generating vector sum matrix in subsequent step.
Specify when determining hybrid monitoring by the support cable of monitored Suo Li, if total Q root support cable in cable system, the monitored rope force data of Cable Structure is by M in Cable Structure
_{1}the M of individual appointment rope
_{1}individual rope force data describes, and the change of Cable Structure Suo Li is exactly the change of the Suo Li of all appointment ropes.Each total M
_{1}individual cable force measurement value or calculated value characterize the rope force information of Cable Structure.M
_{1}it is an integer being not less than 0.When reality selectes the rope of monitored Suo Li, the rope that those Suo Li can be selected to be easy to measure is monitored rope.
Specify when determining hybrid monitoring by the measured point of monitored strain, the monitored strain data of Cable Structure can by K in Cable Structure
_{2}the L of individual specified point and each specified point
_{2}the strain of individual assigned direction describes, and the change of Cable Structure strain data is exactly K
_{2}the change of all tested strain of individual specified point.Each total M
_{2}individual strain measurement value or calculated value characterize Cable Structure strain, M
_{2}for K
_{2}and L
_{2}longpending.M
_{2}it is an integer being not less than 0.The measured point of monitored strain can be exactly a point near the fixed endpoint (being such as the stiff end of dragline on bridge of cablestayed bridge) of each root support cable by each, this specified point can also be a point near Cable Structure bearing, this point should not be generally stress concentration point, to avoid occurring excessive strain measurement value, the fixed endpoint of the rope of the monitored Suo Li specified when these points should not be also generally all hybrid monitorings or in its vicinity.
Specify when determining hybrid monitoring by the measured point of monitored angle, the monitored angledata of Cable Structure is by K in Cable Structure
_{3}individual specified point, cross the L of each specified point
_{3}the H of individual appointment straight line, each appointment straight line
_{3}individual angle coordinate component describes, and the change of Cable Structure angle is exactly the change of all specified points, all appointment straight line, all angle coordinate component of specifying.Each total M
_{3}individual angle coordinate component measurement value or calculated value characterize the angle information of Cable Structure, M
_{3}for K
_{3}, L
_{3}and H
_{3}longpending.M
_{3}it is an integer being not less than 0.Each specified point can be exactly the fixed endpoint (being such as the stiff end of dragline on bridge floor of cablestayed bridge) of each root support cable or a point near it, this specified point can also be a point near Cable Structure bearing, and the point of monitored angledata generally should all not be chosen as " fixed endpoint of the rope of the monitored Suo Li specified in hybrid monitoring or point in its vicinity " and " point of the monitored strain of specifying in hybrid monitoring or point in its vicinity "; Only can measure one at each specified point and specify an angle coordinate of straight line, such as measuring the Cable Structure surface normal of specified point or the tangent line angle coordinate relative to acceleration of gravity direction, is in fact exactly measurement of dip angle here.
Specify when determining hybrid monitoring by monitored shape data, the monitored shape data of Cable Structure is by K in Cable Structure
_{4}the L of individual specified point and each specified point
_{4}the volume coordinate of individual assigned direction describes, and the change of Cable Structure shape data is exactly K
_{4}the change of all coordinate components of individual specified point.Each total M
_{4}individual coordinates measurements or calculated value characterize Cable Structure shape, M
_{4}for K
_{4}and L
_{4}longpending.M
_{4}it is an integer being not less than 0.Each specified point can be exactly the fixed endpoint (being such as the stiff end of dragline on bridge of cablestayed bridge) of each root support cable, and this specified point can also be a point near Cable Structure bearing, or is exactly directly Cable Structure seat pivot; Here selected point being monitored should all not selected " fixed endpoint of the rope of the monitored Suo Li specified in hybrid monitoring or point in its vicinity ", " point of the monitored strain of specifying in hybrid monitoring or point in its vicinity " and " point of the monitored angledata of specifying in hybrid monitoring or point in its vicinity ".
Comprehensive abovementioned monitored amount, whole Cable Structure is total M monitored amount with regard to hybrid monitoring, and M is M
_{1}, M
_{2}, M
_{3}and M
_{4}sum, definition parameter K, K is M
_{1}, K
_{2}, K
_{3}and K
_{4}sum, K and M must not be less than the quantity N of evaluation object.Because M monitored amount is dissimilar, so this method is called " damaged cable of temperature variation hybrid monitoring and support angular displacement identification method ".For simplicity, in the method by monitored all parameters of Cable Structure " during the hybrid monitoring " listed by this step referred to as " monitored amount ".To M monitored amount serial number, this numbering will be used for generating vector sum matrix in subsequent step.This method represents this numbering, j=1,2,3 with variable j ..., M.
Determine " the temperature survey calculating method of the Cable Structure of this method ", the method concrete steps are as follows:
A walks: inquiry or actual measurement (can be measured by ordinary temperature measuring method, thermal resistance is such as used to measure) obtain the temperature variant thermal conduction study parameter of environment residing for Cable Structure composition material and Cable Structure, utilize the geometry measured data of the design drawing of Cable Structure, asconstructed drawing and Cable Structure, utilize these data and parameter to set up the Thermodynamic calculation model (such as finite element model) of Cable Structure.Inquiry Cable Structure location is no less than the meteorological data in recent years of 2 years, the statistics cloudy quantity obtained is during this period of time designated as T cloudy day, statistics obtains 0 highest temperature after sunrise moment next day between 30 minutes and the lowest temperature at each cloudy day in T cloudy day, the sunrise moment refers to the sunrise moment on the meteorology that base area revolutions and revolution rule are determined, data can be inquired about or calculated sunrise moment of each required day by conventional meteorology, 0 highest temperature after sunrise moment next day between 30 minutes at each cloudy day deducts the maximum temperature difference that the lowest temperature is called the daily temperature at this cloudy day, there is T cloudy day, just there is the maximum temperature difference of the daily temperature at T cloudy day, the maximal value of getting in the maximum temperature difference of the daily temperature at T cloudy day is reference temperature difference per day, Δ T is designated as with reference to temperature difference per day
_{r}, be no less than between inquiry Cable Structure location and Altitude Region, place temperature that the meteorological data in recent years of 2 years or actual measurement obtain environment residing for Cable Structure in time with delta data and the Changing Pattern of sea level elevation, calculate to be no less than 2 years between Cable Structure location and Altitude Region, place Cable Structure in recent years residing for the temperature of environment about the maximum rate of change Δ T of sea level elevation
_{h}, get Δ T for convenience of describing
_{h}unit be DEG C/m, the surface of Cable Structure is got " R Cable Structure surface point ", the Specific Principles getting " R Cable Structure surface point " describes in step b3, the temperature of this R Cable Structure surface point will be obtained below by actual observation record, claiming to survey the temperature data obtained is " R Cable Structure surface temperature measured data ", if utilize the Thermodynamic calculation model of Cable Structure, obtained the temperature of this R Cable Structure surface point by Calculation of Heat Transfer, just claim the temperature data that calculates for " R Cable Structure land surface pyrometer count certificate ".From the minimum height above sea level residing for Cable Structure to most High aititude, in Cable Structure, uniform choosing is no less than three different sea level elevations, if the sea level elevation of such as Cable Structure is between 0m to 200m, so can choose height above sea level 0m, 50m, 100m and height above sea level 200m, crossing with Cable Structure surface with imaginary surface level at the sea level elevation place that each is chosen, obtain intersection, surface level is crossing with Cable Structure obtains cross surface, intersection is the outer edge line of cross surface, 6 points are chosen at the intersection place on surface level and Cable Structure surface, from the outer normal of selected point straw line body structure surface, all outer normal directions chosen are called " measuring the direction of Cable Structure along the Temperature Distribution of wall thickness ", measure Cable Structure crossing with " intersection on surface level and Cable Structure surface " along the direction of the Temperature Distribution of wall thickness.In 6 directions of the measurement Cable Structure chosen along the Temperature Distribution of wall thickness, first according to the meteorological data throughout the year in region, Cable Structure position and the physical dimension of Cable Structure, volume coordinate, Cable Structure surrounding environment etc. determines the sunny slope of Cable Structure and in the shade, the sunny slope of Cable Structure and in the shade face are the parts on the surface of Cable Structure, at the sea level elevation place that each is chosen, aforementioned intersection respectively has one section in sunny slope and in the shade, these two sections of intersection respectively have a mid point, cross the outer normal that these two mid points get Cable Structure, these two outer normals are called the sunny slope outer normal of Cable Structure and in the shade outer normal of Cable Structure by this method, these two outer normal directions are called the sunny slope outer normal direction of Cable Structure and in the shade outer normal direction of Cable Structure by this method, the outer normal of obvious sunny slope and the outer normal of in the shade all crossing with aforementioned intersection, also two intersection points are just had, intersection is divided into two line segments by these two intersection points, 2 points are got respectively on two line segments, totally 4 points, each line segment in two of intersection line segments is divided into equal 3 sections of length by taken point, the outer normal on Cable Structure surface is got at these 4 some places, the outer normal on 6 Cable Structure surfaces is just have chosen so altogether at each selected sea level elevation place, the direction of 6 outer normals is exactly " measuring the direction of Cable Structure along the Temperature Distribution of wall thickness ".There are two intersection points on the surface of each " measures the direction of Cable Structure along the Temperature Distribution of wall thickness " line and Cable Structure, if Cable Structure is hollow, these, two intersection points are on Cable Structure outside surface, another on an internal surface, if Cable Structure is solid, these two intersection points are all on Cable Structure outside surface, connect these two intersection points and obtain a straightline segment, straightline segment is chosen three points again, this straightline segment is divided into four sections by these three points, measure two end points of Cable Structure at these three points chosen and straightline segment, amount to the temperature of 5 points, concrete can first hole in Cable Structure, temperature sensor is embedded in this 5 some places, especially, can not hole in support cable, support cable is only measured to the temperature of support cable surface point, in any case, the temperature recorded all is called this place " Cable Structure is along the temperature profile data of thickness ", wherein along crossing with same " intersection on surface level and Cable Structure surface ", " measure the direction of Cable Structure along the Temperature Distribution of wall thickness " to measure " Cable Structure is along the temperature profile data of thickness " that obtain, be called in the method " identical sea level elevation Cable Structure is along the temperature profile data of thickness ".If have chosen the individual different sea level elevation of H, at each sea level elevation place, have chosen B and measure the direction of Cable Structure along the Temperature Distribution of wall thickness, in Cable Structure, E point is have chosen along each measurement Cable Structure along the direction of the Temperature Distribution of wall thickness, wherein H and E is not less than 3, B is not less than 2, especially, 1 is equaled for support cable E, what meter Cable Structure " measured the point of Cable Structure along the temperature profile data of thickness " adds up to HBE, the temperature of this HBE " measuring the point of Cable Structure along the temperature profile data of thickness " will be obtained below by actual measurement, claiming to survey the temperature data obtained is " HBE Cable Structure is along thickness temperature measured data ", if utilize the Thermodynamic calculation model of Cable Structure, obtain this HBE by Calculation of Heat Transfer and measure the temperature of Cable Structure along the point of the temperature profile data of thickness, the temperature data calculated just is claimed to be " HBE Cable Structure calculates data along thickness temperature ", the number temperature profile data at sea level elevation place " identical sea level elevation Cable Structure is along the temperature profile data of thickness " will chosen at each in this method ".Measuring temperature in Cable Structure location according to meteorology to require to choose a position, meeting obtaining in this position actual observation record the temperature that meteorology measures the Cable Structure place environment of temperature requirement, in the onsite spaciousness of Cable Structure, unobstructed place chooses a position, this position should each of the whole year day can obtain this ground the most sufficient sunshine of this day getable (as long as there was sunrise the same day, this position just should by sunlight), at the flat board (square plate that the wide 3mm of such as 30cm is thick) of this position of sound production one piece of carbon steel material (such as No. 45 carbon steels), be called reference plate, reference plate can not contact with ground, reference plate overhead distance is not less than 1.5 meters, reference plate can be placed in and meet the top that meteorology temperature measures the wooden thermometer screen required, the one side of this reference plate on the sunny side, be called that sunny slope (such as, time on the Northern Hemisphere, sunny slope faces up towards south, full daytime is all by sunshine, sunny slope should have the suitable gradient to make snow can not accumulate or clear up sunny slope after snow), the sunny slope of reference plate is coarse with dark color (being conducive to accepting solar irradiation), the sunny slope of reference plate should each of the whole year day can obtain one flat plate on this ground the most sufficient sunshine of this day getable, the nonsunny slope of reference plate is covered with insulation material (the thick calcium carbonate insulation material of such as 5mm), RealTime Monitoring record is obtained the temperature of the sunny slope of reference plate.
B walks, RealTime Monitoring (can be measured by ordinary temperature measuring method, thermal resistance is such as used to measure, such as every 10 minutes survey records temperature data) record R the Cable Structure surface temperature measured data obtaining abovementioned R Cable Structure surface point, RealTime Monitoring (can be measured by ordinary temperature measuring method simultaneously, thermal resistance is such as used to measure, such as every 10 minutes survey records temperature data) obtain the temperature profile data of previously defined Cable Structure along thickness, RealTime Monitoring (can be measured by ordinary temperature measuring method simultaneously, such as in the wooden thermometer screen meeting meteorology temperature measurement requirement, lay thermal resistance and measure temperature, such as every 10 minutes survey records temperature data) record the temperature record obtaining the Cable Structure place environment meeting the requirement of meteorology measurement temperature, (can be measured by ordinary temperature measuring method by RealTime Monitoring, such as in the wooden thermometer screen meeting meteorology temperature measurement requirement, lay thermal resistance and measure temperature, such as every 10 minutes survey records temperature data) record obtains being carved at sunrise the temperature measured data sequence of the Cable Structure place environment after sunrise moment next day between 30 minutes the same day, the temperature measured data sequence of Cable Structure place environment is arranged according to time order and function order by the temperature measured data of the Cable Structure place environment after being carved into the sunrise moment next day same day at sunrise between 30 minutes, find the maximum temperature in the temperature measured data sequence of Cable Structure place environment and minimum temperature, the maximum temperature difference be carved at sunrise on same day that minimum temperature obtains Cable Structure place environment after sunrise moment next day between 30 minutes is deducted by the maximum temperature in the temperature measured data sequence of Cable Structure place environment, be designated as Δ T
_{emax}, (such as first the temperature measured data sequence of Cable Structure place environment is carried out curve fitting by Conventional mathematical calculating by the temperature measured data sequence of Cable Structure place environment, then by asking curve to the derivative of time or by asking on curve each point corresponding to survey record data time by numerical method to the rate of change of time) obtain the rate of change of temperature about the time of Cable Structure place environment, this rate of change is also along with time variations, (can be measured by ordinary temperature measuring method by RealTime Monitoring, such as use the temperature of the dull and stereotyped sunny slope of thermal resistance witness mark, such as every 10 minutes survey records temperature data) obtain being carved at sunrise the same day measured data sequence of the temperature of the sunny slope of the reference plate after sunrise moment next day between 30 minutes, the measured data sequence of the temperature of the sunny slope of reference plate is arranged according to time order and function order by the measured data of the temperature of the sunny slope of the reference plate after being carved into the sunrise moment next day same day at sunrise between 30 minutes, find the maximum temperature in the measured data sequence of the temperature of the sunny slope of reference plate and minimum temperature, the maximum temperature difference be carved at sunrise on same day that minimum temperature obtains the temperature of the sunny slope of reference plate after sunrise moment next day between 30 minutes is deducted by the maximum temperature in the measured data sequence of the temperature of the sunny slope of reference plate, be designated as Δ T
_{pmax}, (can be measured by ordinary temperature measuring method by RealTime Monitoring, thermal resistance is such as used to measure Cable Structure surface point, such as every 10 minutes survey records temperature data) record obtains being carved at sunrise the Cable Structure surface temperature measured data sequence of all R Cable Structure surface points after sunrise moment next day between 30 minutes the same day, R Cable Structure surface point is had just to have R Cable Structure surface temperature measured data sequence, each Cable Structure surface temperature measured data sequence is arranged according to time order and function order by the Cable Structure surface temperature measured data after being carved into the sunrise moment next day same day of a Cable Structure surface point at sunrise between 30 minutes, find the maximum temperature in each Cable Structure surface temperature measured data sequence and minimum temperature, the maximum temperature difference be carved at sunrise on same day that minimum temperature obtains the temperature of each Cable Structure surface point after sunrise moment next day between 30 minutes is deducted by the maximum temperature in each Cable Structure surface temperature measured data sequence, there is R Cable Structure surface point just to have to be carved at sunrise R the same day maximum temperature difference numerical value between 30 minutes after sunrise moment next day, maximal value is wherein designated as Δ T
_{smax}, (such as first each Cable Structure surface temperature measured data sequence is carried out curve fitting by Conventional mathematical calculating by each Cable Structure surface temperature measured data sequence, then by asking curve to the derivative of time or by asking on curve each point corresponding to survey record data time by numerical method to the rate of change of time) obtain the rate of change of temperature about the time of each Cable Structure surface point, the temperature of each Cable Structure surface point about the rate of change of time also along with time variations.Obtain being carved at sunrise the same day after sunrise moment next day between 30 minutes by RealTime Monitoring, at synchronization, after HBE " Cable Structure is along the temperature profile data of thickness ", calculate the difference amounting to maximum temperature in BE " identical sea level elevation Cable Structure is along the temperature profile data of thickness " and minimum temperature at the sea level elevation place that each is chosen, the absolute value of this difference is called " identical sea level elevation place Cable Structure thickness direction maximum temperature difference ", have chosen H different sea level elevation just to have H " identical sea level elevation place Cable Structure thickness direction maximum temperature difference ", the maximal value in this H " identical sea level elevation place Cable Structure thickness direction maximum temperature difference " is claimed to be " Cable Structure thickness direction maximum temperature difference ", be designated as Δ T
_{tmax}.
C walks, and survey calculation obtains Cable Structure steady temperature data; First, determine the moment obtaining Cable Structure steady temperature data, the condition relevant to the moment determining to obtain Cable Structure steady temperature data has six, Section 1 condition is moment of obtaining Cable Structure steady temperature data between after being carved into sunrise moment next day at sunset between 30 minutes on same day, the sunset moment refers to the sunset moment on base area revolutions and the meteorology determined of revolution rule, can inquire about data or be calculated sunset moment of each required day by conventional meteorology; The a condition of Section 2 condition be after being carved into sunrise moment next day at sunrise between 30 minutes on same day during this period of time in, Δ T
_{pmax}with Δ T
_{smax}all be not more than 5 degrees Celsius; The b condition that Section 2 must meet be after being carved into sunrise moment next day at sunrise between 30 minutes on same day during this period of time in, the Δ T that survey calculation obtains above
_{emax}be not more than with reference to temperature difference per day Δ T
_{r}, and the Δ T that survey calculation obtains above
_{pmax}deduct 2 degrees Celsius and be not more than Δ T
_{emax}, and the Δ T that survey calculation obtains above
_{smax}be not more than Δ T
_{pmax}; One of only need meet in a condition of Section 2 and b condition is just called and meets Section 2 condition; Section 3 condition is when obtaining Cable Structure steady temperature data, and the temperature of Cable Structure place environment is not more than 0.1 degree Celsius per hour about the absolute value of the rate of change of time; Section 4 condition is when obtaining Cable Structure steady temperature data, and the temperature of each the Cable Structure surface point in R Cable Structure surface point is not more than 0.1 degree Celsius per hour about the absolute value of the rate of change of time; Section 5 condition is when obtaining Cable Structure steady temperature data, and the Cable Structure surface temperature measured data of each the Cable Structure surface point in R Cable Structure surface point is be carved into the minimal value after sunrise moment next day between 30 minutes the same day at sunrise; Section 6 condition is when obtaining Cable Structure steady temperature data, " Cable Structure thickness direction maximum temperature difference " Δ T
_{tmax}be not more than 1 degree Celsius.This method utilizes abovementioned six conditions, any one in following three kinds of moment is called " the mathematics moment obtaining Cable Structure steady temperature data ", the first moment meets the moment of the Section 1 in abovementioned " condition relevant to the moment determining to obtain Cable Structure steady temperature data " to Section 5 condition, the second moment is moment of the Section 6 condition only met in abovementioned " condition relevant to determining to obtain moment of Cable Structure steady temperature data ", simultaneously the third moment meets the moment of the Section 1 in abovementioned " condition relevant to the moment determining to obtain Cable Structure steady temperature data " to Section 6 condition, when the mathematics moment obtaining Cable Structure steady temperature data is exactly one in this method in the physical record data moment, the moment obtaining Cable Structure steady temperature data is exactly the mathematics moment obtaining Cable Structure steady temperature data, if the mathematics moment obtaining Cable Structure steady temperature data is not any one moment in this method in the physical record data moment, then getting this method closest to moment of those physical record data in the mathematics moment obtaining Cable Structure steady temperature data is the moment obtaining Cable Structure steady temperature data, the amount being used in the moment survey record obtaining Cable Structure steady temperature data is carried out Cable Structure relevant health monitoring analysis by this method, this method is similar to thinks that the Cable Structure temperature field in the moment obtaining Cable Structure steady temperature data is in stable state, and namely the Cable Structure temperature in this moment does not change in time, and this moment is exactly moment of the acquisition Cable Structure steady temperature data of this method, then, according to Cable Structure heat transfer characteristic, utilize R Cable Structure surface temperature measured data and " HBE Cable Structure is along the thickness temperature measured data " in the moment obtaining Cable Structure steady temperature data, utilize the Thermodynamic calculation model (such as finite element model) of Cable Structure, the Temperature Distribution that (such as finite element method) obtains the Cable Structure in the moment obtaining Cable Structure steady temperature data is calculated by conventional heat transfer, now the temperature field of Cable Structure calculates by stable state, the temperature profile data of the Cable Structure in the moment in acquisition Cable Structure steady temperature data calculated comprises the accounting temperature of R Cable Structure surface point in Cable Structure, the accounting temperature of R Cable Structure surface point is called that R Cable Structure steadystate surface temperature calculates data, also comprise the accounting temperature of Cable Structure selected HBE " measuring the point of Cable Structure along the temperature profile data of thickness " above, the accounting temperature of HBE " measuring the point of Cable Structure along the temperature profile data of thickness " is called " HBE Cable Structure calculates data along thickness temperature ", when R Cable Structure surface temperature measured data and R Cable Structure steadystate surface temperature calculate data correspondent equal, and when " HBE Cable Structure is along thickness temperature measured data " and " HBE Cable Structure calculates data along thickness temperature " correspondent equal, the temperature profile data of the Cable Structure in the moment in acquisition Cable Structure steady temperature data calculated is called " Cable Structure steady temperature data " in the method, " R Cable Structure surface temperature measured data " is now called " R Cable Structure steadystate surface temperature measured data ", " HBE Cable Structure is along thickness temperature measured data " is called " HBE Cable Structure is along thickness steady temperature measured data ".When the surface of Cable Structure is got " R Cable Structure surface point ", the quantity of " R Cable Structure surface point " must meet three conditions with distribution, first condition is when Cable Structure temperature field is in stable state, when the temperature of Cable Structure any point be on the surface by " R Cable Structure surface point " in obtain with the observed temperature linear interpolation of the Cable Structure point that this arbitrfary point is adjacent on the surface time, the error of the Cable Structure that linear interpolation the obtains temperature of this arbitrfary point and the Cable Structure actual temperature of this arbitrfary point on the surface is on the surface not more than 5%; Cable Structure surface comprises support cable surface; Second condition is not less than 4 in the quantity of the point of same sea level elevation in " R Cable Structure surface point ", and uniform along Cable Structure surface at the point of same sea level elevation in " R Cable Structure surface point "; " R Cable Structure surface point " is not more than 0.2 DEG C divided by Δ T along the maximal value Δ h in the absolute value of all differences of the sea level elevation of adjacent Cable Structure surface point between two of sea level elevation
_{h}the numerical value obtained, gets Δ T for convenience of describing
_{h}unit be DEG C/m, be m for convenience of describing the unit getting Δ h; " R Cable Structure surface point " along the definition of the adjacent between two Cable Structure surface point of sea level elevation refer to only consider sea level elevation time, in " R Cable Structure surface point ", there is not a Cable Structure surface point, the sea level elevation numerical value of this Cable Structure surface point is between the sea level elevation numerical value of adjacent Cable Structure surface point between two; 3rd condition is inquiry or obtains the rule at sunshine between Cable Structure location and Altitude Region, place by meteorology conventionally calculation, again according to geometric properties and the bearing data of Cable Structure, Cable Structure finds the annual position by sunshineduration those surface points the most sufficient, in " R Cable Structure surface point ", has at least a Cable Structure surface point to be annual by a point in sunshineduration the most fully those surface points in Cable Structure.
Second step: set up initial mechanical Calculation Basis model A
_{o}.
When Cable Structure is completed, or before setting up health monitoring (damaged cable identification) system, obtain " Cable Structure steady temperature data " according to " the temperature survey calculating method of the Cable Structure of this method " survey calculation (to measure by ordinary temperature measuring method, thermal resistance is such as used to measure), " Cable Structure steady temperature data " now use vector T
_{o}represent, be called initial Cable Structure steady temperature data vector T
_{o}.T is obtained in actual measurement
_{o}while, namely at the synchronization in the moment of the initial Cable Structure steady temperature data vector of acquisition, use the direct survey calculation of conventional method to obtain the initial value of all monitored amount of Cable Structure, form monitored amount initial value vector C
_{o}.
Specifically the synchronization in moment of soandso Cable Structure steady temperature data vector such as (such as initial or current) can be being obtained according to following method in this method, soandso method survey calculation is used to obtain the data of the monitored amount of soandso measured amount (all monitored amount of such as Cable Structure): (to comprise the temperature of Cable Structure place environment in survey record temperature, the temperature of the sunny slope of reference plate and Cable Structure surface temperature) while, such as every 10 minutes survey records temperature, so simultaneously equally also every 10 minutes the monitored amount of soandso measured amount of survey record (all monitored amount of such as Cable Structure) data.Once determine the moment obtaining Cable Structure steady temperature data, so just be called the synchronization in the moment obtaining Cable Structure steady temperature data, the data of the monitored amount of soandso measured amount using soandso method survey calculation method to obtain with the data of the monitored amount of soandso measured amount (all monitored amount of such as Cable Structure) of the moment synchronization of acquisition Cable Structure steady temperature data.
Conventional method (consult reference materials or survey) is used to obtain temperature variant physical parameter (such as thermal expansivity) and the mechanical property parameters (such as elastic modulus, Poisson ratio) of the various materials that Cable Structure uses; Initial Cable Structure steady temperature data vector T is obtained at Actual measurement
_{o}while, namely at the synchronization in the moment of acquisition Cable Structure steady temperature data, use conventional method Actual measurement to obtain the Actual measurement data of Cable Structure.The Actual measurement data of Cable Structure comprise the measured data such as data, the initial geometric data of Cable Structure, rope force data, drawbar pull data, initial Cable Structure support coordinate data, Cable Structure bearing initial angle displacement measurement data, Cable Structure modal data, Cable Structure strain data, Cable Structure angle measurement data, Cable Structure volume coordinate measurement data that the Nondestructive Testing Data of support cable etc. can express the health status of rope.Initial Cable Structure support coordinate data refer to the support coordinate data under Cable Structure design point, and Cable Structure bearing initial angle displacement measurement data refer to setting up initial mechanical Calculation Basis model A
_{o}time, the angular displacement that Cable Structure bearing occurs relative to the bearing under Cable Structure design point.The initial geometric data of Cable Structure can be the spatial data that the spatial data of the end points of all ropes adds a series of point in Cable Structure, and object is the geometric properties according to these coordinate data determination Cable Structure.For cablestayed bridge, initial geometric data can be the spatial data that the spatial data of the end points of all ropes adds some points on bridge two ends, socalled bridge type data that Here it is.Utilize the Nondestructive Testing Data etc. of support cable can express the data of the health status of support cable and Cable Structure bearing initial angle displacement measurement data set up evaluation object initial damage vector d
_{o}(as the formula (1)), d is used
_{o}represent that Cable Structure is (with initial mechanical Calculation Basis model A
_{o}represent) the initial health of evaluation object.If there is no the Nondestructive Testing Data of support cable and other are when can express the data of the health status of support cable, or can think Cable Structure original state be not damaged without relaxed state time, vectorial d
_{o}in each element numerical value relevant to support cable get 0, if when there is no Cable Structure bearing initial angle displacement measurement data or can think that the displacement of Cable Structure bearing initial angle is 0, vectorial d
_{o}in each element numerical value relevant to Cable Structure angular displacement of support get 0.The temperature variant physical and mechanical properties parameter of the various materials utilizing the measured data of the design drawing of Cable Structure, asconstructed drawing and initial Cable Structure, the Nondestructive Testing Data of support cable, Cable Structure to use and initial Cable Structure steady temperature data vector T
_{o}, utilize mechanics method (such as finite element method) to count " Cable Structure steady temperature data " and set up initial mechanical Calculation Basis model A
_{o}.
No matter which kind of method to obtain initial mechanical Calculation Basis model A by
_{o}, count " Cable Structure steady temperature data " (i.e. initial Cable Structure steady temperature data vector T
_{o}), based on A
_{o}the Cable Structure that calculates calculates data must closely its measured data, and error generally must not be greater than 5%.Like this can utility A
_{o}the Suo Li calculated under the analog case of gained calculates data, strain calculation data, Cable Structure shapometer count certificate and displacement meter counts certificate, Cable Structure angledata, Cable Structure spatial data etc., measured data when reliably truly occurring close to institute's analog case.Model A
_{o}the health status evaluation object initial damage vector d of middle support cable
_{o}represent, the initial Cable Structure steady temperature data vector T of Cable Structure steady temperature data
_{o}represent.Due to based on A
_{o}the initial value (actual measurement obtains) of the evaluation calculating all monitored amounts closely all monitored amounts, so also can be used in A
_{o}basis on, carry out Mechanics Calculation obtains, A
_{o}the evaluation of each monitored amount form monitored amount initial value vector C
_{o}.Corresponding to A
_{o}" Cable Structure steady temperature data " be exactly " initial Cable Structure steady temperature data vector T
_{o}"; Corresponding to A
_{o}evaluation object health status with evaluation object initial damage vector d
_{o}represent; Corresponding to A
_{o}the initial value monitored amount initial value vector C of all monitored amount
_{o}represent.T
_{o}and d
_{o}a
_{o}parameter, C
_{o}by A
_{o}mechanics Calculation result composition.
3rd step: first time sets up current initial mechanical Calculation Basis model A
^{t} _{o}, monitored amount current initial value vector C
^{t} _{o}" current initial Cable Structure steady temperature data vector T
^{t} _{o}", concrete grammar is: at initial time, and namely first time sets up current initial mechanical Calculation Basis model A
^{t} _{o}with monitored amount current initial value vector C
^{t} _{o}time, A
^{t} _{o}just equal A
_{o}, C
^{t} _{o}just equal C
_{o}, A
^{t} _{o}corresponding " Cable Structure steady temperature data " are designated as " current initial Cable Structure steady temperature data vector T
^{t} _{o}", at initial time, (namely first time sets up A
^{t} _{o}time), T
^{t} _{o}just equal T
_{o}, vector T
^{t} _{o}definition mode and vector T
_{o}definition mode identical.A
^{t} _{o}the health status of evaluation object and A
_{o}evaluation object health status (evaluation object initial damage vector d
_{o}represent) identical, A in cyclic process
^{t} _{o}the health status of evaluation object use evaluation object initial damage vector d all the time
_{o}represent.T
^{t} _{o}and d
_{o}a
^{t} _{o}parameter, C
^{t} _{o}by A
^{t} _{o}mechanics Calculation result composition.
4th step: in Cable Structure military service process, the current data obtaining " Cable Structure steady temperature data " according to " the temperature survey calculating method of the Cable Structure of this method " continuous Actual measurement (is called " current cable structure steady temperature data vector T
^{t}", vector T
^{t}definition mode and vector T
_{o}definition mode identical).Current cable structure steady temperature data vector T is obtained in actual measurement
^{t}while, namely at acquisition current cable structure steady temperature data vector T
^{t}the synchronization in moment, actual measurement obtains the current measured value of all monitored amount of Cable Structure, composition " monitored amount current value vector C ".
5th step: according to current cable structure steady temperature data vector T
^{t}, upgrade current initial mechanical Calculation Basis model A where necessary
^{t} _{o}, monitored amount current initial value vector C
^{t} _{o}with current initial Cable Structure steady temperature data vector T
^{t} _{o}.Current cable structure steady temperature data vector T is obtained in the 4th step actual measurement
^{t}after, compare T
^{t}and T
^{t} _{o}if, T
^{t}equal T
^{t} _{o}, then do not need A
^{t} _{o}and T
^{t} _{o}upgrade, otherwise need A
^{t} _{o}and T
^{t} _{o}upgrade, update method is carried out to c step by following a step:
A step calculates T
^{t}with T
_{o}difference, T
^{t}with T
_{o}difference be exactly the changes of current cable structure steady temperature data about initial Cable Structure steady temperature data, T
^{t}with T
_{o}difference represent with steady temperature change vector S, S equals T
^{t}deduct T
_{o}, S represents the change of Cable Structure steady temperature data.
B step is to A
_{o}in Cable Structure apply temperature variation, the numerical value of the temperature variation of applying just takes from steady temperature change vector S, to A
_{o}middle Cable Structure bearing applies angular displacement of support constraint and to A
_{o}in Cable Structure apply temperature variation after obtain upgrade current initial mechanical Calculation Basis model A
^{t} _{o}.
C step upgrades A
^{t} _{o}while, T
^{t} _{o}all elements numerical value also uses T
^{t}all elements numerical value correspondence replace, namely have updated T
^{t} _{o}, so just obtain and correctly correspond to A
^{t} _{o}t
^{t} _{o}; Upgrade C
^{t} _{o}method be: when renewal A
^{t} _{o}after, obtain A by Mechanics Calculation
^{t} _{o}in all monitored amounts, current concrete numerical value, these concrete numerical value composition C
^{t} _{o}.
6th step: at current initial mechanical Calculation Basis model A
^{t} _{o}basis on carry out several times Mechanics Calculation, obtain Cable Structure unit damage monitored amount unit change matrix Δ C and unit damage or unit angular displacement vector D by calculating
_{u}.Concrete grammar is: Cable Structure unit damage monitored amount unit change matrix Δ C constantly updates, namely at the current initial mechanical Calculation Basis model A of renewal
^{t} _{o}while, Cable Structure unit damage monitored amount unit change matrix Δ C must be upgraded simultaneously; At the current initial mechanical Calculation Basis model A of Cable Structure
^{t} _{o}basis on carry out several times Mechanics Calculation, calculation times numerically equals the quantity of all evaluation objects, N number of evaluation object is had just to have N calculating, calculating hypothesis each time only has an evaluation object to have unit damage or unit angular displacement, concrete, if this evaluation object is a support cable in cable system, so just suppose that this support cable is at vectorial d
_{o}the basis that this support cable represented has a damage there is again unit damage (such as getting 5%, 10%, 20% or 30% equivalent damage is unit damage), if this evaluation object is the angular displacement component in a direction of a bearing, just suppose this bearing at this sense of displacement at vectorial d
_{o}the basis that this bearing represented has an angular displacement there is unit angular displacement (such as getting 100,000/radian, 2/100000ths radians, 3/100000ths radians etc. for unit angular displacement) again, use D
_{uk}record this unit damage or unit angular displacement, wherein k represents the numbering of the evaluation object that unit damage or unit angular displacement occur; Occur in calculating each time that the evaluation object of unit damage or unit angular displacement is different from during other time calculates the evaluation object occurring unit damage or unit angular displacement, calculate the current calculated value all utilizing mechanics method to calculate all monitored amount of Cable Structure each time, the current calculated value of all monitored amount calculated each time forms a monitored amount calculation current vector C, element number rule and the monitored amount initial value vector C of monitored amount calculation current vector
_{o}element number rule identical; The monitored amount calculation current vector C calculated each time deducts monitored amount current initial value vector C
^{t} _{o}after calculate the unit damage supposed or unit angular displacement numerical value divided by this time again, obtain a monitored amount unit change vector, have N number of evaluation object just to have N number of monitored amount unit change vector; The unit damage monitored amount unit change matrix Δ C having N to arrange is formed successively by this N number of monitored amount unit change vector; Each row of unit damage monitored amount unit change matrix correspond to a monitored amount unit change vector, and every a line of Cable Structure unit damage monitored amount unit change matrix Δ C corresponds to the different unit change amplitude of same monitored amount when different evaluation object generation unit damage or unit angular displacement; The coding rule of the row of Cable Structure unit damage monitored amount unit change matrix Δ C and vectorial d
_{o}the coding rule of element identical, the coding rule of the row of Cable Structure unit damage monitored amount unit change matrix Δ C is identical with the coding rule of M monitored amount.
7th step: set up linear relationship error vector e and vectorial g.Utilize (the monitored amount current initial value vector C of data above
^{t} _{o}, unit damage monitored amount unit change matrix Δ C), while the 6th step calculates each time, namely only have increase unit damage or the unit angular displacement D of an evaluation object calculating each time in hypothesis evaluation object
_{uk}the evaluation object increasing unit damage or unit angular displacement in calculating each time is different from during other time calculates the evaluation object increasing unit damage or unit angular displacement, calculate the current value all utilizing mechanics method (such as adopting finite element method) to calculate all monitored amounts in Cable Structure each time, while calculating the monitored amount calculation current vector C of composition one each time, calculate composition injury vector d each time, originally walk out of existing injury vector d only to use in this step, in all elements of injury vector d, only have the numerical value of an element to get D
_{uk}, the numerical value of other element gets 0, the coding rule of the element of injury vector d and vectorial d
_{o}the coding rule of element identical; By C, C
^{t} _{o}, Δ C, D
_{u}, d brings formula (12) into, obtain a linear relationship error vector e, calculate a linear relationship error vector e each time; N number of evaluation object is had just to have N calculating, just there is N number of linear relationship error vector e, obtaining a vector after being added by this N number of linear relationship error vector e, is exactly final linear relationship error vector e by each element of this vector divided by the new vector obtained after N.Vector g equals final error vector e.
8th step: the hardware components of pass line structural healthy monitoring system.Hardware components at least comprises: monitored amount monitoring system (such as measuring subsystem, signal conditioner etc. containing measurement of angle subsystem, cable force measurement subsystem, strain measurement subsystem, volume coordinate), Cable Structure temperature monitoring system (containing temperature sensor, signal conditioner etc.) and Cable Structure ambient temperature measurement system (containing temperature sensor, signal conditioner etc.), signal (data) collector, computing machine and communication alert equipment.Each monitored amount, each temperature must arrive by monitored system monitoring, monitoring system by the Signal transmissions that monitors to signal (data) collector; Signal is delivered to computing machine through signal picker; The health monitoring software of the evaluation object running Cable Structure is then responsible for by computing machine, comprises the signal that the transmission of tracer signal collector comes; When monitoring evaluation object health status and changing, computer control communication panalarm is reported to the police to monitor staff, owner and (or) the personnel that specify.
9th step: by current for monitored amount initial value vector C
^{t} _{o}, unit damage monitored amount unit change matrix Δ C, unit damage or unit angular displacement vector D
_{u}parameter is kept on the hard disc of computer of operation health monitoring systems software in the mode of data file.
Tenth step: establishment the damaged cable of installation and operation temperature variation hybrid monitoring and support angular displacement identification method system software on computers, the function (i.e. all work that can complete with computing machine in this specific implementation method) such as monitoring, record, control, storage, calculating, notice, warning that this software will complete this method " damaged cable of temperature variation hybrid monitoring and support angular displacement identification method " required by task and wants
11 step: according to monitored amount current value vector C with monitored amount current initial value vector C
^{t} _{o}, unit damage monitored amount unit change matrix Δ C, unit damage or unit angular displacement vector D
_{u}and evaluation object current nominal fatigue vector d(be made up of all Suo Dangqian nominal fatigue amounts) between exist linear approximate relationship (formula (8)), calculate the noninferior solution of evaluation object current nominal fatigue vector d according to multiobjective optimization algorithm, namely can determine the position of damaged cable and the solution of nominal fatigue degree thereof more exactly with reasonable error from all ropes.
The multiobjective optimization algorithm that can adopt has a variety of, such as: the multipleobjection optimization based on genetic algorithm, the multipleobjection optimization based on artificial neural network, the multiobjective optimization algorithm based on population, the multipleobjection optimization based on ant group algorithm, leash law (Constrain Method), weighted method (Weighted Sum Method), Objective Programming (Goal Attainment Method) etc.Because various multiobjective optimization algorithm is all conventional algorithm, can realize easily, this implementation step only provides the process solving current injury vector d for Objective Programming, the specific implementation process of other algorithm can realize in a similar fashion according to the requirement of its specific algorithm.
According to Objective Programming, formula (8) can transform the multiobjective optimization question shown in an accepted way of doing sth (16) and formula (17), in formula (16), γ is a real number, R is real number field, area of space Ω limits the span (each element of the present embodiment requirements vector d is not less than 0, is not more than 1) of each element of vectorial d.Formula (16) be meant to the minimum real number γ of searching one, formula (17) is met.In formula (17), G (d) is defined by formula (18), and the middle deviation allowed between G (d) and vectorial g of the product representation formula (17) of weighing vector W and γ in formula (17), the definition of g is see formula (13), and its value calculates in the 7th step.During actual computation, vector W can be identical with vectorial g.The concrete programming realization of Objective Programming has had universal program directly to adopt.Use Objective Programming just can in the hope of evaluation object current nominal fatigue vector d.
minimize γ
(16)
γ∈R,d ∈Ω
G(d)Wγ≤g (17)
The element number of evaluation object current nominal fatigue vector d equals the quantity of evaluation object, be onetoone relationship between the element of evaluation object current nominal fatigue vector d and evaluation object, the element numerical value of evaluation object current nominal fatigue vector d represents the nominal fatigue degree of corresponding evaluation object or nominal angular displacement; The coding rule of the element of vector d and vectorial d
_{o}the coding rule of element identical.
12 step: definition evaluation object current actual damage vector d
^{a}, evaluation object current actual damage vector d
^{a}element number equal the quantity of evaluation object, evaluation object current actual damage vector d
^{a}element and evaluation object between be onetoone relationship, evaluation object current actual damage vector d
^{a}element numerical value represent actual damage degree or the actual displacement angle of corresponding evaluation object; Vector d
^{a}the coding rule of element and vectorial d
_{o}the coding rule of element identical.The evaluation object utilizing formula (15) to express current actual damage vector d
^{a}a kth element d
^{a} _{k}with evaluation object initial damage vector d
_{o}a kth element d
_{ok}with a kth element d of evaluation object current nominal fatigue vector d
_{k}between relation, calculate evaluation object current actual damage vector d
^{a}all elements; d
^{a} _{k}represent the current actual health status of a kth evaluation object, if this evaluation object is support cable, so a d in cable system
^{a} _{k}represent its current actual damage, d
^{a} _{k}represent not damaged when being 0, when being 100%, represent that this support cable thoroughly loses loadbearing capacity, represent the loadbearing capacity losing corresponding proportion time between 0 and 100%, if this evaluation object is angular displacement component, so a d of a bearing
^{a} _{k}represent its current actual displacement angle numerical value; So according to evaluation object current actual damage vector d
^{a}impaired and the degree of injury of which support cable can be defined, define which bearing and there occurs angular displacement and numerical value thereof, namely achieve damaged cable and the angular displacement of support identification of Cable Structure.
13 step: the computing machine in health monitoring systems regularly generates cable system health condition form automatically or by human users's health monitoring systems.
14 step: under specified requirements, the computing machine automatic operation communication alert equipment in health monitoring systems is reported to the police to monitor staff, owner and (or) the personnel that specify.
15 step: get back to the 4th step, starts by the circulation of the 4th step to the 15 step.
Claims (1)
1. the damaged cable of temperature variation hybrid monitoring and a support angular displacement identification method, is characterized in that described method comprises:
A. for sake of convenience, this method unitedly calls evaluated support cable and angular displacement of support component to be evaluation object, if the quantity sum of the quantity of evaluated support cable and angular displacement of support component is N, namely the quantity of evaluation object is N; Determine the coding rule of evaluation object, evaluation objects all in Cable Structure numbered by this rule, this numbering will be used for generating vector sum matrix in subsequent step; This method variable k represents this numbering, k=1,2,3 ..., N; Specify when determining hybrid monitoring by the support cable of monitored Suo Li, if total Q root support cable in cable system, the monitored rope force data of Cable Structure is by M in Cable Structure
_{1}the M of individual appointment support cable
_{1}individual rope force data describes, and the change of Cable Structure Suo Li is exactly the change of the Suo Li of all appointment support cables; Each total M
_{1}individual cable force measurement value or calculated value characterize the rope force information of Cable Structure; M
_{1}it is an integer being not less than that 0 is not more than Q; Specify when determining hybrid monitoring by the measured point of monitored strain, the monitored strain data of Cable Structure can by K in Cable Structure
_{2}the L of individual specified point and each specified point
_{2}the strain of individual assigned direction describes, and the change of Cable Structure strain data is exactly K
_{2}the change of all tested strain of individual specified point; Each total M
_{2}individual strain measurement value or calculated value characterize Cable Structure strain, M
_{2}for K
_{2}and L
_{2}longpending; M
_{2}be be not less than 0 integer; Specify when determining hybrid monitoring by the measured point of monitored angle, the monitored angledata of Cable Structure is by K in Cable Structure
_{3}individual specified point, cross the L of each specified point
_{3}the H of individual appointment straight line, each appointment straight line
_{3}individual angle coordinate component describes, and the change of Cable Structure angle is exactly the change of all specified points, all appointment straight line, all angle coordinate component of specifying; Each total M
_{3}individual angle coordinate component measurement value or calculated value characterize the angle information of Cable Structure, M
_{3}for K
_{3}, L
_{3}and H
_{3}longpending; M
_{3}it is an integer being not less than 0; Specify when determining hybrid monitoring by monitored shape data, the monitored shape data of Cable Structure is by K in Cable Structure
_{4}the L of individual specified point and each specified point
_{4}the volume coordinate of individual assigned direction describes, and the change of Cable Structure shape data is exactly K
_{4}the change of all coordinate components of individual specified point; Each total M
_{4}individual coordinates measurements or calculated value characterize Cable Structure shape, M
_{4}for K
_{4}and L
_{4}longpending; M
_{4}it is an integer being not less than 0; The monitored amount of comprehensive abovementioned hybrid monitoring, whole Cable Structure has M monitored amount, and M is M
_{1}, M
_{2}, M
_{3}and M
_{4}sum, definition parameter K, K is M
_{1}, K
_{2}, K
_{3}and K
_{4}sum, K and M must not be less than the quantity N of evaluation object; Because M monitored amount is dissimilar, so this method is called " damaged cable of temperature variation hybrid monitoring and support angular displacement identification method "; For simplicity, in the method by monitored all parameters of Cable Structure " during the hybrid monitoring " listed by this step referred to as " monitored amount "; The quantity sum of all monitored amounts is designated as M, and M must not be less than N; Must not be greater than 30 minutes to the time interval between any twice measurement of same amount RealTime Monitoring in this method, the moment of survey record data is called the physical record data moment;
B. this method definition " the temperature survey calculating method of the Cable Structure of this method " is undertaken by step b1 to b3;
B1: inquiry or actual measurement obtain the temperature variant thermal conduction study parameter of environment residing for Cable Structure composition material and Cable Structure, utilize the geometry measured data of the design drawing of Cable Structure, asconstructed drawing and Cable Structure, utilize these data and parameter to set up the Thermodynamic calculation model of Cable Structure, inquiry Cable Structure location is no less than the meteorological data in recent years of 2 years, the statistics cloudy quantity obtained is during this period of time designated as T cloudy day, in the method daytime can not be seen one of the sun and be called the cloudy day all day, statistics obtains 0 highest temperature after sunrise moment next day between 30 minutes and the lowest temperature at each cloudy day in T cloudy day, the sunrise moment refers to the sunrise moment on the meteorology that base area revolutions and revolution rule are determined, do not represent that the same day necessarily can see the sun, data can be inquired about or calculated sunrise moment of each required day by conventional meteorology, 0 highest temperature after sunrise moment next day between 30 minutes at each cloudy day deducts the maximum temperature difference that the lowest temperature is called the daily temperature at this cloudy day, there is T cloudy day, just there is the maximum temperature difference of the daily temperature at T cloudy day, the maximal value of getting in the maximum temperature difference of the daily temperature at T cloudy day is reference temperature difference per day, Δ T is designated as with reference to temperature difference per day
_{r}, be no less than between inquiry Cable Structure location and Altitude Region, place temperature that the meteorological data in recent years of 2 years or actual measurement obtain environment residing for Cable Structure in time with delta data and the Changing Pattern of sea level elevation, calculate to be no less than 2 years between Cable Structure location and Altitude Region, place Cable Structure in recent years residing for the temperature of environment about the maximum rate of change Δ T of sea level elevation
_{h}, get Δ T for convenience of describing
_{h}unit be DEG C/m, the surface of Cable Structure is got " R Cable Structure surface point ", the Specific Principles getting " R Cable Structure surface point " describes in step b3, the temperature of this R Cable Structure surface point will be obtained below by actual measurement, claiming to survey the temperature data obtained is " R Cable Structure surface temperature measured data ", if utilize the Thermodynamic calculation model of Cable Structure, obtained the temperature of this R Cable Structure surface point by Calculation of Heat Transfer, just claim the temperature data that calculates for " R Cable Structure land surface pyrometer count certificate ", from the minimum height above sea level residing for Cable Structure to most High aititude, in Cable Structure, uniform choosing is no less than three different sea level elevations, at the sea level elevation place that each is chosen, two points are at least chosen at the intersection place on surface level and Cable Structure surface, from the outer normal of selected point straw line body structure surface, all outer normal directions chosen are called " measuring the direction of Cable Structure along the Temperature Distribution of wall thickness ", measure Cable Structure crossing with " intersection on surface level and Cable Structure surface " along the direction of the Temperature Distribution of wall thickness, in in the shade the outer normal direction of the measurement Cable Structure chosen along the sunny slope outer normal direction and Cable Structure that must comprise Cable Structure in the direction of the Temperature Distribution of wall thickness, three points are no less than along each measurement Cable Structure along direction uniform choosing in Cable Structure of the Temperature Distribution of wall thickness, along each, Cable Structure is measured for support cable and only gets a point along the direction of the Temperature Distribution of wall thickness, only measure the temperature of the surface point of support cable, measure all temperature be selected a little, the temperature recorded is called " Cable Structure is along the temperature profile data of thickness ", wherein along crossing with same " intersection on surface level and Cable Structure surface ", " measure the direction of Cable Structure along the Temperature Distribution of wall thickness " to measure " Cable Structure is along the temperature profile data of thickness " that obtain, be called in the method " identical sea level elevation Cable Structure is along the temperature profile data of thickness ", if have chosen the individual different sea level elevation of H, at each sea level elevation place, have chosen B and measure the direction of Cable Structure along the Temperature Distribution of wall thickness, in Cable Structure, E point is have chosen along each measurement Cable Structure along the direction of the Temperature Distribution of wall thickness, wherein H and E is not less than 3, B is not less than 2, 1 is equaled for support cable E, what meter Cable Structure " measured the point of Cable Structure along the temperature profile data of thickness " adds up to HBE, the temperature of this HBE " measuring the point of Cable Structure along the temperature profile data of thickness " will be obtained below by actual measurement, claiming to survey the temperature data obtained is " HBE Cable Structure is along thickness temperature measured data ", if utilize the Thermodynamic calculation model of Cable Structure, obtain this HBE by Calculation of Heat Transfer and measure the temperature of Cable Structure along the point of the temperature profile data of thickness, the temperature data calculated just is claimed to be " HBE Cable Structure calculates data along thickness temperature ", measure temperature in Cable Structure location according to meteorology to require to choose a position, obtain meeting the temperature that meteorology measures the Cable Structure place environment of temperature requirement by the actual measurement of this position, in the onsite spaciousness of Cable Structure, unobstructed place chooses a position, this position should each of the whole year day can obtain this ground the most sufficient sunshine of this day getable, at the flat board of this position of sound production one piece of carbon steel material, be called reference plate, reference plate can not contact with ground, reference plate overhead distance is not less than 1.5 meters, the one side of this reference plate on the sunny side, be called sunny slope, the sunny slope of reference plate is coarse with dark color, the sunny slope of reference plate should each of the whole year day can obtain one flat plate on this ground the most sufficient sunshine of this day getable, the nonsunny slope of reference plate is covered with insulation material, RealTime Monitoring is obtained the temperature of the sunny slope of reference plate,
B2: RealTime Monitoring obtains R Cable Structure surface temperature measured data of abovementioned R Cable Structure surface point, RealTime Monitoring obtains the temperature profile data of previously defined Cable Structure along thickness simultaneously, and RealTime Monitoring obtains meeting the temperature record that meteorology measures the Cable Structure place environment of temperature requirement simultaneously, the temperature measured data sequence of the Cable Structure place environment after sunrise moment next day between 30 minutes is obtained being carved at sunrise the same day by RealTime Monitoring, the temperature measured data sequence of Cable Structure place environment is arranged according to time order and function order by the temperature measured data of the Cable Structure place environment after being carved into the sunrise moment next day same day at sunrise between 30 minutes, find the maximum temperature in the temperature measured data sequence of Cable Structure place environment and minimum temperature, the maximum temperature difference be carved at sunrise on same day that minimum temperature obtains Cable Structure place environment after sunrise moment next day between 30 minutes is deducted by the maximum temperature in the temperature measured data sequence of Cable Structure place environment, be called environment maximum temperature difference, be designated as Δ T
_{emax}, calculated the rate of change of temperature about the time of Cable Structure place environment by Conventional mathematical by the temperature measured data sequence of Cable Structure place environment, this rate of change is also along with time variations, the measured data sequence of the temperature of the sunny slope of the reference plate after sunrise moment next day between 30 minutes is obtained being carved at sunrise the same day by RealTime Monitoring, the measured data sequence of the temperature of the sunny slope of reference plate is arranged according to time order and function order by the measured data of the temperature of the sunny slope of the reference plate after being carved into the sunrise moment next day same day at sunrise between 30 minutes, find the maximum temperature in the measured data sequence of the temperature of the sunny slope of reference plate and minimum temperature, the maximum temperature difference be carved at sunrise on same day that minimum temperature obtains the temperature of the sunny slope of reference plate after sunrise moment next day between 30 minutes is deducted by the maximum temperature in the measured data sequence of the temperature of the sunny slope of reference plate, be called reference plate maximum temperature difference, be designated as Δ T
_{pmax}, the Cable Structure surface temperature measured data sequence of all R Cable Structure surface points after sunrise moment next day between 30 minutes is obtained being carved at sunrise the same day by RealTime Monitoring, R Cable Structure surface point is had just to have R Cable Structure surface temperature measured data sequence, each Cable Structure surface temperature measured data sequence is arranged according to time order and function order by the Cable Structure surface temperature measured data after being carved into the sunrise moment next day same day of a Cable Structure surface point at sunrise between 30 minutes, find the maximum temperature in each Cable Structure surface temperature measured data sequence and minimum temperature, the maximum temperature difference be carved at sunrise on same day that minimum temperature obtains the temperature of each Cable Structure surface point after sunrise moment next day between 30 minutes is deducted by the maximum temperature in each Cable Structure surface temperature measured data sequence, there is R Cable Structure surface point just to have to be carved at sunrise R the same day maximum temperature difference numerical value between 30 minutes after sunrise moment next day, maximal value is wherein called Cable Structure surface maximum temperature difference, be designated as Δ T
_{smax}, calculated the rate of change of temperature about the time of each Cable Structure surface point by Conventional mathematical by each Cable Structure surface temperature measured data sequence, the temperature of each Cable Structure surface point about the rate of change of time also along with time variations, obtain being carved at sunrise the same day after sunrise moment next day between 30 minutes by RealTime Monitoring, at synchronization, after HBE " Cable Structure is along the temperature profile data of thickness ", calculate the difference amounting to maximum temperature in BE " identical sea level elevation Cable Structure is along the temperature profile data of thickness " and minimum temperature at the sea level elevation place that each is chosen, the absolute value of this difference is called " identical sea level elevation place Cable Structure thickness direction maximum temperature difference ", have chosen H different sea level elevation just to have H " identical sea level elevation place Cable Structure thickness direction maximum temperature difference ", the maximal value in this H " identical sea level elevation place Cable Structure thickness direction maximum temperature difference " is claimed to be " Cable Structure thickness direction maximum temperature difference ", be designated as Δ T
_{tmax},
B3: survey calculation obtains Cable Structure steady temperature data; First, determine the moment obtaining Cable Structure steady temperature data, the condition relevant to the moment determining to obtain Cable Structure steady temperature data has six, Section 1 condition is moment of obtaining Cable Structure steady temperature data between after being carved into sunrise moment next day at sunset between 30 minutes on same day, the sunset moment refers to the sunset moment on base area revolutions and the meteorology determined of revolution rule, can inquire about data or be calculated sunset moment of each required day by conventional meteorology; The a condition of Section 2 condition be after being carved into sunrise moment next day at sunrise between 30 minutes on same day during this period of time in, reference plate maximum temperature difference Δ T
_{pmax}with Cable Structure surface maximum temperature difference Δ T
_{smax}all be not more than 5 degrees Celsius; The b condition of Section 2 condition be after being carved into sunrise moment next day at sunrise between 30 minutes on same day during this period of time in, the environment maximum error Δ T that survey calculation obtains above
_{emax}be not more than with reference to temperature difference per day Δ T
_{r}, and reference plate maximum temperature difference Δ T
_{pmax}Δ T is not more than after deducting 2 degrees Celsius
_{emax}, and Cable Structure surface maximum temperature difference Δ T
_{smax}be not more than Δ T
_{pmax}; One of only need meet in a condition of Section 2 and b condition is just called and meets Section 2 condition; Section 3 condition is when obtaining Cable Structure steady temperature data, and the temperature of Cable Structure place environment is not more than 0.1 degree Celsius per hour about the absolute value of the rate of change of time; Section 4 condition is when obtaining Cable Structure steady temperature data, and the temperature of each the Cable Structure surface point in R Cable Structure surface point is not more than 0.1 degree Celsius per hour about the absolute value of the rate of change of time; Section 5 condition is when obtaining Cable Structure steady temperature data, and the Cable Structure surface temperature measured data of each the Cable Structure surface point in R Cable Structure surface point is be carved into the minimal value after sunrise moment next day between 30 minutes the same day at sunrise; Section 6 condition is when obtaining Cable Structure steady temperature data, " Cable Structure thickness direction maximum temperature difference " Δ T
_{tmax}be not more than 1 degree Celsius; This method utilizes abovementioned six conditions, any one in following two kinds of moment is called " the mathematics moment obtaining Cable Structure steady temperature data ", the first moment meets the moment of the Section 1 in abovementioned " condition relevant to the moment determining to obtain Cable Structure steady temperature data " to Section 5 condition, and simultaneously the second moment meets the moment of the Section 1 in abovementioned " condition relevant to the moment determining to obtain Cable Structure steady temperature data " to Section 6 condition; When the mathematics moment obtaining Cable Structure steady temperature data is exactly one in this method in the physical record data moment, the moment obtaining Cable Structure steady temperature data is exactly the mathematics moment obtaining Cable Structure steady temperature data; If the mathematics moment obtaining Cable Structure steady temperature data is not any one moment in this method in the physical record data moment, then getting this method closest to moment of those physical record data in the mathematics moment obtaining Cable Structure steady temperature data is the moment obtaining Cable Structure steady temperature data; The amount being used in the moment survey record obtaining Cable Structure steady temperature data is carried out Cable Structure relevant health monitoring analysis by this method; This method is similar to thinks that the Cable Structure temperature field in the moment obtaining Cable Structure steady temperature data is in stable state, and namely the Cable Structure temperature in this moment does not change in time, and this moment is exactly " obtaining the moment of Cable Structure steady temperature data " of this method; then, according to Cable Structure heat transfer characteristic, utilize " R the Cable Structure surface temperature measured data " and " HBE Cable Structure is along thickness temperature measured data " in the moment obtaining Cable Structure steady temperature data, utilize the Thermodynamic calculation model of Cable Structure, the Temperature Distribution of the Cable Structure in the moment obtaining Cable Structure steady temperature data is calculated by conventional heat transfer, now the temperature field of Cable Structure calculates by stable state, the temperature profile data of the Cable Structure in the moment in acquisition Cable Structure steady temperature data calculated comprises the accounting temperature of R Cable Structure surface point in Cable Structure, the accounting temperature of R Cable Structure surface point is called that R Cable Structure steadystate surface temperature calculates data, also comprise the accounting temperature of Cable Structure selected HBE " measuring the point of Cable Structure along the temperature profile data of thickness " above, the accounting temperature of HBE " measuring the point of Cable Structure along the temperature profile data of thickness " is called " HBE Cable Structure calculates data along thickness temperature ", when R Cable Structure surface temperature measured data and R Cable Structure steadystate surface temperature calculate data correspondent equal, and when " HBE Cable Structure is along thickness temperature measured data " and " HBE Cable Structure calculates data along thickness temperature " correspondent equal, the temperature profile data of the Cable Structure in the moment in acquisition Cable Structure steady temperature data calculated is called " Cable Structure steady temperature data " in the method, " R Cable Structure surface temperature measured data " is now called " R Cable Structure steadystate surface temperature measured data ", " HBE Cable Structure is along thickness temperature measured data " is called " HBE Cable Structure is along thickness steady temperature measured data ", when the surface of Cable Structure is got " R Cable Structure surface point ", the quantity of " R Cable Structure surface point " must meet three conditions with distribution, first condition is when Cable Structure temperature field is in stable state, when the temperature of Cable Structure any point be on the surface by " R Cable Structure surface point " in obtain with the observed temperature linear interpolation of the Cable Structure point that this arbitrfary point is adjacent on the surface time, the error of the Cable Structure that linear interpolation the obtains temperature of this arbitrfary point and the Cable Structure actual temperature of this arbitrfary point on the surface is on the surface not more than 5%, Cable Structure surface comprises support cable surface, second condition is not less than 4 in the quantity of the point of same sea level elevation in " R Cable Structure surface point ", and uniform along Cable Structure surface at the point of same sea level elevation in " R Cable Structure surface point ", " R Cable Structure surface point " is not more than 0.2 DEG C divided by Δ T along the maximal value Δ h in the absolute value of all differences of the sea level elevation of adjacent Cable Structure surface point between two of sea level elevation
_{h}the numerical value obtained, gets Δ T for convenience of describing
_{h}unit be DEG C/m, be m for convenience of describing the unit getting Δ h, " R Cable Structure surface point " along the definition of the adjacent between two Cable Structure surface point of sea level elevation refer to only consider sea level elevation time, in " R Cable Structure surface point ", there is not a Cable Structure surface point, the sea level elevation numerical value of this Cable Structure surface point is between the sea level elevation numerical value of adjacent Cable Structure surface point between two, 3rd condition is inquiry or obtains the rule at sunshine between Cable Structure location and Altitude Region, place by meteorology conventionally calculation, again according to geometric properties and the bearing data of Cable Structure, Cable Structure finds the annual position by sunshineduration those surface points the most sufficient, in " R Cable Structure surface point ", has at least a Cable Structure surface point to be annual by a point in sunshineduration the most fully those surface points in Cable Structure,
C. the Cable Structure steady temperature data under original state are obtained according to " the temperature survey calculating method of the Cable Structure of this method " direct survey calculation, Cable Structure steady temperature data under original state are called initial Cable Structure steady temperature data, are designated as " initial Cable Structure steady temperature data vector T
_{o}"; Survey or consult reference materials and obtain the temperature variant physical and mechanical properties parameter of the various materials that Cable Structure uses; T is obtained in actual measurement
_{o}while, namely at the initial Cable Structure steady temperature data vector T of acquisition
_{o}the synchronization in moment, direct survey calculation obtains the measured data of initial Cable Structure, and the measured data of initial Cable Structure comprises the Nondestructive Testing Data of the health status expressing support cable, Cable Structure bearing initial angle displacement measurement data, the initial value of all monitored amounts, the Initial cable force data of all support cables, initial Cable Structure modal data, initial Cable Structure strain data, initial Cable Structure geometric data, initial Cable Structure support coordinate data, initial Cable Structure angledata, initial Cable Structure spatial data; The initial value of all monitored amounts forms monitored amount initial value vector C
_{o}, monitored amount initial value vector C
_{o}the coding rule of coding rule and M monitored amount identical; Utilization can express the Nondestructive Testing Data of the health status of support cable and Cable Structure bearing initial angle displacement measurement data set up evaluation object initial damage vector d
_{o}, vectorial d
_{o}represent with initial mechanical Calculation Basis model A
_{o}the initial health of the evaluation object of the Cable Structure represented; Evaluation object initial damage vector d
_{o}element number equal N, d
_{o}element and evaluation object be onetoone relationship, vectorial d
_{o}the coding rule of element identical with the coding rule of evaluation object; If d
_{o}evaluation object corresponding to some elements be support cable, so a d in cable system
_{o}the numerical value of this element represent the initial damage degree of corresponding support cable, if the numerical value of this element is 0, represent that the support cable corresponding to this element is intact, do not damage, if its numerical value is 100%, then represent that the support cable corresponding to this element completely loses loadbearing capacity, if its numerical value is between 0 and 100%, then represent that this support cable loses the loadbearing capacity of corresponding proportion; If d
_{o}evaluation object corresponding to some elements be some angular displacement components of some bearings, so d
_{o}the numerical value of this element represent the initial value of this angular displacement component of this bearing; If there is no the Nondestructive Testing Data of support cable and other are when can express the data of the health status of support cable, or can think Cable Structure original state be not damaged without relaxed state time, vectorial d
_{o}in each element numerical value relevant to support cable get 0, if when there is no Cable Structure bearing initial angle displacement measurement data or can think that the displacement of Cable Structure bearing initial angle is 0, vectorial d
_{o}in each element numerical value relevant to Cable Structure angular displacement of support get 0; Initial Cable Structure support coordinate data refer to the support coordinate data under Cable Structure design point, and Cable Structure bearing initial angle displacement measurement data refer to setting up initial mechanical Calculation Basis model A
_{o}time, the angular displacement that Cable Structure bearing occurs relative to the bearing under Cable Structure design point;
Temperature variant physical and mechanical properties parameter, the initial Cable Structure steady temperature data vector T of the various materials d. used according to the measured data of the design drawing of Cable Structure, asconstructed drawing and initial Cable Structure, the Nondestructive Testing Data of support cable, Cable Structure bearing initial angle displacement measurement data, Cable Structure
_{o}with all Cable Structure data obtained with preceding step, set up the initial mechanical Calculation Basis model A counting the Cable Structure of " Cable Structure steady temperature data "
_{o}, based on A
_{o}the Cable Structure that calculates calculates data must closely its measured data, and difference therebetween must not be greater than 5%; Corresponding to A
_{o}" Cable Structure steady temperature data " be exactly " initial Cable Structure steady temperature data vector T
_{o}"; Corresponding to A
_{o}evaluation object health status with evaluation object initial damage vector d
_{o}represent; Corresponding to A
_{o}the initial value monitored amount initial value vector C of all monitored amount
_{o}represent; First time sets up the current initial mechanical Calculation Basis model A counting the Cable Structure of " Cable Structure steady temperature data "
^{t} _{o}, monitored amount current initial value vector C
^{t} _{o}" current initial Cable Structure steady temperature data vector T
^{t} _{o}"; Set up the current initial mechanical Calculation Basis model A of Cable Structure for the first time
^{t} _{o}with monitored amount current initial value vector C
^{t} _{o}time, the current initial mechanical Calculation Basis model A of Cable Structure
^{t} _{o}just equal the initial mechanical Calculation Basis model A of Cable Structure
_{o}, monitored amount current initial value vector C
^{t} _{o}just equal monitored amount initial value vector C
_{o}; A
^{t} _{o}corresponding " Cable Structure steady temperature data " are called " current initial Cable Structure steady temperature data ", are designated as " current initial Cable Structure steady temperature data vector T
^{t} _{o}", set up the current initial mechanical Calculation Basis model A of Cable Structure for the first time
^{t} _{o}time, T
^{t} _{o}just equal T
_{o}; A
^{t} _{o}the initial health of evaluation object and A
_{o}the health status of evaluation object identical, also use evaluation object initial damage vector d
_{o}represent, A in cyclic process below
^{t} _{o}the initial health of evaluation object use evaluation object initial damage vector d all the time
_{o}represent; T
_{o}and d
_{o}a
_{o}parameter, by A
_{o}the initial value of all monitored amount that obtains of Mechanics Calculation result and C
_{o}the initial value of all monitored amount represented is identical, therefore alternatively C
_{o}by A
_{o}mechanics Calculation result composition; T
^{t} _{o}and d
_{o}a
^{t} _{o}parameter, C
^{t} _{o}by A
^{t} _{o}mechanics Calculation result composition;
E. from entering the circulation being walked to m step by e here; In Cable Structure military service process, the current data of " Cable Structure steady temperature data " is constantly obtained according to " the temperature survey calculating method of the Cable Structure of this method " continuous Actual measurement, the current data of " Cable Structure steady temperature data " is called " current cable structure steady temperature data ", is designated as " current cable structure steady temperature data vector T
^{t}", vector T
^{t}definition mode and vector T
_{o}definition mode identical;
F. according to current cable structure steady temperature data vector T
^{t}, upgrade current initial mechanical Calculation Basis model A according to step f1 to f3
^{t} _{o}, monitored amount current initial value vector C
^{t} _{o}with current initial Cable Structure steady temperature data vector T
^{t} _{o};
F1. T is compared
^{t}with T
^{t} _{o}if, T
^{t}equal T
^{t} _{o}, then A
^{t} _{o}, C
^{t} _{o}and T
^{t} _{o}remain unchanged; Otherwise need to follow these steps to A
^{t} _{o}, U
^{t} _{o}and T
^{t} _{o}upgrade;
F2. T is calculated
^{t}with T
_{o}difference, T
^{t}with T
_{o}difference be exactly the changes of current cable structure steady temperature data about initial Cable Structure steady temperature data, T
^{t}with T
_{o}difference represent with steady temperature change vector S, S equals T
^{t}deduct T
_{o}, S represents the change of Cable Structure steady temperature data;
F3. to A
_{o}in Cable Structure apply temperature variation, the numerical value of the temperature variation of applying just takes from steady temperature change vector S, to A
_{o}in Cable Structure apply temperature variation after obtain upgrade current initial mechanical Calculation Basis model A
^{t} _{o}, upgrade A
^{t} _{o}while, T
^{t} _{o}all elements numerical value also uses T
^{t}all elements numerical value correspondence replace, namely have updated T
^{t} _{o}, so just obtain and correctly correspond to A
^{t} _{o}t
^{t} _{o}; Upgrade C
^{t} _{o}method be: when renewal A
^{t} _{o}after, obtain A by Mechanics Calculation
^{t} _{o}in all monitored amounts, current concrete numerical value, these concrete numerical value composition C
^{t} _{o}; A
^{t} _{o}the initial health of support cable use evaluation object initial damage vector d all the time
_{o}represent;
G. at current initial mechanical Calculation Basis model A
^{t} _{o}basis on carry out several times Mechanics Calculation according to step g 1 to g4, obtain Cable Structure unit damage monitored amount unit change matrix Δ C and unit damage or unit angular displacement vector D by calculating
_{u};
G1. Cable Structure unit damage monitored amount unit change matrix Δ C constantly updates, namely at the current initial mechanical Calculation Basis model A of renewal
^{t} _{o}, monitored amount current initial value vector C
^{t} _{o}with current initial Cable Structure steady temperature data vector T
^{t} _{o}afterwards, the vectorial D of Cable Structure unit damage monitored amount unit change matrix Δ C and unit damage or unit angular displacement must then be upgraded
_{u};
G2. at the current initial mechanical Calculation Basis model A of Cable Structure
^{t} _{o}basis on carry out several times Mechanics Calculation, calculation times numerically equals the quantity N of all evaluation objects, has N number of evaluation object just to have N calculating; According to the coding rule of evaluation object, calculate successively; Calculating hypothesis each time only has an evaluation object to increase unit damage or unit angular displacement again on the basis of original damage or angular displacement, if this evaluation object is a support cable in cable system, so just suppose that this support cable increases unit damage again, if this evaluation object is the angular displacement component in a direction of a bearing, just suppose that this bearing increases unit angular displacement again at this sense of displacement, use D
_{uk}record unit damage or the unit angular displacement of this increase, wherein k represents the numbering of the evaluation object increasing unit damage or unit angular displacement, D
_{uk}unit damage or unit angular displacement vector D
_{u}an element, unit damage or unit angular displacement vector D
_{u}the coding rule of element and vectorial d
_{o}the coding rule of element identical; The evaluation object increasing unit damage or unit angular displacement in calculating each time is different from during other time calculates the evaluation object increasing unit damage or unit angular displacement, calculate the current calculated value all utilizing mechanics method to calculate all monitored amount of Cable Structure each time, the current calculated value of all monitored amount calculated each time forms a monitored amount calculation current vector, element number rule and the monitored amount initial value vector C of monitored amount calculation current vector
_{o}element number rule identical;
G3. the monitored amount calculation current vector calculated each time deducts monitored amount current initial value vector C
^{t} _{o}obtain a vector, then each element of this vector is calculated the unit damage or unit angular displacement numerical value supposed divided by this time, obtain a monitored amount unit change vector, have N number of evaluation object just to have N number of monitored amount unit change vector;
G4. by the vectorial coding rule according to N number of evaluation object of this N number of monitored amount unit change, the Cable Structure unit damage monitored amount unit change matrix Δ C having N to arrange is formed successively; Each row of Cable Structure unit damage monitored amount unit change matrix Δ C correspond to a monitored amount unit change vector; Every a line of Cable Structure unit damage monitored amount unit change matrix Δ C corresponds to the different unit change amplitude of same monitored amount when different evaluation object increases unit damage or unit angular displacement; The coding rule of the row of Cable Structure unit damage monitored amount unit change matrix Δ C and vectorial d
_{o}the coding rule of element identical, the coding rule of the row of Cable Structure unit damage monitored amount unit change matrix Δ C is identical with the coding rule of M monitored amount;
H. current cable structure steady temperature data vector T is obtained in actual measurement
^{t}while, actual measurement obtains at acquisition current cable structure steady temperature data vector T
^{t}the current measured value of all monitored amount of Cable Structure of synchronization in moment, form monitored amount current value vector C; Monitored amount current value vector C and monitored amount current initial value vector C
^{t} _{o}with monitored amount initial value vector C
_{o}definition mode identical, the same monitored amount of element representation of three vectorial identical numberings is at not concrete numerical value in the same time;
I. evaluation object current nominal fatigue vector d is defined, the element number of evaluation object current nominal fatigue vector d equals the quantity of evaluation object, be onetoone relationship between the element of evaluation object current nominal fatigue vector d and evaluation object, the element numerical value of evaluation object current nominal fatigue vector d represents the nominal fatigue degree of corresponding evaluation object or nominal angular displacement; The coding rule of the element of vector d and vectorial d
_{o}the coding rule of element identical;
J. according to monitored amount current value vector C with monitored amount current initial value vector C
^{t} _{o}, Cable Structure unit damage monitored amount unit change matrix Δ C, unit damage or unit angular displacement vector D
_{u}and the linear approximate relationship existed between evaluation object to be asked current nominal fatigue vector d, this linear approximate relationship can be expressed as formula 1, and other amount in formula 1 except d is known, solves formula 1 and just can calculate evaluation object current nominal fatigue vector d;
K. evaluation object current actual damage vector d is defined
^{a}, evaluation object current actual damage vector d
^{a}element number equal the quantity of evaluation object, evaluation object current actual damage vector d
^{a}element and evaluation object between be onetoone relationship, evaluation object current actual damage vector d
^{a}element numerical value represent actual damage degree or the actual displacement angle of corresponding evaluation object; Vector d
^{a}the coding rule of element and vectorial d
_{o}the coding rule of element identical;
L. the evaluation object utilizing formula 2 to express current actual damage vector d
^{a}a kth element d
^{a} _{k}with evaluation object initial damage vector d
_{o}a kth element d
_{ok}with a kth element d of evaluation object current nominal fatigue vector d
_{k}between relation, calculate evaluation object current actual damage vector d
^{a}all elements;
formula 2
K=1 in formula 2,2,3 ...., N, d
^{a} _{k}represent the current actual health status of a kth evaluation object, if this evaluation object is support cable, so a d in cable system
^{a} _{k}represent its current actual damage, d
^{a} _{k}represent not damaged when being 0, when being 100%, represent that this support cable thoroughly loses loadbearing capacity, represent the loadbearing capacity losing corresponding proportion time between 0 and 100%, if this evaluation object is angular displacement component, so a d of a bearing
^{a} _{k}represent its current actual displacement angle numerical value; So according to evaluation object current actual damage vector d
^{a}impaired and the degree of injury of which support cable can be defined, define which bearing and there occurs angular displacement and numerical value thereof, namely achieve damaged cable and the angular displacement of support identification of Cable Structure;
M. get back to e step, start the circulation next time being walked to m step by e.
Priority Applications (1)
Application Number  Priority Date  Filing Date  Title 

CN201210172192.5A CN102706627B (en)  20120530  20120530  The damaged cable of temperature variation hybrid monitoring and support angular displacement identification method 
Applications Claiming Priority (1)
Application Number  Priority Date  Filing Date  Title 

CN201210172192.5A CN102706627B (en)  20120530  20120530  The damaged cable of temperature variation hybrid monitoring and support angular displacement identification method 
Publications (2)
Publication Number  Publication Date 

CN102706627A CN102706627A (en)  20121003 
CN102706627B true CN102706627B (en)  20150729 
Family
ID=46899570
Family Applications (1)
Application Number  Title  Priority Date  Filing Date 

CN201210172192.5A Expired  Fee Related CN102706627B (en)  20120530  20120530  The damaged cable of temperature variation hybrid monitoring and support angular displacement identification method 
Country Status (1)
Country  Link 

CN (1)  CN102706627B (en) 
Families Citing this family (7)
Publication number  Priority date  Publication date  Assignee  Title 

CN103616226A (en) *  20131209  20140305  东南大学  Progressive identifying method for problem cable and concentrated loads based on angle monitoring 
CN103630408A (en) *  20131209  20140312  东南大学  Damaged cable, centralized load and support angular displacement identification method based on mixed monitoring 
CN103604554A (en) *  20131209  20140226  东南大学  Problematic cable/concentrated load/generalized displacement progressive recognition method on basis of cable power monitoring 
CN103616195A (en) *  20131209  20140305  东南大学  Identifying method for damaged cable and concentrated loads based on mixture monitoring in time of angular displacement 
CN103616229A (en) *  20131209  20140305  东南大学  Identifying method for problem cable and concentrated loads based on space coordinate monitoring in time of angular displacement 
CN103604634A (en) *  20131209  20140226  东南大学  Linear displacement progressive type identification method for space coordinate monitoring of damaged cable and intensive load 
CN103604624A (en) *  20131209  20140226  东南大学  Damaged cable and concentrated load recognition method on basis of hybrid monitoring 
Citations (2)
Publication number  Priority date  Publication date  Assignee  Title 

CN101319962A (en) *  20080708  20081210  东南大学  Health monitoring method for cable system in cable structure 
CN101806664A (en) *  20100317  20100818  东南大学  Progressive health monitoring method of cable system based on mixed monitoring in presence of support seat settlement 
Family Cites Families (3)
Publication number  Priority date  Publication date  Assignee  Title 

ITBZ20050013A1 (en) *  20050404  20061005  Hans Guenter Czaloun  Tool for indirectly measuring the pull of a rope. 
JP2007297777A (en) *  20060427  20071115  Nippon Steel Engineering Co Ltd  Cable for suspension structure and measurement system 
CN102288438B (en) *  20110513  20131009  东南大学  Method for recognizing damaged cable, slack cable and angular displacement of support based on hybrid monitoring 

2012
 20120530 CN CN201210172192.5A patent/CN102706627B/en not_active Expired  Fee Related
Patent Citations (2)
Publication number  Priority date  Publication date  Assignee  Title 

CN101319962A (en) *  20080708  20081210  东南大学  Health monitoring method for cable system in cable structure 
CN101806664A (en) *  20100317  20100818  东南大学  Progressive health monitoring method of cable system based on mixed monitoring in presence of support seat settlement 
Also Published As
Publication number  Publication date 

CN102706627A (en)  20121003 
Similar Documents
Publication  Publication Date  Title 

CN103913328A (en)  Generalized displacement hybrid monitoring damaged cable load progressive identification method  
CN102706659B (en)  Defective cable and support angular displacement progressive identification method based on angular monitoring of temperature change  
CN103913342A (en)  Method for progressively recognizing fault cable, load and generalized displacement based on angle monitoring  
CN103604642A (en)  Problematic cable/concentrated load progressive recognition method on basis of generalized displacement cable power monitoring  
CN102735459B (en)  The problem cable generalized displacement of support progressivetype recognition method of temperature variation cable force monitoring  
CN103616222A (en)  Hybridmonitoring linear displacement progressive identification method for defective cable and concentrated loads  
CN103604549A (en)  Linear displacement progressive type identification method for strain monitoring of damaged cable and intensive load  
CN103868731A (en)  Generalized displacement strain monitoring damaged cable load identification method  
CN103604628A (en)  Problematic cable/concentrated load progressive recognition method on basis of linear displacement angle monitoring  
CN103604644A (en)  Problematic cable/concentrated load progressive recognition method on basis of linear displacement strain monitoring  
CN103604649A (en)  Problematic cable/concentrated load/linear displacement progressive recognition method on basis of strain monitoring  
CN103884524A (en)  Method for recognizing fault rod loads based on generalized displacement angle monitoring  
CN102706605B (en)  The problem cable generalized displacement of support progressivetype recognition method of temperature variation strain monitoring  
CN103604634A (en)  Linear displacement progressive type identification method for space coordinate monitoring of damaged cable and intensive load  
CN103913340A (en)  Identification method for damaged cable and load through linear displacement monitoring and strain monitoring  
CN103604623A (en)  Progressive type damaged rope and concentrated load identification method based on angular displacement strain monitoring  
CN103852285A (en)  Recognition method for problematic cable loads through generalized displacement and cable force monitoring  
CN103616249A (en)  Strainmonitoring damaged cable centralized load generalized displacement recognition method  
CN103852309A (en)  Progressive recognition method for problem cable load linear displacement based on mixing monitoring  
CN103852331A (en)  Progressive recognition method for problem cable load generalized displacement based on mixing monitoring  
CN103913338A (en)  Hybrid monitoring defective cable load generalized displacement identification method  
CN103616245A (en)  Progressive concentrated load support angular displacement identification method for damaged cable in process of cable force monitoring  
CN103604654A (en)  Problematic cable/concentrated load/generalized displacement progressive recognition method on basis of space coordinate monitoring  
CN103604632A (en)  Problematic cable/concentrated load progressive recognition method on basis of generalized displacement angle monitoring  
CN103852304A (en)  Method for recognizing damaged cables, loads and linear displacement based on cable force monitoring 
Legal Events
Date  Code  Title  Description 

PB01  Publication  
C06  Publication  
SE01  Entry into force of request for substantive examination  
C10  Entry into substantive examination  
GR01  Patent grant  
C14  Grant of patent or utility model  
CF01  Termination of patent right due to nonpayment of annual fee 
Granted publication date: 20150729 Termination date: 20180530 

CF01  Termination of patent right due to nonpayment of annual fee 