CN102706362B - 光纤陀螺的光功率自修正方法及其高精度光纤陀螺 - Google Patents

光纤陀螺的光功率自修正方法及其高精度光纤陀螺 Download PDF

Info

Publication number
CN102706362B
CN102706362B CN201210163570.3A CN201210163570A CN102706362B CN 102706362 B CN102706362 B CN 102706362B CN 201210163570 A CN201210163570 A CN 201210163570A CN 102706362 B CN102706362 B CN 102706362B
Authority
CN
China
Prior art keywords
light source
optical
optical power
precision
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210163570.3A
Other languages
English (en)
Other versions
CN102706362A (zh
Inventor
袁慧铮
李星善
陆俊清
邵志浩
刘源远
杨道安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Designing Institute of Hubei Space Technology Academy
Original Assignee
General Designing Institute of Hubei Space Technology Academy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Designing Institute of Hubei Space Technology Academy filed Critical General Designing Institute of Hubei Space Technology Academy
Priority to CN201210163570.3A priority Critical patent/CN102706362B/zh
Publication of CN102706362A publication Critical patent/CN102706362A/zh
Application granted granted Critical
Publication of CN102706362B publication Critical patent/CN102706362B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

本发明公开了一种光纤陀螺的光功率自修正方法及采用该方法的高精度光纤陀螺,该方法提取光干涉信号,采集光干涉信号中偏置相位在0附近时的梳状尖峰值Di,并对采集到的N个梳状尖峰值Di进行积分,得到Dint并与光纤陀螺稳定工作的光功率值进行比较,并根据比较值进行光源驱动电流的控制,进而调节光源的输出光功率。本发明在不增加器件、不改变光路互易性的条件下,实现了光源光功率的“端到端”实时探测,并进行闭环控制,实现了低成本SLD光源的高精度控制,提高了输出波长的稳定性。实现该方法的高精度光纤陀螺,无需采用较为复杂且昂贵的ASE光源,大大降低了生产成本。

Description

光纤陀螺的光功率自修正方法及其高精度光纤陀螺
技术领域
本发明涉及光纤陀螺仪技术领域,具体地指一种光纤陀螺的光功率自修正方法及其高精度光纤陀螺。
背景技术
近年来,光纤陀螺(FOG)由于其潜在的优势和应用前景而备受重视,已经成为新一代中高精度惯性测量系统中的首要选择。随着研究的深入,影响光纤陀螺精度的各种关键问题逐步得到解决,光纤陀螺的性能不断提高,创造了良好的经济效益。中低精度光纤陀螺主要应用于短距离战术武器、民用测井技术等领域,高精度光纤陀螺主要应用于远距离、高精度武器装备系统及舰艇导航、定位定向、大地测量等领域。目前,国外研制的高精度光纤陀螺零位漂移已达到0.001°/h以内,标度因数稳定性优于10ppm,测量精度达到了0.0003°/h。但由于惯性技术有较高的军事应用价值,国外对高精度光纤陀螺的生产技术进行了严格的技术封锁。
从已有的资料分析,影响陀螺精度的主要因素是光功率稳定性、平均波长稳定性、光纤环的绕制质量、后端信号检测电路的精度等。在现有的技术条件下,光纤环的绕制技术和后端信号检测电路的设计已经相对成熟,改进的空间不大。在中低精度光纤陀螺中广泛应用的SLD光源控制模块主要由驱动电路和制冷器两部分组成,驱动电路主要控制光源的输出光功率,制冷器保证光源始终工作在预设定温度下。直接影响光源输出光功率的驱动电路无法随着外界环境的变化及时调整光源驱动电流,从而造成SLD光源的光功率稳定性较差,不能够满足高精度光纤陀螺的设计要求。在公开的文献和资料中,现有的SLD光源光功率闭环控制方案,通常是在耦合器空头上外接另一个PIN探测器,根据探测到的光信号进行光源的闭环反馈控制。该方法的缺点是,在增加了一个光电探测器件后,改变了光路的互易性,造成了更大的光学设计误差,因此并没有实际应用到高精度光纤陀螺的设计中。
现有的高精度光纤陀螺主要采用ASE光源,如图1所示,在主流的设计中,基于ASE光源的高精度光纤陀螺和基于SLD光源的中低精度光纤陀螺在系统结构上并无太大差别,唯一不同的地方是将输出平均波长稳定性较差的SLD光源换成了输出平均波长稳定性较好的ASE光源。对于ASE光源而言,其最大的优点在于具有更好的光谱稳定性,可以利用成熟的光纤通信器件进行高精度陀螺设计,但是其后级的驱动电路和光路设计方式并无明显改进。与此同时,ASE光源也存在一些缺点,例如其成本较高、且光源控制复杂,在进行系统设计时,不仅需要精确控制980nm泵浦光的光功率,同时需要对波分复用(WDM)器件和光纤布拉格光栅(FBG)进行温度控制,避免因温度波动引起输出光的平均波长发生变化;在控制算法设计上,对光源的控制依赖于经验参数,只能在光源内部进行温度检测,从而根据经验参数对光源进行温度控制,无法实现光源输出功率的“端到端”实时闭环控制;同时,当前的闭环控制算法只能完成从探测器后端信号的控制和反馈,功能单一,没有进行从光源到输出的系统级参数综合控制,在精度的进一步提高上存在一定的局限性。
发明内容
本发明的目的在于克服现有技术中高精度光纤陀螺成本高、光功率控制不精确的问题,提供一种光纤陀螺的光功率自修正方法及其高精度光纤陀螺。
为实现上述目的,本发明所设计的光纤陀螺的光功率自修正方法为:提取光干涉信号,采集光干涉信号中偏置相位在0附近时的梳状尖峰值Di,并对采集到的N个梳状尖峰值Di进行积分,得到
D int = Σ i = 1 N D i
将Dint与光纤陀螺稳定工作的光功率值进行比较,并根据比较值进行光源驱动电流的控制,进而调节光源的输出光功率。
优选地,所述光纤陀螺的光功率自修正方法还包括对Dint进行滤波处理后,再将Dint与光纤陀螺稳定工作的光功率值进行比较,将比较值输出到光源驱动电路,通过对光源驱动电路中的精密可编程电阻阻值的控制来进行光源驱动电流的控制。
实现上述光功率自修正方法的高精度光纤陀螺,包括陀螺本体,所述陀螺本体内设置有光源和光源控制单元,光源依次连接耦合器、集成光学调制器、光纤环和光电探测器(PIN)形成光路,光电探测器和前置放大器电连接,前置放大器和AD转换器、数字信号处理单元(FPGA)、后置放大器、DA转换器形成电路,DA转换器与集成光学调制器的控制端相连,所述数字信号处理单元还包括梳状尖峰检测与积分模块,用于对采集到的光干涉信号中偏置相位在0附近时的N个梳状尖峰值Di进行积分、并将积分后的结果与光纤陀螺稳定工作的光功率值进行比较、得到比较值;所述光源控制单元还包括光功率调整模块、其根据比较值进行光源驱动电流的控制。
优选地,所述AD转换器为采样频率大于4Mhz的AD转换器。
优选地,所述光源为SLD光源。
优选地,所述光功率调整模块包括精密可编程电阻。
优选地,所述光源及光源控制单元的光源驱动电路安装在底面板上。
光纤陀螺的光功率自修正方法,主要是选用如SLD光源的低成本光源进行高精度陀螺设计和光源的“端到端”实时闭环控制。通过理论分析和计算,在不影响光纤陀螺精度的前提下,采用较为成熟的低成本光源,极大的降低了高精度光纤陀螺的设计和生产成本;根据数字闭环光纤陀螺的信号检测原理,在光电探测器(PIN)进行干涉信号检测时,不仅提取出偏置相位为π/2稳定工作点处的光功率值进行数字闭环反馈,同时根据方波信号在跳变过程中的连续效应,提取偏置相位在0附近时的光功率值,即梳状尖峰值,并将此光功率作为光源功率的控制参量,进行光源驱动电流的精确控制;此外,由于光源是系统中最大的热源,如果处理不当,会引起较大的Shupe误差。因此,将光源及光源驱动电路安装在陀螺的上盖板上,最大限度的增加光纤陀螺安装面与本体安装面的接触面积,保证光纤陀螺的热量能够迅速通过热传导的方式传递至安装基座上,从而保证了陀螺的设计精度。
本发明的有益效果:光纤陀螺的光功率自修正方法,在不增加器件、不改变光路互易性的条件下,利用数字闭环控制中“丢弃”的梳状脉冲信息,实现了光源光功率的“端到端”实时探测,并设计相应的机制进行闭环控制,能够实现低成本SLD光源的高精度控制,提高了输出波长的稳定性。实现该方法的高精度光纤陀螺,无需采用较为复杂且昂贵的ASE光源,大大降低了高精度光纤陀螺的生产成本。此外,本发明充分考虑了热设计在高精度光纤陀螺设计中的重要性,将光源及光源驱动电路调整至底面板上,避免了光源发热引起的Shupe误差,保证了光纤陀螺的设计精度。
附图说明
图1为基于ASE光源的高精度光纤陀螺控制框图;
图2为本发明的高精度光纤陀螺控制框图;
图3为光电探测器采集信号图;
图4为本发明的高精度光纤陀螺的立体分解结构示意图。
具体实施方式
以下结合附图和具体实施例对本发明作进一步的详细描述。
图1所示基于ASE光源的高精度光纤陀螺控制框图,在背景技术中已作说明,于此不再赘述。
如图2所示,本实施例提供了一种低成本且具有光功率自修正功能的高精度光纤陀螺,它包括陀螺本体1,陀螺本体1内设置有光源102和光源控制单元101,光源102依次连接耦合器103、集成光学调制器104、光纤环111和光电探测器(PIN)105形成光路,光电探测器105和前置放大器106电连接,前置放大器106和AD转换器107、数字信号处理单元(FPGA)108、后置放大器109、DA转换器110形成电路,DA转换器110与集成光学调制器104的控制端相连,数字信号处理单元108还包括梳状尖峰检测与积分模块1081,用于对采集到的光干涉信号中偏置相位在0附近时的N个梳状尖峰值Di进行积分、并将积分后的结果与光纤陀螺稳定工作的光功率值进行比较、得到比较值;光源控制单元101还包括光功率调整模块1011、其根据比较值进行光源驱动电流的控制。
其中,光源102为SLD光源,AD转换器107为采样频率大于4Mhz的AD转换器。
光功率调整模块1011包括精密可编程电阻,其设置于光源驱动电路中。需要说明的是,光功率调整模块1011可以为其他与精密可编程电阻等效的其他元器件,而不仅限于此种实施方式。
如图4所示,高精度光纤陀螺的结构包括,陀螺本体1、连接于陀螺本体1下端的底面板2,光源102及光源控制单元101的光源驱动电路安装在底面板2上。需要说明的是,由于光源102是系统中最大的热源,如果处理不当,会引起较大的Shupe误差。通过最大限度的增加光源102和光源驱动电路和底面板2的接触面积,保证光源102的热量能够迅速通过热传导的方式传递至底面板2外侧,从而保证了陀螺的设计精度。
上述高精度光纤陀螺的光功率自修正方法为:提取光干涉信号,采集光干涉信号中偏置相位在0附近时的梳状尖峰值Di,并对采集到的N个梳状尖峰值Di进行积分,得到
D int = Σ i = 1 N D i
将Dint与光纤陀螺稳定工作的光功率值进行比较,并根据比较值进行光源驱动电流的控制,进而调节光源的输出光功率。
该方法的原理如下:在光电探测器(PIN)105处,两束光干涉后的条纹呈余弦分布,通过集成光学调制器104的调制,将光纤陀螺的工作点控制在±π/2的相位处,由于此处光的变化最为剧烈(对应着切线的斜率最大),因此可以得到最佳的分辨率。由于相位切换在时间上的连续性,因而在光电探测器105处得到的是梳状脉冲,如图3所示。在光纤陀螺的工作过程中,要不停的将工作点在+π/2和-π/2之间切换。对于数字信号而言,这个切换过程可以认为是没有过渡时间的,但实际应用中控制的光信号属于模拟信号,且受到方波发生器件频率响应特性的限制,相位在±π/2之间变化时,必然要经历一个相位为0的值。对应这个0相位处的光功率,就是我们在梳状脉冲中看到的那个脉冲尖峰b。由于闭环控制的稳定性,梳状脉冲的脉冲尖峰b高度是相对稳定的,这也为光源的闭环控制算法设计提供了便利,即如果能够采集到梳状脉冲b的梳状尖峰值Di作为光功率的参考值,那么就能够在不额外增加器件、不改变光路互易性的条件下实现光源的光功率闭环控制。
经实际测量,梳状脉冲的宽度普遍在0.3us左右,因此,只要选择采样频率大于4Mhz的AD转换器,即可完成梳状尖峰值Di的采样。在本实施例中,AD转换器107的时钟与方波时钟是同相的,但AD转换器107的时钟远高于方波时钟,工作频率为16Mhz。在每一个方波时钟翻转的时刻,同时也会有AD转换器107将此时的光信息采集进数字信号处理单元108。
数字信号处理单元108包括梳妆尖峰检测与积分模块1081和偏置相位处光功率检测与积分模块1082,偏置相位处光功率检测与积分模块1082选择梳状脉冲中平坦部分a作为数字闭环的信号输入源,经积分后将其通过DA转换器107输出,通过集成光学调制器104进行光纤环111内两束光的相位控制;梳状尖峰检测与积分模块1081选择图3所示的脉冲尖峰b作为光功率控制的信号源,经积分、滤波处理后,与光纤陀螺稳定工作的光功率值进行比较,将比较值输出到光源控制单元101中的光功率调整模块1011,由于在本实施例中光功率调整模块1011包括设于光源驱动电路中的精密可编程电阻,所以通过对该电阻模块的控制,精确控制光源的驱动电流,进而控制光源的输出功率。
本发明制得的高精度光纤陀螺的零位漂移小于0.002°/h。

Claims (8)

1.一种光纤陀螺的光功率自修正方法,其特征在于:所述方法为:将光源的光分成两束,经光纤环后发生干涉,提取该光干涉信号,采集光干涉信号中偏置相位在0附近时的梳状尖峰值Di,并对采集到的N个梳状尖峰值Di进行积分,得到
D int = Σ i = 1 N D i
将Dint与光纤陀螺稳定工作的光功率值进行比较,并根据比较值进行光源驱动电流的控制,进而调节光源的输出光功率。
2.根据权利要求1所述的光纤陀螺的光功率自修正方法,其特征在于:所述方法还包括对Dint进行滤波处理后,再将Dint与光纤陀螺稳定工作的光功率值进行比较,将比较值输出到光源驱动电路,通过对光源驱动电路中的精密可编程电阻的调整来进行光源驱动电流的控制。
3.一种实现权利要求1所述光功率自修正方法的高精度光纤陀螺,包括陀螺本体(1),所述陀螺本体(1)内设置有光源(102)和光源控制单元(101),光源(102)依次连接耦合器(103)、集成光学调制器(104)、光纤环(111)和光电探测器(105)形成光路,光电探测器(105)和前置放大器(106)电连接,前置放大器(106)和AD转换器(107)、数字信号处理单元(108)、后置放大器(109)、DA转换器(110)形成电路,DA转换器(110)与集成光学调制器(104)的控制端相连,其特征在于:所述数字信号处理单元(108)还包括梳状尖峰检测与积分模块(1081),用于对采集到的光干涉信号中偏置相位在0附近时的N个梳状尖峰值Di进行积分、并将积分后的结果与光纤陀螺稳定工作的光功率值进行比较、得到比较值;所述光源控制单元(101)还包括光功率调整模块(1011)、其根据比较值进行光源驱动电流的控制。
4.根据权利要求3所述的高精度光纤陀螺,其特征在于:所述AD转换器(107)为采样频率大于4Mhz的AD转换器。
5.根据权利要求3或4所述的高精度光纤陀螺,其特征在于:所述光源(102)为SLD光源。
6.根据权利要求3或4所述的高精度光纤陀螺,其特征在于:所述光功率调整模块(1011)包括精密可编程电阻。
7.根据权利要求5所述的高精度光纤陀螺,其特征在于:所述光功率调整模块(1011)包括精密可编程电阻。
8.根据权利要求3所述的高精度光纤陀螺,其特征在于:所述光源(102)及光源控制单元(101)的光源驱动电路安装在底面板(2)上。
CN201210163570.3A 2012-05-24 2012-05-24 光纤陀螺的光功率自修正方法及其高精度光纤陀螺 Active CN102706362B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210163570.3A CN102706362B (zh) 2012-05-24 2012-05-24 光纤陀螺的光功率自修正方法及其高精度光纤陀螺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210163570.3A CN102706362B (zh) 2012-05-24 2012-05-24 光纤陀螺的光功率自修正方法及其高精度光纤陀螺

Publications (2)

Publication Number Publication Date
CN102706362A CN102706362A (zh) 2012-10-03
CN102706362B true CN102706362B (zh) 2015-01-21

Family

ID=46899314

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210163570.3A Active CN102706362B (zh) 2012-05-24 2012-05-24 光纤陀螺的光功率自修正方法及其高精度光纤陀螺

Country Status (1)

Country Link
CN (1) CN102706362B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103335642B (zh) * 2013-06-14 2016-06-08 湖北航天技术研究院总体设计所 基于功率反馈式sld的光纤陀螺闭环控制方法及光纤陀螺
CN103591946B (zh) * 2013-12-02 2017-03-22 中国电子科技集团公司第二十六研究所 一种可消除尖峰信号的干涉式光纤陀螺
CN104236537B (zh) * 2014-09-12 2017-08-11 北京航空航天大学 基于强度调制器的光源强度噪声抑制数字双闭环方法
CN105758423B (zh) * 2014-12-19 2018-08-14 上海亨通光电科技有限公司 一种光纤陀螺光功率开机自检测试方法
CN106908050A (zh) * 2015-12-22 2017-06-30 上海亨通光电科技有限公司 一种可输出姿态方位角的光纤陀螺仪
CN107869997A (zh) * 2016-09-27 2018-04-03 北京计算机技术及应用研究所 用于光纤陀螺的光路调试设备
CN107543537B (zh) * 2017-07-10 2019-12-20 北京控制工程研究所 一种提高光纤陀螺标度因数稳定性的方法
CN110440784B (zh) * 2018-05-04 2021-02-19 武汉长盈通光电技术股份有限公司 一种光路复用的多轴闭环光纤陀螺
CN110658164A (zh) * 2019-09-10 2020-01-07 青岛海洋科学与技术国家实验室发展中心 一种led脉冲激发光源系统
CN110986914A (zh) * 2019-12-13 2020-04-10 西安航天精密机电研究所 一种光纤陀螺用光源光功率快速稳定方法及系统
CN112781578B (zh) * 2020-12-25 2022-07-15 湖南航天机电设备与特种材料研究所 一种标度因数自适应控制的光纤陀螺及方法
CN115900679B (zh) * 2023-03-08 2023-05-12 中国船舶集团有限公司第七〇七研究所 一种提升集成光学陀螺信噪比的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684590A (en) * 1995-12-29 1997-11-04 Honeywell Inc. Fiber optic gyroscope source wavelength control
CN101216316A (zh) * 2008-01-14 2008-07-09 浙江大学 降低光纤陀螺标度因数温度灵敏度的光源非制冷方法
CN201335695Y (zh) * 2008-12-09 2009-10-28 姜恩颖 一种改进的光纤陀螺仪
CN101750058A (zh) * 2008-12-09 2010-06-23 姜恩颖 具有中心波长监控调节功能的光纤陀螺仪

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300208A (ja) * 2008-06-12 2009-12-24 Advanced Telecommunication Research Institute International 光ファイバジャイロ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684590A (en) * 1995-12-29 1997-11-04 Honeywell Inc. Fiber optic gyroscope source wavelength control
CN101216316A (zh) * 2008-01-14 2008-07-09 浙江大学 降低光纤陀螺标度因数温度灵敏度的光源非制冷方法
CN201335695Y (zh) * 2008-12-09 2009-10-28 姜恩颖 一种改进的光纤陀螺仪
CN101750058A (zh) * 2008-12-09 2010-06-23 姜恩颖 具有中心波长监控调节功能的光纤陀螺仪

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JP特开2009-300208A 2009.12.24 *
光纤陀螺SLD 光源的驱动控制研究;侯军辉等;《中国惯性技术学报》;20020630;第10卷(第3期);第50-54页 *
光纤陀螺用SLD 的光功率自动控制的实验研究;王立辉等;《光学仪器》;20031231;第25卷(第6期);第25-29页 *

Also Published As

Publication number Publication date
CN102706362A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
CN102706362B (zh) 光纤陀螺的光功率自修正方法及其高精度光纤陀螺
CN101488753B (zh) 一种原子钟基准频率的获取方法及原子钟
CN108120525B (zh) 光纤光栅温度/应变传感系统及其解调方法
CN101656537B (zh) 多脉冲干涉Ramsey-CPT条纹的制备方法及装置
CN104614585A (zh) 基于受激布里渊效应的多频率高精度微波光子测频方案
CN103278150B (zh) 一种检测角速度的光载微波陀螺方法
CN103794980A (zh) 用高功率光纤光学频率梳测量光频率的方法及其装置
CN104236537A (zh) 基于强度调制器的光源强度噪声抑制数字双闭环方法
CN102353963A (zh) 基于光域双环路光电振荡器的测距系统
CN100541128C (zh) 无温控光源闭环光纤陀螺及其输出角速度信息的补偿方法
CN102811056B (zh) 一种铷原子频标的信噪比评估装置和方法
CN104990547A (zh) 一种稳定光纤陀螺保持标度因数的方法和装置
CN103913299A (zh) 基于光腔衰荡法的光学谐振腔模式及损耗测量装置和方法
CN102914423A (zh) 一种色散光纤凹陷频率测量装置及其方法
CN104914444A (zh) 一种远距离激光外差干涉测距结构
CN103335642B (zh) 基于功率反馈式sld的光纤陀螺闭环控制方法及光纤陀螺
CN103872569A (zh) 稳定掺铒光纤光源波长和功率的方法、装置及相应的光源
CN110030987A (zh) 一种光纤陀螺仪用大功率高斯谱ase光源
CN102738694A (zh) 一种利用f-p干涉仪实现激光稳频的方法
CN103983846A (zh) 基于光电振荡器的弱信号探测方法
CN105352446B (zh) 亚纳应变级多点复用光纤光栅准静态应变传感系统
CN104698466A (zh) 远程动态目标测距装置及方法
CN106871931A (zh) 一种闭环光纤陀螺温度补偿方法
CN103983962B (zh) 一种相位测量的校准方法、装置及测量装置
CN104297598A (zh) 一种vcsel的多参数测试装置及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant