CN102699733A - Method and device for measuring movement locus of automatic tool changing mechanical arm - Google Patents

Method and device for measuring movement locus of automatic tool changing mechanical arm Download PDF

Info

Publication number
CN102699733A
CN102699733A CN2012101928916A CN201210192891A CN102699733A CN 102699733 A CN102699733 A CN 102699733A CN 2012101928916 A CN2012101928916 A CN 2012101928916A CN 201210192891 A CN201210192891 A CN 201210192891A CN 102699733 A CN102699733 A CN 102699733A
Authority
CN
China
Prior art keywords
mtd
msub
mtr
mrow
mtable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012101928916A
Other languages
Chinese (zh)
Other versions
CN102699733B (en
Inventor
卢晓红
韩鹏卓
贾振元
王福吉
刘巍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201210192891.6A priority Critical patent/CN102699733B/en
Publication of CN102699733A publication Critical patent/CN102699733A/en
Application granted granted Critical
Publication of CN102699733B publication Critical patent/CN102699733B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

The invention relates to a method and a device for measuring the movement locus of an automatic knife-changing mechanical arm and belongs to the field of space movement locus tracking and measurement of an automatic knife-changing mechanical arm at a processing center. The method is a non-contact type three-dimensional online measurement method based on two-dimensional PSDs (Phase Sensory Detectors); light sources as measured targets are installed on a measured ATC (Air Traffic Control) mechanical arm and are projected onto two-dimensional induction screens of two PSD cameras composed of two position sensitive detectors respectively through a lens to form light spots; the two PSD cameras respectively output two-dimensional coordinate values under the excitation of the light spots; after passing through a signal processor, a voltage value corresponding to a coordinate position is outputted; and a computer collects and saves a corresponding signal through a voltage acquisition card. The method is quick in response speed and satisfies the real-time online measurement requirements. Through the movement locus of the mechanical arm, the positioning accuracy, the movement stability and other movement states in the knife changing process can be judged to provide a quantitative method for the reliability detection of a knife library.

Description

Method and device for measuring motion trail of automatic tool changing mechanical arm
Technical Field
The invention belongs to the field of tracking and measuring of a space motion trail of a mechanical arm of an automatic tool changing system of a machining center, and discloses a three-dimensional measuring device formed by a two-dimensional position sensitive detector, which is used for realizing non-contact on-line measurement of the motion trail of the mechanical arm.
Background
In recent years, with the rapid development of equipment manufacturing industry, the demand of high-grade numerical control machines represented by machining centers is increasing day by day, and research and development of Automatic Tool changing system (ATC for short) of large Tool magazine, which is a key functional component of machining centers, is highly regarded by governments and enterprises at home and abroad. The ATC is an important component of a tool magazine of a machining center, is an intermediate bridge of the tool magazine and a machine tool spindle, and has the main functions of automatically clamping a tool used for machining on the spindle and unloading the tool which is not used on the spindle and placing the tool back into the tool magazine. The application of ATC greatly improves the processing efficiency of a machine tool, makes it possible to finish a plurality of processes or all the processes by one-time clamping, becomes an essential functional part of a modern processing center, and has been invented to form various finished products mainly in a turret type and a tool magazine type. The large-scale tool magazine type automatic tool changing system has strong tool storage capacity, is suitable for complex multi-procedure processing occasions, and becomes a research hotspot of the current manufacturing industry. Through innovation, research and development and manufacture for several years, the home and abroad known machine tool manufacturers form an advanced large-scale tool changer automatic tool changing system with certain scale and independent intellectual property rights, but the reliability detection of the automatic tool changing system only has some overall requirements from national standards, mechanical industries to enterprise standards, and has no standard detection method and quantifiable equipment. The ATC has the characteristics of frequent starting, more working actions, complex transmission mechanism, high requirement on motion precision, narrow measurement space and the like, so that the tracking measurement of the processing motion trail is difficult. For the arc cam type ATC widely used at present, the measurement result of the motion trail can effectively reflect the influence degree of the manufacturing error and the assembly error of the cam on the positioning precision of the ATC, and the method has great significance for the reliability detection of the automatic tool changing system of the tool magazine. At present, the research on tracking and measuring the mechanism motion trail at home and abroad is not much, and the research is mainly focused on the aspect of measuring the plane motion trail of a simple mechanism, such as Qinwei 'plane mechanism motion research based on CCD technology', a measuring target is in a two-dimensional space, the requirement on measuring precision is low, and the motion trail of an ATC mechanical arm is a complex curve in a three-dimensional space.
Disclosure of Invention
The invention solves the technical problems of overcoming the defects in the prior art, and is difficult to form an effective reliability detection method because the ATC mechanism of the machining center is complex, the machining precision of the driving cam is difficult to detect, the influence of the assembly precision on the movement error of the terminal is difficult to evaluate, and the closure of the whole structure increases the detection difficulty of the movement state. The invention discloses a non-contact three-dimensional measurement method and a non-contact three-dimensional measurement Device based on two-dimensional PSD cameras by combining a position sensitive detector (PSD for short) and a binocular vision three-dimensional measurement principle. And researching the fault state of the automatic tool changing system according to the measured actual motion track of the mechanical arm, and forming an effective tool magazine tool changing mechanism reliability detection method. The invention adopts a mode of extracting the coordinates of the target light spot by PSD, has high response speed and meets the real-time on-line measurement requirement; the motion states of positioning accuracy, motion stability and the like in the tool changing process can be judged through the motion trail of the mechanical arm, and a quantification method is provided for the reliability detection of the tool magazine.
The technical scheme to be solved by the invention is a method for measuring the motion track of an automatic tool changing mechanical arm, which is a non-contact three-dimensional online measuring method based on a two-dimensional PSD. A light source serving as a measured target is arranged on an ATC mechanical arm to be measured, the measurement principle is as shown in figure 1, the light source is projected on a two-dimensional sensing screen of a PSD camera consisting of two position sensitive detectors through a lens to form a light spot, the two PSD cameras respectively output two-dimensional coordinate values under the excitation of the light spot, a voltage value corresponding to a coordinate position is output after passing through a signal processor, a computer collects and stores corresponding signals through a voltage collection card, and three-dimensional coordinate values of the measured light source are back calculated through the two sets of collected two-dimensional coordinate values. And finally, calculating a series of discrete points according to the data acquired at high frequency to form the motion track of the mechanical arm.
1) Before three-dimensional measurement, high-precision internal and external parameters of a PSD camera are obtained, and the measurement method comprises the following steps:
the coordinate system of the target light source to be measured is set as the world coordinate system W, the coordinate system of the projected light spot is set as the PSD coordinate system S, the lens coordinate system L and the image coordinate system I, PSD are set as the lower point P (X) of the world coordinate system W, referring to FIG. 2W,YW,ZW) The coordinate of the corresponding projection point P' in the PSD coordinate system S is (u, v), and the conversion relationship between the two is:
<math> <mrow> <msub> <mi>Z</mi> <mi>L</mi> </msub> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <mi>&mu;</mi> </mtd> </mtr> <mtr> <mtd> <mi>&nu;</mi> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>f</mi> <mi>x</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&mu;</mi> <mn>0</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>f</mi> <mi>y</mi> </msub> </mtd> <mtd> <msub> <mi>&nu;</mi> <mn>0</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <mi>R</mi> </mtd> <mtd> <mi>T</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Y</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Z</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <mi>A</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <mi>R</mi> </mtd> <mtd> <mi>T</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Y</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Z</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
where A is an internal parameter matrix containing the focal length f and the offset (u)0,v0) R, T are the rotation matrix and translation matrix from the world coordinate system to the lens coordinate system, [ R T ] respectively]Is an external parameter matrix of PSD camera, ZLThe Z-axis coordinate value of the measurement target under the lens coordinate system;
the inside and outside parameters of the PSD camera are measured by using the planar template device shown in FIG. 3, and when the origin of the world coordinate system W is at the center of the light source at the upper left corner of the template, the horizontal direction is the X axis, the vertical direction is the Y axis, and the direction perpendicular to the plane is the Z axis inward, the Z axis is the Z axisw=0:
<math> <mrow> <msub> <mi>Z</mi> <mi>L</mi> </msub> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <mi>&mu;</mi> </mtd> </mtr> <mtr> <mtd> <mi>&nu;</mi> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>f</mi> <mi>x</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&mu;</mi> <mn>0</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>f</mi> <mi>y</mi> </msub> </mtd> <mtd> <msub> <mi>&nu;</mi> <mn>0</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>R</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>2</mn> </msub> </mtd> <mtd> <mi>T</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Y</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mi>H</mi> <mo>&CenterDot;</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Y</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
Solving internal and external parameters according to the Zhang calibration method, starting the control circuit 38 after fixing the PSD camera and the template, sequentially lighting the light sources in a scanning mode from the upper left corner of the light source array 36, simultaneously acquiring corresponding output coordinate values of the PSD, and substituting the acquired data and the corresponding coordinate values of the light sources under a world coordinate system into the following equation until the last light source measurement is completed: <math> <mrow> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> <mtd> <msub> <mi>Y</mi> <mi>W</mi> </msub> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mi>&mu;</mi> <mo>&CenterDot;</mo> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> <mtd> <mo>-</mo> <mi>&mu;</mi> <mo>&CenterDot;</mo> <msub> <mi>Y</mi> <mi>W</mi> </msub> </mtd> <mtd> <mo>-</mo> <mi>&mu;</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> <mtd> <msub> <mi>Y</mi> <mi>W</mi> </msub> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>-</mo> <mi>&nu;</mi> <mo>&CenterDot;</mo> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> <mtd> <mo>-</mo> <mi>&nu;</mi> <mo>&CenterDot;</mo> <msub> <mi>Y</mi> <mi>W</mi> </msub> </mtd> <mtd> <mo>-</mo> <mi>&nu;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>h</mi> <mn>11</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>12</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>13</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>21</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>22</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>21</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>31</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>32</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>33</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math> - - - ( 3 )
when the number of light sources in the template is enough, a homography matrix H is solved by a least square method, different homography matrixes can be solved by changing the direction of the camera or the template, and a plurality of groups of H are substituted into the following equation:
<math> <mrow> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msup> <msub> <mi>V</mi> <mn>12</mn> </msub> <mi>T</mi> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mn>11</mn> </msub> <mo>-</mo> <msub> <mi>V</mi> <mn>22</mn> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mi>b</mi> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein
<math> <mrow> <msub> <mi>V</mi> <mi>ij</mi> </msub> <mo>=</mo> <msup> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> </math> And B is six independent elements of the symmetric matrix BThe constructed vector.
<math> <mrow> <mi>B</mi> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <msup> <mi>A</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <mfrac> <mn>1</mn> <msup> <msub> <mi>f</mi> <mi>x</mi> </msub> <mn>2</mn> </msup> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mfrac> <msub> <mi>&mu;</mi> <mn>0</mn> </msub> <msup> <msub> <mi>f</mi> <mi>x</mi> </msub> <mn>2</mn> </msup> </mfrac> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <mn>1</mn> <msup> <msub> <mi>f</mi> <mi>y</mi> </msub> <mn>2</mn> </msup> </mfrac> </mtd> <mtd> <mo>-</mo> <mfrac> <msub> <mi>&nu;</mi> <mn>0</mn> </msub> <msup> <msub> <mi>f</mi> <mi>y</mi> </msub> <mn>2</mn> </msup> </mfrac> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mfrac> <msub> <mi>&mu;</mi> <mn>0</mn> </msub> <msup> <msub> <mi>f</mi> <mi>x</mi> </msub> <mn>2</mn> </msup> </mfrac> </mtd> <mtd> <mo>-</mo> <mfrac> <msub> <mi>&nu;</mi> <mn>0</mn> </msub> <msup> <msub> <mi>f</mi> <mi>y</mi> </msub> <mn>2</mn> </msup> </mfrac> </mtd> <mtd> <mfrac> <msubsup> <mi>&mu;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <msup> <msub> <mi>f</mi> <mi>x</mi> </msub> <mn>2</mn> </msup> </mfrac> <mo>+</mo> <mfrac> <msubsup> <mi>&nu;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <msup> <msub> <mi>f</mi> <mi>y</mi> </msub> <mn>2</mn> </msup> </mfrac> <mo>+</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
When the number of changed directions is enough, solving b by a least square method, inversely calculating a parameter matrix A in the camera, and substituting A into the following formula:
R1=A-1H1,R2=A-1H2,T=A-1H3(5)
then by adding R1And R2By orthogonal expansion of R3To find out the external parameter matrix [ R T]。
2) The three-dimensional positioning method of the double PSD camera comprises the following steps:
the light beam emitted by the scattering target light source is converged by the lens and then projected on the PSD camera induction screen, and the target light source center coordinate (X) is under the world coordinate systemW,YW,ZW) The relation with the projection light spot center coordinates (mu, v) under the PSD coordinate system is as follows:
<math> <mrow> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>m</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>m</mi> <mn>9</mn> </msub> <mi>&mu;</mi> </mtd> <mtd> <msub> <mi>m</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>m</mi> <mn>10</mn> </msub> <mi>&mu;</mi> </mtd> <mtd> <msub> <mi>m</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>m</mi> <mn>11</mn> </msub> <mi>&mu;</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mn>5</mn> </msub> <mo>-</mo> <msub> <mi>m</mi> <mn>9</mn> </msub> <mi>&nu;</mi> </mtd> <mtd> <msub> <mi>m</mi> <mn>6</mn> </msub> <mo>-</mo> <msub> <mi>m</mi> <mn>10</mn> </msub> <mi>&nu;</mi> </mtd> <mtd> <msub> <mi>m</mi> <mn>7</mn> </msub> <mo>-</mo> <msub> <mi>m</mi> <mn>11</mn> </msub> <mi>&nu;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Y</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Z</mi> <mi>W</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>m</mi> <mn>12</mn> </msub> <mi>&mu;</mi> <mo>-</mo> <msub> <mi>m</mi> <mn>4</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mn>12</mn> </msub> <mi>&nu;</mi> <mo>-</mo> <msub> <mi>m</mi> <mn>8</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,
<math> <mrow> <mi>M</mi> <mo>=</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>m</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mn>3</mn> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mn>4</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mn>5</mn> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mn>6</mn> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mn>7</mn> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mn>8</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mn>9</mn> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mn>10</mn> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mn>12</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <mi>A</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <mi>R</mi> </mtd> <mtd> <mi>T</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
two equations of the above formula can be listed by using two-dimensional coordinates output by a single PSD camera, the two PSD cameras simultaneously sense the same target light source, four equations can be listed, and coordinate values of the center of the target light source under a world coordinate system are solved by a least square method;
3) the measuring method of the motion trail of the mechanical arm comprises the following steps:
the target light source is arranged on a mechanical arm of a machining center ATC, a motion track of the mechanical arm is formed in space along with tool changing action, and a three-dimensional coordinate value calculation and discrete point curve fitting method of the target light source is adopted for motion track measurement. The sensing surface of the PSD camera is a two-dimensional plane, the two-dimensional coordinate value of the projection light spot and the three-dimensional coordinate value of the target light spot are represented by an internal parameter matrix and an external parameter matrix of the PSD camera, the three-dimensional coordinates of the target point can be reversely solved by the coordinate values output by the two-dimensional PSD cameras, and the motion trail of the mechanical arm in the machining process is fitted by a series of discrete target points.
4) The measuring device of the invention is a measuring device with two PSD cameras as cores and multiple degrees of freedom. The measuring device has the advantages that the vertical displacement, the horizontal displacement, the rotation angle and the pitching angle can be adjusted by four degrees of freedom, and the structure of the device is shown in figure 6:
the vertical plate of the base 23 is provided with bolt holes, and the Z-axis electric control platform 28 with power-off protection is fixed on the vertical plate through bolts. The motor 17 drives the bearing workbench 24 to move in the vertical direction through the ball screw 18, two slide rails 21 with adjustable height difference are mounted on the sliding bearing workbench 24 through a group of bolts 22, a horizontal dovetail guide rail at the top of each slide rail is matched with the small supporting plate 20, and the position of the PSD camera on the small supporting plate 20 in the horizontal direction is adjustable. A manual adjustment rotary platform 25 and an angular displacement platform 26 are sequentially assembled on the small supporting plate 20 in a serial connection mode, and a left PSD camera 27 and a right PSD camera 19 are installed on a workbench of the angular displacement platform.
5) The assembly structure of the core PSD camera of the measuring device is shown in fig. 7:
a measuring method of the movement track of an automatic tool changing mechanical arm adopts a device that the PSD camera overall structure is composed of four parts, namely a focusing part, a detector, a fine adjustment part and a connecting frame; the focusing part uses an industrial fixed-focus lens 29, the size and luminosity of a projection light spot on a PSD induction screen are changed by adjusting an aperture in the lens, the industrial lens 29 is connected with an L-shaped connecting plate 30 through a standard C port, a position sensitive detector 31 is connected with a signal processor through a 10-pin communication cable, the position sensitive detector 31 is installed on a workbench of a manual micro-feeding platform 35, the distance between the position sensitive detector 31 and the industrial lens 29 can be adjusted by adjusting the micro-feeding platform 35, the L-shaped connecting plate 30 and a positioning adapter plate 34 form a connecting frame part, the position sensitive detector 31 is positioned and clamped on the positioning adapter plate 34 through a positioning pin 32 and threads on the bottom surface of the position sensitive detector 31, and the positioning adapter plate 34 is fixed on the workbench of a one-dimensional manual translation platform 35 through an inner hexagon screw 33.
The invention has the beneficial effect of providing a quantization method and a quantization device for the ATC reliability detection of the machining center. Based on the characteristics of an ATC transmission mechanism and strong sealing, the invention provides an optical non-contact type online motion trajectory measurement method and device, which are used for tracking and recording the motion trajectory of an ATC mechanical arm in real time in the processing process, decomposing the processing action of the ATC mechanical arm, and detecting the positioning precision, the motion accuracy and the working stability of the motion, so that the ATC reliability detection forms a quantitative standard.
Drawings
Fig. 1 is a schematic diagram of a principle of track measurement of a dual PSD camera.
Fig. 2 is a diagram of a coordinate system definition of the measurement system.
FIG. 3 is a schematic diagram of the measurement of internal and external parameters of a single PSD camera. Wherein, 36-light source array, 37-plane calibration template, 38-control circuit.
Fig. 4 is a structural view of an automatic tool changing mechanism of the tool magazine. Wherein: 1-machine body, 2-mechanical arm, 3-shaft sleeve, 4-cam top shell, 5-cambered surface cam, 6-end surface slide block, 7-circumferential surface rotating block, 8-transmission shaft, 9-oscillating bar, 10-transmission rod, 11-main bevel gear, 12-secondary bevel gear and 13-rotating shaft.
Fig. 5 is a schematic diagram illustrating the measurement of the motion trajectory of the ATC robot. Wherein: 14-1 LED light source, 15-2 LED light source, 16-double PSD measuring device.
FIG. 6 shows the detailed structure of the dual PSD measurement device. Wherein: 17-motor, 18-lead screw, 19-right PSD camera, 20-small supporting plate, 21-slide rail, 22-hexagon head bolt, 23-base, 24-bearing platform, 25-rotating platform, 26-angular displacement platform, 27-left PSD camera and 28-Z axis displacement platform.
FIG. 7 is a diagram of a PSD camera configuration. Wherein: 29-industrial lens, 30-L-shaped connecting plate, 31-position sensitive detector, 32-positioning pin, 33-inner hexagon bolt and 35-one-dimensional manual translation table.
Fig. 8 is a three-dimensional measurement flowchart.
Detailed Description
The invention is used for the online measurement of the motion trail in the ATC working process, two LED light sources are installed on an ATC mechanical arm as a tracking target, two-dimensional position sensitive detectors are used for detecting the coordinates of a projection light spot, and then the three-dimensional coordinate value of a target point is calculated. The measuring device measures a target point on the arc cam type ATC mechanical arm to obtain the actual motion state of the automatic tool changing mechanism, and compares the actual motion state with the ideal motion state, so that the abnormal phenomena of tool falling, tool shaking, insufficient motion and the like are predicted and evaluated, and an ATC reliability detection means is formed.
The following detailed description of the embodiments of the present invention is provided with reference to the accompanying drawings and technical solutions:
(1) two-dimensional PSD camera integral structure
The two-dimensional PSD camera is used for projecting a measurement target light source to a PSD induction screen to form a light spot and outputting a light spot center coordinate. The structure of the two-dimensional PSD camera designed by the invention is as shown in fig. 7, a through threaded hole is processed on the wall of an L-shaped connecting plate 30, the size specification is determined according to the type of the required industrial lens interface, generally the type is C, F or CS, and a fixed-focus C-port industrial lens 29 with the focal length of 25mm is adopted in the design. The C10443-03 position sensitive detector 31 of hamamatsu is placed behind the L-shaped connecting plate 30 to ensure that the sensing screen is positioned near the back focus of the lens. The position sensitive detector is positioned on the adapter plate 34 by the positioning pin 32 and the bottom surface, and is clamped through the M4 screw hole at the bottom. The adapter plate is fixed on a workbench of a one-dimensional manual translation table 35 through hexagon socket head cap screws 33, a base of the translation table is fixed on the L-shaped connecting plate 30, and displacement of the sensitive detector in the direction of the optical axis of the lens can be adjusted by adjusting an adjusting rod of the translation table, so that bright and clear light spots projected on a PSD induction screen in a measurement area are ensured. The camera adjustment is performed before the measurement, and the structures of the camera are kept unchanged once the inside-outside parameter measurement or the three-dimensional measurement is started.
(2) Two-dimensional PSD camera internal and external parameter measurement
The working principle of the three-dimensional measuring method of the two-dimensional PSD camera is that small holes are imaged, light is transmitted along a straight line, light rays emitted by a target light source pass through a lens and then irradiate the PSD sensing screen, and sensing points on the sensing screen and the center of the light source form a straight line. The PSD sensing screen is a two-dimensional plane with the origin of the coordinate system at its geometric center. As shown in FIG. 2, a measurement target is setThe coordinate system is the world coordinate system W, and the lens coordinate system L and the image coordinate system I, PSD are shown in fig. 2. Let the space P point obtain the coordinate P (X) under the world coordinate system WW,YW,ZW) The corresponding projection point P 'has coordinates P' (u, v) in the PSD coordinate system S, and the transformation relationship between the two is:
<math> <mrow> <msub> <mi>Z</mi> <mi>L</mi> </msub> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <mi>&mu;</mi> </mtd> </mtr> <mtr> <mtd> <mi>&nu;</mi> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>f</mi> <mi>x</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&mu;</mi> <mn>0</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>f</mi> <mi>y</mi> </msub> </mtd> <mtd> <msub> <mi>&nu;</mi> <mn>0</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <mi>R</mi> </mtd> <mtd> <mi>T</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Y</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Z</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <mi>A</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <mi>R</mi> </mtd> <mtd> <mi>T</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Y</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Z</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
a Zhang's plane calibration method for measuring internal and external parameters features that the world coordinate system W is arranged at the center of light source at upper left corner of template, the horizontal direction is X-axis, the vertical direction is Y-axis, and the inward direction perpendicular to plane is Z-axisW=0:
<math> <mrow> <msub> <mi>Z</mi> <mi>L</mi> </msub> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <mi>&mu;</mi> </mtd> </mtr> <mtr> <mtd> <mi>&nu;</mi> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>f</mi> <mi>x</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&mu;</mi> <mn>0</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>f</mi> <mi>y</mi> </msub> </mtd> <mtd> <msub> <mi>&nu;</mi> <mn>0</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>R</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>2</mn> </msub> </mtd> <mtd> <mi>T</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Y</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mi>H</mi> <mo>&CenterDot;</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Y</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
In the above formula, R1、R2Respectively the first and second columns of the rotation matrix R. During calibration, the space target point is the light source central point on the plane template, and the PSD output value is removed from the projection point coordinate in the PSD coordinate system. The solving process of the internal and external parameters adopts a Zhang calibration method, and comprises the following specific steps:
firstly, the measurement of the parameters in the camera is as shown in fig. 3, a plane template 37 is manufactured, a scattering point light source array 36 is uniformly arranged on the plane template, the horizontal and vertical intervals of the scattering point light source array are equal, and the precision is high, such as 30 mm. The number of the point light sources is as large as possible, for example, more than 9 × 9, and the number in the horizontal direction and the number in the vertical direction are made equal as much as possible to ensure that the measurement accuracy in the two directions is equal. A PSD camera is placed at a distance from the template such that the camera field of view covers all light sources.
After the positions of the camera and the template are fixed, starting a light source array control circuit to sequentially light the light sources in a scanning mode from the upper left corner, and simultaneously recording output coordinate values of the PSD corresponding to each point light source, wherein the positions of the PSD camera and the template are ensured to be unchanged during the step;
and thirdly, after the last light source point on the template is measured, substituting the coordinates of the light source point on the world coordinate system and the coordinates of the corresponding projection point on the PSD induction screen into the following equation:
<math> <mrow> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> <mtd> <msub> <mi>Y</mi> <mi>W</mi> </msub> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mi>&mu;</mi> <mo>&CenterDot;</mo> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> <mtd> <mo>-</mo> <mi>&mu;</mi> <mo>&CenterDot;</mo> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> <mtd> <mo>-</mo> <mi>&mu;</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> <mtd> <msub> <mi>Y</mi> <mi>W</mi> </msub> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>-</mo> <mi>&nu;</mi> <mo>&CenterDot;</mo> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> <mtd> <mo>-</mo> <mi>&nu;</mi> <mo>&CenterDot;</mo> <msub> <mi>Y</mi> <mi>W</mi> </msub> </mtd> <mtd> <mo>-</mo> <mi>&nu;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>h</mi> <mn>11</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>12</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>13</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>21</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>22</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>21</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>31</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>32</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>33</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
each light source point corresponds to the two equations of the above formula, and a homography matrix H can be solved by a least square method for more than 5 measurement points.
Changing the orientation of the camera or the template, wherein the change range is as large as possible and comprehensive, repeating the step (c), changing the orientation for at least 4 times, and obtaining the following equation according to the property because the rotation matrix is a standard orthogonal matrix:
<math> <mrow> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msup> <msub> <mi>V</mi> <mn>12</mn> </msub> <mi>T</mi> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mn>11</mn> </msub> <mo>-</mo> <msub> <mi>V</mi> <mn>22</mn> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mi>b</mi> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein
<math> <mrow> <msub> <mi>V</mi> <mi>ij</mi> </msub> <mo>=</mo> <msup> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> </math> And B contains 6 elements which respectively correspond to six elements of the symmetric matrix B.
<math> <mrow> <mi>B</mi> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <msup> <mi>A</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <mfrac> <mn>1</mn> <msup> <msub> <mi>f</mi> <mi>x</mi> </msub> <mn>2</mn> </msup> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mfrac> <msub> <mi>&mu;</mi> <mn>0</mn> </msub> <msup> <msub> <mi>f</mi> <mi>x</mi> </msub> <mn>2</mn> </msup> </mfrac> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <mn>1</mn> <msup> <msub> <mi>f</mi> <mi>y</mi> </msub> <mn>2</mn> </msup> </mfrac> </mtd> <mtd> <mo>-</mo> <mfrac> <msub> <mi>&nu;</mi> <mn>0</mn> </msub> <msup> <msub> <mi>f</mi> <mi>y</mi> </msub> <mn>2</mn> </msup> </mfrac> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mfrac> <msub> <mi>&mu;</mi> <mn>0</mn> </msub> <msup> <msub> <mi>f</mi> <mi>x</mi> </msub> <mn>2</mn> </msup> </mfrac> </mtd> <mtd> <mo>-</mo> <mfrac> <msub> <mi>&nu;</mi> <mn>0</mn> </msub> <msup> <msub> <mi>f</mi> <mi>y</mi> </msub> <mn>2</mn> </msup> </mfrac> </mtd> <mtd> <mfrac> <msubsup> <mi>&mu;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <msup> <msub> <mi>f</mi> <mi>x</mi> </msub> <mn>2</mn> </msup> </mfrac> <mo>+</mo> <mfrac> <msubsup> <mi>&nu;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <msup> <msub> <mi>f</mi> <mi>y</mi> </msub> <mn>2</mn> </msup> </mfrac> <mo>+</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
Two equations can be obtained for each orientation of the camera, and b can be obtained by a least square method by changing more than 4 orientations, namely an intra-camera parameter matrix A is obtained.
Solving the first two columns of the rotation matrix and the translation matrix according to the following relation:
R1=A-1H1,R2=A-1H2,T=A-1H3(5)
then by adding R1And R2By orthogonal expansion of R3 To find out the external parameter matrix [ R T]。
(3) Target light source three-dimensional coordinate measuring method
The world coordinate system W and PSD coordinates S can be simplified as:
<math> <mrow> <mi>k</mi> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <mi>&mu;</mi> </mtd> </mtr> <mtr> <mtd> <mi>&nu;</mi> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>m</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mn>3</mn> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mn>4</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mn>5</mn> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mn>6</mn> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mn>7</mn> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mn>8</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mn>9</mn> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mn>10</mn> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mn>12</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Y</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Z</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mi>M</mi> <mo>&CenterDot;</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Y</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Z</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
in the above equation, M is called a transformation matrix, and k is a proportionality coefficient which is proportional to the distance between the camera and the calibration plate. K is eliminated for ease of solution:
<math> <mrow> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>m</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>m</mi> <mn>9</mn> </msub> <mi>&mu;</mi> </mtd> <mtd> <msub> <mi>m</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>m</mi> <mn>10</mn> </msub> <mi>&mu;</mi> </mtd> <mtd> <msub> <mi>m</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>m</mi> <mn>11</mn> </msub> <mi>&mu;</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mn>5</mn> </msub> <mo>-</mo> <msub> <mi>m</mi> <mn>9</mn> </msub> <mi>&nu;</mi> </mtd> <mtd> <msub> <mi>m</mi> <mn>6</mn> </msub> <mo>-</mo> <msub> <mi>m</mi> <mn>10</mn> </msub> <mi>&nu;</mi> </mtd> <mtd> <msub> <mi>m</mi> <mn>7</mn> </msub> <mo>-</mo> <msub> <mi>m</mi> <mn>11</mn> </msub> <mi>&nu;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>*</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Y</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Z</mi> <mi>W</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>m</mi> <mn>12</mn> </msub> <mi>&mu;</mi> <mo>-</mo> <msub> <mi>m</mi> <mn>4</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mn>12</mn> </msub> <mi>&nu;</mi> <mo>-</mo> <msub> <mi>m</mi> <mn>8</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
when a point in space can be listed with an equation as above in the projection process of a single PSD camera, the coordinate of the three-dimensional space point has three unknowns, and the equation has only two equations, so that the three-dimensional coordinate value of the space point can be solved by using two PSD cameras.
(4) double-PSD camera measuring device
The double PSD camera measuring device is characterized in that two PSD cameras are arranged on a platform with multiple degrees of freedom to form a set of three-dimensional measuring system which is suitable for multiple measuring environments and adjustable in measuring range. The multi-degree-of-freedom platform is used for adjusting the space pose of the PSD camera, so that the camera can move vertically and horizontally, the adjustment of a horizontal observation angle and a pitching angle can be realized through the two rotary platforms, the visual field of the camera is greatly widened, and the PSD camera is suitable for three-dimensional measurement under more complex working conditions.
The overall structure of the double PSD camera measuring device is shown in fig. 6, and this design can make the PSD camera realize 4-degree-of-freedom adjustment. The base 23 is used for supporting the adjusting platform and connecting with the measured equipment so as to fix the function of the measuring device. The Z-axis electric control motion platform 28 with power-off protection is fixed on a vertical plate at the bottom through bolts, and the vertical displacement of the camera fixed on the bearing table 24 is adjusted through the motor 17 and the lead screw 18. Because of the special nature of the measured conditions, it may be necessary that the positions of the two PSD cameras in the vertical direction are not exactly the same, and in view of this, two height-difference-adjustable slide rails 21 are mounted on the slide-carrying table 24, which consists of two parts, one for connection with the Z-axis platform 28 and the other for the dovetail-type guide rail in which the cameras move horizontally. The connecting part is provided with two through grooves, a hexagon head bolt 22 passes through the through grooves and is screwed into a screw hole on the bearing platform, so that the slide rail 21 is fastened on the bearing platform, the position of the slide rail 21 on the bearing platform surface is adjusted by changing the relative position of the through grooves and the bolt, and the height difference of the two PSD cameras is formed. The rail section is formed by a horizontal dovetail that cooperates with the small blade 20 to allow the individual PSD cameras to be adjusted in position horizontally. The change of the horizontal and pitch angles of the camera is achieved by manually adjusting the rotating platform 25 and the angular position platform 26. The common field of view of the left PSD camera 27 and the right PSD camera 19 is the effective measurement area of the dual PSD camera measurement device.
(5) Tracking measurement of tool changing manipulator motion track
The automatic tool changing system is an important component of a tool magazine of a machining center, as shown in fig. 4. The function is to automatically clamp the machining tool to the main shaft and unload the tool which is not used on the main shaft and put the tool back to the tool magazine. The machine body 1 is an ATC supporting frame, the main motion of the mechanical arm 2 is formed by sliding along a rotating shaft 13 and rotating around the rotating shaft, the two partial motions are controlled by a cambered surface cam 5, an end face slide block 6 on a swing rod 9 slides along a forming groove on the end face of the cam, and therefore the mechanical arm is driven to slide through a transmission rod 10. The shaft sleeve 3 connected with the mechanical arm is matched with a rotating shaft 13 through a spline, a peripheral rotating block 11 rotates along with a forming groove on the peripheral surface of the cam and is transmitted to a main bevel gear 11 through a transmission shaft 8, and the rotating shaft 13 and the mechanical arm 2 are driven to rotate through a secondary bevel gear 12 after speed change. In order to accurately measure the motion track of the robot arm, as shown in fig. 5, a dual PSD measuring device 16 is placed on the cam top case 4, and two high power scattering point light sources 14 and 15 are symmetrically arranged at both ends of the robot arm as measuring light sources. At each moment of the measurement process, one measurement light source moves below the mechanical arm and is turned on, the corresponding other light source is turned off, the double-PSD camera measurement device measures the three-dimensional coordinates of the turned-on light source in real time, and the motion track of the measurement target point is fitted through software.
1) The specific operation steps for adjusting the installation direction of the double PSD camera measuring device are as follows:
put the measuring device in the appropriate measuring position and fix it, as shown in fig. 5. The installation plane of the measuring device is selected to be a smooth and flat large surface of equipment as far as possible so as to be convenient for fixing, and the invention is selected on the upper surface of the cam shell 4 of the MDH-80 horizontal machining center produced by large-continuous-height numerical control group. And adjusting the position of the measuring device to ensure that all the adjusted measuring targets are beyond the minimum imaging distance of the lens, and simultaneously ensuring that the moving range of the measuring targets is within the depth of field of the lens. And adjusting the installation angle of the measuring device to enable the whole track of the measuring target to be within the adjusting range of the measuring device. After the adjustment is finished, the magnetic base is used for fixing the device base 13;
adjusting the positions of the two cameras in the vertical direction. Firstly, adjusting a Z-axis motion platform 28, adopting PSA150-11-Z of Zhuoli Han light, moving the optical axes of a left PSD camera and a right PSD camera to the vicinity of the center of the overall motion track of a measurement target, then loosening a bolt for fixing a slide rail, and adjusting the height difference of the two cameras to ensure that the view field of the cameras in the vertical direction contains the motion track of the lower half cycle of the whole mechanical arm;
adjusting the small supporting plate 20 and the rotating platform 25 according to the movement range of the measured object and the distance between the measured object and the measuring device to change the horizontal direction of the two PSD cameras, so that the measuring range of each camera is as large as possible, and locking the small supporting plate and the rotating platform after adjustment, wherein the rotating platform adopted by the invention is SX120-73 of a combined English aligner;
adjusting the pitch angle of the camera. The pitch angle of the cameras is changed by adjusting the rotary rods of the angular position platform 26, so that the public vision fields of the two PSD cameras can simultaneously contain No. 1 and No. 2 LED light sources when the mechanical arm is in the horizontal position, and the angular position platform 26 used by the invention is SJ110-15 of a combined English machine.
And fifthly, slightly adjusting the space pose of the camera in a small range to ensure that the motion range of the measured target is more than 95% of the effective measurement visual field.
2) The specific operation steps of the motion track measurement are as follows:
firstly, when the position of the mechanical arm is in the position shown in fig. 5, the measurement is started, the No. 1 LED light source is turned on, the No. 2 LED light source is turned off, and the No. 1 LED light source is positioned below the rotating shaft in the next half cycle period and is positioned in the measurement range of the measurement device. Meanwhile, collecting coordinate values output by the PSD at a certain frequency;
after the half working period is finished, the No. 1 LED light source is positioned at the No. 2 LED light source shown in the figure 5, the No. 1 light source is closed at the moment, the No. 2 light source is lightened, and the first step is repeated;
substituting the coordinate pairs of the outputs of the left and right PSD cameras into the following equation:
<math> <mrow> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>m</mi> <mrow> <mn>1</mn> <mi>l</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mn>9</mn> <mi>l</mi> </mrow> </msub> <msub> <mi>&mu;</mi> <mi>l</mi> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mrow> <mn>2</mn> <mi>l</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mn>10</mn> <mi>l</mi> </mrow> </msub> <msub> <mi>&mu;</mi> <mi>l</mi> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mrow> <mn>3</mn> <mi>l</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mn>11</mn> <mi>l</mi> </mrow> </msub> <msub> <mi>&mu;</mi> <mi>l</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mrow> <mn>5</mn> <mi>l</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mn>9</mn> <mi>l</mi> </mrow> </msub> <msub> <mi>&nu;</mi> <mi>l</mi> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mrow> <mn>6</mn> <mi>l</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mn>10</mn> <mi>l</mi> </mrow> </msub> <msub> <mi>&nu;</mi> <mi>l</mi> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mrow> <mn>7</mn> <mi>l</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mn>11</mn> <mi>l</mi> </mrow> </msub> <msub> <mi>&nu;</mi> <mi>l</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mrow> <mn>1</mn> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mn>9</mn> <mi>r</mi> </mrow> </msub> <msub> <mi>&mu;</mi> <mi>r</mi> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mrow> <mn>2</mn> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mn>10</mn> <mi>r</mi> </mrow> </msub> <msub> <mi>&mu;</mi> <mi>r</mi> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mrow> <mn>3</mn> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mn>11</mn> <mi>r</mi> </mrow> </msub> <msub> <mi>&mu;</mi> <mi>r</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mrow> <mn>5</mn> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mn>9</mn> <mi>r</mi> </mrow> </msub> <msub> <mi>&nu;</mi> <mi>r</mi> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mrow> <mn>6</mn> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mn>10</mn> <mi>r</mi> </mrow> </msub> <msub> <mi>&nu;</mi> <mi>r</mi> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mrow> <mn>7</mn> <mi>r</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mn>11</mn> <mi>r</mi> </mrow> </msub> <msub> <mi>&nu;</mi> <mi>r</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Y</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Z</mi> <mi>W</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>m</mi> <mrow> <mn>12</mn> <mi>l</mi> </mrow> </msub> <msub> <mi>&mu;</mi> <mi>l</mi> </msub> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mn>4</mn> <mi>l</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mrow> <mn>12</mn> <mi>l</mi> </mrow> </msub> <msub> <mi>&nu;</mi> <mi>l</mi> </msub> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mn>8</mn> <mi>l</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mrow> <mn>12</mn> <mi>r</mi> </mrow> </msub> <msub> <mi>&mu;</mi> <mi>r</mi> </msub> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mn>4</mn> <mi>r</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mrow> <mn>12</mn> <mi>r</mi> </mrow> </msub> <msub> <mi>&nu;</mi> <mi>r</mi> </msub> <mo>-</mo> <msub> <mi>m</mi> <mrow> <mn>8</mn> <mi>r</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
each pair of coordinates uses a least square method to solve an equation to obtain a three-dimensional coordinate value of a target point, so that the motion trail of the ATC can be converted into a series of discrete points.
Fitting the discrete space points into a motion curve by using a spline curve function;
and fifthly, decomposing the machining action according to the measured motion curve, and evaluating the reliability of the tool magazine ATC by comparing with the design curve.
The algorithm of the invention is realized by software programming, and the programming idea is as shown in the program flow chart of fig. 8, firstly calibrating the camera internal parameters, then adjusting the camera position and fixing the calibration template. And calibrating external parameters of the left camera and the right camera, selecting a unified coordinate point, and calculating the coordinates of the space points on the basis of the unified coordinate origin. And finally, fitting a track curve.
The invention discloses a method and a device for measuring the motion trail of an ATC (automatic train control) mechanical arm, which can track and record the motion state of the mechanical arm on line in real time. The method is optical non-contact measurement, and the ATC mechanism is generally complex in structure, strong in structural closure and inconvenient to adopt contact measurement. The action of ATC can not be interfered by adopting an optical non-contact measurement mode, the light spot is extracted in real time, the measurement target is an LED light source, and the device is simple and convenient to install and wide in application range. The traditional non-contact vision measurement is to determine the space attitude based on the extraction of the workpiece morphology characteristics, the extraction speed and the precision of the method are two contradictory opposites, the extraction speed is reduced for improving the precision, and the method can only be applied to off-line measurement; the motion states of positioning accuracy, motion stability and the like in the tool changing process can be judged through the motion trail of the mechanical arm, and a quantification method is provided for the reliability detection of the tool magazine.

Claims (2)

1. A method for measuring the motion track of an automatic tool changing mechanical arm is characterized by comprising the following steps: the method is a non-contact three-dimensional online measurement method based on two-dimensional PSD, a light source serving as a measured target is arranged on an ATC mechanical arm to be measured, the light source is projected on a two-dimensional sensing screen of a PSD camera consisting of two position sensitive detectors through a lens to form a light spot, the two PSD cameras respectively output two-dimensional coordinate values under the excitation of the light spot, a voltage value corresponding to the coordinate position is output after passing through a signal processor, a computer collects and stores corresponding signals through a voltage collection card, three-dimensional coordinate values of the measured light source are back calculated by the two sets of collected two-dimensional coordinate values, and finally, a series of discrete points are calculated according to high-frequency collected data to form a motion track of the mechanical arm; the method comprises the following specific steps:
1) measurement of internal and external parameters of PSD camera
Setting the coordinate system of the target light source to be measured as the world coordinate system W, the coordinate system of the projected light spot as the PSD coordinate system S, and setting a certain point P (X) under the world coordinate system WW,YW,ZW) The coordinate of the corresponding projection point P 'in the PSD coordinate system S is P' (u, v), and the transformation relationship between the two is:
<math> <mrow> <msub> <mi>Z</mi> <mi>L</mi> </msub> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <mi>&mu;</mi> </mtd> </mtr> <mtr> <mtd> <mi>&nu;</mi> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>f</mi> <mi>x</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&mu;</mi> <mn>0</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>f</mi> <mi>y</mi> </msub> </mtd> <mtd> <msub> <mi>&nu;</mi> <mn>0</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <mi>R</mi> </mtd> <mtd> <mi>T</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mtable> </mtable> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Y</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Z</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <mi>A</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <mi>R</mi> </mtd> <mtd> <mi>T</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Y</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Z</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
where A is an internal parameter matrix containing the focal length f and the offset (u)0,v0) R, T are the rotation matrix and translation matrix from the world coordinate system to the lens coordinate system, [ R T ] respectively]An external parameter matrix of the PSD camera;
using a flat template 37 to measure the internal and external parameters of a PSD camera, set Zw=0;
<math> <mrow> <msub> <mi>Z</mi> <mi>L</mi> </msub> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <mi>&mu;</mi> </mtd> </mtr> <mtr> <mtd> <mi>&nu;</mi> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>f</mi> <mi>x</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&mu;</mi> <mn>0</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>f</mi> <mi>y</mi> </msub> </mtd> <mtd> <msub> <mi>&nu;</mi> <mn>0</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>R</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>2</mn> </msub> </mtd> <mtd> <mi>T</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Y</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mi>H</mi> <mo>&CenterDot;</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Y</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
Solving internal and external parameters according to a Zhang calibration method, starting a control circuit (38) after fixing a PSD camera and a template, sequentially lighting light sources in a scanning mode from the upper left corner of a light source array (36), simultaneously acquiring corresponding PSD output coordinate values, and substituting the acquired data and the corresponding coordinate values of the light sources in a world coordinate system into the following equation until the last light source measurement is completed:
<math> <mrow> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> <mtd> <msub> <mi>Y</mi> <mi>W</mi> </msub> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mi>&mu;</mi> <mo>&CenterDot;</mo> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> <mtd> <mo>-</mo> <mi>&mu;</mi> <mo>&CenterDot;</mo> <msub> <mi>Y</mi> <mi>W</mi> </msub> </mtd> <mtd> <mo>-</mo> <mi>&mu;</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> <mtd> <msub> <mi>Y</mi> <mi>W</mi> </msub> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>-</mo> <mi>&nu;</mi> <mo>&CenterDot;</mo> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> <mtd> <mo>-</mo> <mi>&nu;</mi> <mo>&CenterDot;</mo> <msub> <mi>Y</mi> <mi>W</mi> </msub> </mtd> <mtd> <mo>-</mo> <mi>&nu;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mtable> </mtable> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>h</mi> <mn>11</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>12</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>13</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>21</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>22</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>21</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>31</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>32</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mn>33</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
when the number of light sources in the plane template (37) is enough, a homography matrix H is solved by a least square method, different homography matrixes can be solved by changing the direction of the camera or the template, and a plurality of groups of H are substituted into the following equation:
<math> <mrow> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msup> <msub> <mi>V</mi> <mn>12</mn> </msub> <mi>T</mi> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mn>11</mn> </msub> <mo>-</mo> <msub> <mi>V</mi> <mn>22</mn> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mi>b</mi> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein <math> <mrow> <msub> <mi>V</mi> <mi>ij</mi> </msub> <mo>=</mo> <msup> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>h</mi> <mrow> <mi>j</mi> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> </math> B is a vector formed by six independent elements of the symmetric matrix B;
<math> <mrow> <mi>B</mi> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <msup> <mi>A</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <mfrac> <mn>1</mn> <msup> <msub> <mi>f</mi> <mi>x</mi> </msub> <mn>2</mn> </msup> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mfrac> <msub> <mi>&mu;</mi> <mn>0</mn> </msub> <msup> <msub> <mi>f</mi> <mi>x</mi> </msub> <mn>2</mn> </msup> </mfrac> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <mn>1</mn> <msup> <msub> <mi>f</mi> <mi>y</mi> </msub> <mn>2</mn> </msup> </mfrac> </mtd> <mtd> <mo>-</mo> <mfrac> <msub> <mi>&nu;</mi> <mn>0</mn> </msub> <msup> <msub> <mi>f</mi> <mi>y</mi> </msub> <mn>2</mn> </msup> </mfrac> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mfrac> <msub> <mi>&mu;</mi> <mn>0</mn> </msub> <msup> <msub> <mi>f</mi> <mi>x</mi> </msub> <mn>2</mn> </msup> </mfrac> </mtd> <mtd> <mo>-</mo> <mfrac> <msub> <mi>&nu;</mi> <mn>0</mn> </msub> <msup> <msub> <mi>f</mi> <mi>y</mi> </msub> <mn>2</mn> </msup> </mfrac> </mtd> <mtd> <mfrac> <msubsup> <mi>&mu;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <msup> <msub> <mi>f</mi> <mi>x</mi> </msub> <mn>2</mn> </msup> </mfrac> <mo>+</mo> <mfrac> <msubsup> <mi>&nu;</mi> <mn>0</mn> <mn>2</mn> </msubsup> <msup> <msub> <mi>f</mi> <mi>y</mi> </msub> <mn>2</mn> </msup> </mfrac> <mo>+</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
when the number of changed directions is enough, solving b by a least square method, inversely calculating a parameter matrix A in the camera, and substituting A into the following formula:
R1=A-1H1,R2=A-1H2,T=A-1H3(5)
then by adding R1And R2By orthogonal expansion of R3To find out the external parameter matrix [ R T];
2) Calculation of three-dimensional coordinates of target light points
The light beam emitted by the scattering target light source is converged by the lens and then projected on the PSD camera induction screen, and the target light source center coordinate (X) is under the world coordinate systemW,YW,ZW) The relation with the projection light spot center coordinates (mu, v) under the PSD coordinate system is as follows:
<math> <mrow> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>m</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>m</mi> <mn>9</mn> </msub> <mi>&mu;</mi> </mtd> <mtd> <msub> <mi>m</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>m</mi> <mn>10</mn> </msub> <mi>&mu;</mi> </mtd> <mtd> <msub> <mi>m</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>m</mi> <mn>11</mn> </msub> <mi>&mu;</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mn>5</mn> </msub> <mo>-</mo> <msub> <mi>m</mi> <mn>9</mn> </msub> <mi>&nu;</mi> </mtd> <mtd> <msub> <mi>m</mi> <mn>6</mn> </msub> <mo>-</mo> <msub> <mi>m</mi> <mn>10</mn> </msub> <mi>&nu;</mi> </mtd> <mtd> <msub> <mi>m</mi> <mn>7</mn> </msub> <mo>-</mo> <msub> <mi>m</mi> <mn>11</mn> </msub> <mi>&nu;</mi> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Y</mi> <mi>W</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Z</mi> <mi>W</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>m</mi> <mn>12</mn> </msub> <mi>&mu;</mi> <mo>-</mo> <msub> <mi>m</mi> <mn>4</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mn>12</mn> </msub> <mi>&nu;</mi> <mo>-</mo> <msub> <mi>m</mi> <mn>8</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,
<math> <mrow> <mi>M</mi> <mo>=</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <msub> <mi>m</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mn>3</mn> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mn>4</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mn>5</mn> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mn>6</mn> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mn>7</mn> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mn>8</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mn>9</mn> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mn>10</mn> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mi>m</mi> <mn>12</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <mi>A</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&CenterDot;</mo> <mfenced open="[" close="]"> <mtable> <mtr> <mtd> <mi>R</mi> </mtd> <mtd> <mi>T</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
two equations of the above formula can be listed by using two-dimensional coordinates output by a single PSD camera, the two PSD cameras simultaneously sense the same target light source, four equations can be listed, and coordinate values of the center of the target light source under a world coordinate system are solved by a least square method;
3) measuring movement track of mechanical arm
Mounting a target light source on a mechanical arm of a machining center ATC, forming a motion track of the mechanical arm in space along with tool changing action, and measuring the motion track by adopting a three-dimensional coordinate value calculation and discrete point curve fitting method of the target light source; the sensing surface of the PSD camera is a two-dimensional plane, the two-dimensional coordinate value of the projection light spot and the three-dimensional coordinate value of the target light spot are represented by an internal parameter matrix and an external parameter matrix of the PSD camera, the three-dimensional coordinates of the target point can be reversely solved by the coordinate values output by the two-dimensional PSD cameras, and the motion trail of the mechanical arm in the machining process is fitted by a series of discrete target points.
2. The method for measuring the motion trail of the automatic tool changing mechanical arm according to claim 1, wherein the method comprises the following steps: the measuring device adopted by the method is a measuring device with two PSD cameras as cores and multiple degrees of freedom; the measuring device is provided with displacement adjusting mechanisms in the vertical direction and the horizontal direction and also provided with a rotating angle and pitching adjusting mechanism, and the device has the following specific structure:
a bolt hole is processed on a vertical plate of a base (23), a Z-axis electric control platform (28) with power-off protection is fixed on the vertical plate through a bolt, a motor (17) drives a bearing workbench (24) to move in the vertical direction through a ball screw (18) through a displacement adjusting mechanism in the vertical direction, two slide rails (21) with adjustable height difference are installed on the sliding bearing workbench (24) through a group of bolts (22), a horizontal dovetail guide rail at the top of each slide rail is matched with a small supporting plate (20), and the position of a PSD camera on the small supporting plate (20) in the horizontal direction is adjusted through the displacement adjusting mechanism in the horizontal direction; a rotating platform (25) for adjusting the rotating angle and a displacement platform (26) for adjusting the pitch angle are sequentially assembled on the small supporting plate (20), and a left PSD camera (27) and a right PSD camera (19) are respectively installed on a workbench of the angular displacement platform (26);
the PSD camera overall structure consists of a focusing part, a position sensitive detector, a fine adjustment part and a connecting frame; the focusing part uses an industrial fixed-focus lens (29), the size and luminosity of a projection light spot on a PSD induction screen are changed by adjusting an aperture in the lens, the industrial lens (29) is connected with an L-shaped connecting plate (30) through a standard C port, a position sensitive detector (31) is connected with a signal processor by adopting a 10-pin communication cable, the position sensitive detector (31) is arranged on a workbench of a manual micro-feeding platform (35), the distance between the position sensitive detector (31) and the industrial lens (29) can be adjusted by adjusting the micro-feeding platform (35), the L-shaped connecting plate (30) and the positioning adapter plate (34) form a connecting frame part, the position sensitive detector (31) is positioned and clamped on the positioning adapter plate (34) through the positioning pin (32) and the threads on the bottom surface of the position sensitive detector (31), and the positioning adapter plate (34) is fixed on a workbench of the one-dimensional manual translation table (35) through the inner hexagon screw (33).
CN201210192891.6A 2012-06-12 2012-06-12 Method and device for measuring movement locus of automatic tool changing mechanical arm Expired - Fee Related CN102699733B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210192891.6A CN102699733B (en) 2012-06-12 2012-06-12 Method and device for measuring movement locus of automatic tool changing mechanical arm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210192891.6A CN102699733B (en) 2012-06-12 2012-06-12 Method and device for measuring movement locus of automatic tool changing mechanical arm

Publications (2)

Publication Number Publication Date
CN102699733A true CN102699733A (en) 2012-10-03
CN102699733B CN102699733B (en) 2014-06-25

Family

ID=46892942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210192891.6A Expired - Fee Related CN102699733B (en) 2012-06-12 2012-06-12 Method and device for measuring movement locus of automatic tool changing mechanical arm

Country Status (1)

Country Link
CN (1) CN102699733B (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103778347A (en) * 2014-02-27 2014-05-07 西南大学 Silkworm spinning behavior analysis and simulation method
CN103852012A (en) * 2014-03-31 2014-06-11 河海大学常州校区 Adaptive binocular vision turbine blade detection device
CN104128846A (en) * 2014-07-21 2014-11-05 华中科技大学 High-accuracy cutter deviation online measuring device and method
CN104972362A (en) * 2014-04-14 2015-10-14 沈阳远大科技园有限公司 Intelligent force control robot grinding system and method
CN106595647A (en) * 2016-12-14 2017-04-26 北京理工大学珠海学院 Behavioral state monitoring method, apparatus and system
CN107481284A (en) * 2017-08-25 2017-12-15 京东方科技集团股份有限公司 Method, apparatus, terminal and the system of target tracking path accuracy measurement
CN107909604A (en) * 2017-11-07 2018-04-13 武汉科技大学 Dynamic object movement locus recognition methods based on binocular vision
CN109035307A (en) * 2018-07-16 2018-12-18 湖北大学 Setting regions target tracking method and system based on natural light binocular vision
CN109129021A (en) * 2018-08-29 2019-01-04 杭州职业技术学院 Device and method for Parts on Machining-Center measurement of coordinates
CN109186969A (en) * 2018-07-28 2019-01-11 西安交通大学 A kind of servo feed movement dynamic property visible detection method
CN109202460A (en) * 2018-03-21 2019-01-15 中国航空制造技术研究院 A kind of high-precision borehole feeding device for nail
CN109658465A (en) * 2018-12-07 2019-04-19 广州华端科技有限公司 Data processing, image rebuilding method and device in image reconstruction process
CN110375709A (en) * 2019-05-31 2019-10-25 中国人民解放军陆军工程大学 Infrared binocular stereoscopic vision observation system with ultra-large visual field
CN111953912A (en) * 2020-07-27 2020-11-17 天津大学 Method and device for detecting spatial position of high-speed moving light spot
CN112066859A (en) * 2020-09-11 2020-12-11 广东博智林机器人有限公司 Light spot position detection method and light spot position detection system
CN112959119A (en) * 2021-03-03 2021-06-15 冈田精机丹阳有限公司 Servo tool magazine based on machine vision tool arm positioning and tool changing control method thereof
CN113048884A (en) * 2021-03-17 2021-06-29 西安工业大学 Extended target tracking experiment platform and experiment method thereof
CN114102256A (en) * 2021-11-04 2022-03-01 清华大学 Machine tool rotating shaft geometric error identification method and device and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1223372A (en) * 1997-12-31 1999-07-21 三星电子株式会社 Concentricity processing apparatus using vision system and method therefor
DE10208990A1 (en) * 2002-02-28 2003-09-18 Heller Geb Gmbh Maschf Method for measuring and monitoring machining steps during computer controlled machining of a workpiece, especially a crank- or camshaft, involves using image processing system and comparing workpiece measurements to set values
CN1861317A (en) * 2005-05-13 2006-11-15 西门子公司 Device and method for workpiece calibration
CN101367177A (en) * 2007-04-10 2009-02-18 创科实业有限公司 Video aid system
CN101579753A (en) * 2008-05-12 2009-11-18 精工精密有限公司 Display device and method for expansion state of a substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1223372A (en) * 1997-12-31 1999-07-21 三星电子株式会社 Concentricity processing apparatus using vision system and method therefor
DE10208990A1 (en) * 2002-02-28 2003-09-18 Heller Geb Gmbh Maschf Method for measuring and monitoring machining steps during computer controlled machining of a workpiece, especially a crank- or camshaft, involves using image processing system and comparing workpiece measurements to set values
CN1861317A (en) * 2005-05-13 2006-11-15 西门子公司 Device and method for workpiece calibration
CN101367177A (en) * 2007-04-10 2009-02-18 创科实业有限公司 Video aid system
CN101579753A (en) * 2008-05-12 2009-11-18 精工精密有限公司 Display device and method for expansion state of a substrate

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103778347B (en) * 2014-02-27 2016-10-19 西南大学 The parsing of a kind of family silkworms spin silk behavior and emulation mode
CN103778347A (en) * 2014-02-27 2014-05-07 西南大学 Silkworm spinning behavior analysis and simulation method
CN103852012A (en) * 2014-03-31 2014-06-11 河海大学常州校区 Adaptive binocular vision turbine blade detection device
CN104972362A (en) * 2014-04-14 2015-10-14 沈阳远大科技园有限公司 Intelligent force control robot grinding system and method
CN104128846A (en) * 2014-07-21 2014-11-05 华中科技大学 High-accuracy cutter deviation online measuring device and method
CN106595647B (en) * 2016-12-14 2020-05-05 北京理工大学珠海学院 Behavior state monitoring method, device and system
CN106595647A (en) * 2016-12-14 2017-04-26 北京理工大学珠海学院 Behavioral state monitoring method, apparatus and system
CN107481284A (en) * 2017-08-25 2017-12-15 京东方科技集团股份有限公司 Method, apparatus, terminal and the system of target tracking path accuracy measurement
US10832445B2 (en) 2017-08-25 2020-11-10 Boe Technology Group Co., Ltd. Method, apparatus, terminal and system for measuring trajectory tracking accuracy of target
CN107909604A (en) * 2017-11-07 2018-04-13 武汉科技大学 Dynamic object movement locus recognition methods based on binocular vision
CN109202460B (en) * 2018-03-21 2021-06-08 中国航空制造技术研究院 High-precision drilling and nail feeding device
CN109202460A (en) * 2018-03-21 2019-01-15 中国航空制造技术研究院 A kind of high-precision borehole feeding device for nail
CN109035307A (en) * 2018-07-16 2018-12-18 湖北大学 Setting regions target tracking method and system based on natural light binocular vision
CN109186969A (en) * 2018-07-28 2019-01-11 西安交通大学 A kind of servo feed movement dynamic property visible detection method
CN109129021A (en) * 2018-08-29 2019-01-04 杭州职业技术学院 Device and method for Parts on Machining-Center measurement of coordinates
CN109658465A (en) * 2018-12-07 2019-04-19 广州华端科技有限公司 Data processing, image rebuilding method and device in image reconstruction process
CN110375709A (en) * 2019-05-31 2019-10-25 中国人民解放军陆军工程大学 Infrared binocular stereoscopic vision observation system with ultra-large visual field
CN111953912A (en) * 2020-07-27 2020-11-17 天津大学 Method and device for detecting spatial position of high-speed moving light spot
CN112066859A (en) * 2020-09-11 2020-12-11 广东博智林机器人有限公司 Light spot position detection method and light spot position detection system
CN112959119A (en) * 2021-03-03 2021-06-15 冈田精机丹阳有限公司 Servo tool magazine based on machine vision tool arm positioning and tool changing control method thereof
CN113048884A (en) * 2021-03-17 2021-06-29 西安工业大学 Extended target tracking experiment platform and experiment method thereof
CN113048884B (en) * 2021-03-17 2022-12-27 西安工业大学 Extended target tracking experiment platform and experiment method thereof
CN114102256A (en) * 2021-11-04 2022-03-01 清华大学 Machine tool rotating shaft geometric error identification method and device and storage medium
CN114102256B (en) * 2021-11-04 2022-09-06 清华大学 Machine tool rotating shaft geometric error identification method and device and storage medium

Also Published As

Publication number Publication date
CN102699733B (en) 2014-06-25

Similar Documents

Publication Publication Date Title
CN102699733A (en) Method and device for measuring movement locus of automatic tool changing mechanical arm
CN107186548B (en) A kind of five-axle number control machine tool rotating shaft geometric error detection method
CN106863014B (en) A kind of five-axle number control machine tool linear axis geometric error detection method
US20200061769A1 (en) Monocular vision six-dimensional measurement method for high-dynamic large-range arbitrary contouring error of cnc machine tool
CN106441117B (en) Turntable error detection method based on multi-station etalon laser tracking system
CN109015110B (en) Machine tool rotary shaft position error modeling and identifying method
CN109596073A (en) A kind of origin position scaling method of the revolving platform central axis of view-based access control model measurement
CN111982019B (en) High-precision blade section contour detection method based on line-structured light sensor
CN105571488B (en) A kind of image detection device and detection method of hole group position degree
CN104567679A (en) Turbine blade visual inspection system
CN101458072A (en) Three-dimensional contour outline measuring set based on multi sensors and measuring method thereof
CN102607457A (en) Measuring device and measuring method for large three-dimensional morphology based on inertial navigation technology
US20090196527A1 (en) Calibration method of image planar coordinate system for high-precision image measurement system
CN109227551B (en) Hand-eye coordinate conversion method for visual positioning robot
CN109341601A (en) A kind of Space locality establishment method of revolving platform central axis in vision measurement device
CN103615980A (en) Method and system for measuring parameters of round holes in plate
CN111338290A (en) Multi-vision-based five-axis numerical control machine tool multifunctional detection method
CN107101597A (en) A kind of error calibrating method for rotating angle measuring system
CN109447971A (en) A kind of cycloid gear molded line error is accurately extracted and crucial accuracy of form and position rapid analysis method
TWM516714U (en) Angular error correction device for machine tools
CN211827005U (en) Multi-functional detection device of five-axis numerical control machine tool based on multi-eye vision
CN102538707B (en) Three dimensional localization device and method for workpiece
CN104634244A (en) Movable platform pose detection device of three-degree-of-freedom parallel mechanism and detection method of movement platform pose detection device
Gordić et al. Calibration of robot tool centre point using camera-based system
CN117232432A (en) Blade three-dimensional contour detection system and detection method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140625

CF01 Termination of patent right due to non-payment of annual fee