CN102694432A - 一种转子轴内设置内冷却装置的电动机 - Google Patents
一种转子轴内设置内冷却装置的电动机 Download PDFInfo
- Publication number
- CN102694432A CN102694432A CN201210179689XA CN201210179689A CN102694432A CN 102694432 A CN102694432 A CN 102694432A CN 201210179689X A CN201210179689X A CN 201210179689XA CN 201210179689 A CN201210179689 A CN 201210179689A CN 102694432 A CN102694432 A CN 102694432A
- Authority
- CN
- China
- Prior art keywords
- motor
- rotor shaft
- internal cooling
- cooling device
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Motor Or Generator Cooling System (AREA)
Abstract
一种转子轴内设置内冷却装置的电动机,它是在综合“涡电流”、“漏磁通”和“趋肤效应”等技术基础上,通过在转子轴轴内设置流通管道以及自扇叶片的内冷却技术,提高了电动机的冷却和效率。
Description
技术领域
本发明涉及一种转子轴内设置内冷却装置的电动机,通过在转子轴轴内设置流通管道以及自扇叶片解决电动机的内冷却方式。
背景技术
公知,自从1820年,奥斯特发明了,随后安培总结了电流在磁场中的机械力之后,电动机的雏形就出现在实验室里。同样,自1831年法拉第提出了电磁感应定律后,各种各样的发电机雏形也先后出现。真到1885年,费拉里斯提出了二相交流异步机的模型,在以后的年代中得到了一定的应用。到1888年,多利沃-多勃罗沃尔斯基提出了三相制和三相异步机,这才奠定了交流电动机在工业上应用的基础。自1891年三相制开始使用起,工业上的动力很快地为电动机所代替。
其中,电动机由于内部产生了损耗,引起了内部发热,影响了绝缘的寿命和耐电的性能,必须加以冷却。电动机愈大,其冷却的困难亦愈大。为了减少材料和体积,减轻电动机的重量和成本,冷却的困难也随之增加。
目前,电动机的冷却方式,主要是自然冷却式、自扇冷却式和管道通风式,主要是从电动机外侧上解决其发热和温升。
综上,电动机技术中,一圈圈绕圆柱体轴线流动的涡流,涡流(涡电流)也称为“傅科电流”能使导体发热,涡流的热效应对电动机的运行极为不利。首先,它会导致铁心释放大量的焦耳热使温度升高,从而危及线圈绝缘材料的寿命,严重时可使绝缘材料当即烧毁。其次,涡流发热要损耗额外的能量(叫做“涡流损耗”),使电动机的效率降低。
另外,电动机的磁场是使电动机能感生电势和产生电磁力矩所不可缺少的因素,磁力线在空气中的分布,一大部分经过气隙进入电枢,有一小部分不经过电枢,而直接通到相邻的磁极或磁轭里,形成闭合廻路。进入电枢中的那部分磁通称为“主磁通”,它能够在旋转的电枢绕组中感应出电势,并和绕组电流相互作用产生力矩,因此是主要的部分。不进入电枢的那部分磁通称为“漏磁通”,它不在电枢中感生电势也不产生力矩,但它也是存在的,它的作用是增加了磁极和磁轭中的饱和程度,由于主磁通廻路的气隙较小,磁导较大,在数量上主磁通比漏磁通大得多,一般漏磁通的大小约为主磁通的20%左右,总之,漏磁通没有用而又是不可避免的。
还有,趋肤效应亦称为“集肤效应”,交变电流通过导体时,由于感应作用引起导体截面上电流分布不均匀,愈近导体表面电流密度越大。这种现象称“趋肤效应”。趋肤效应使导体的有效电阻增加。频率越高,趋肤效应也越显著。当频率很高的电流通过导线时,可以认为电流只在导线表现上很薄的一层中流过,这等效于导线的截面减小,电阻增大。既然导线的中心部分几乎没有电流通过,就可以把这中心部分除去以节约材料。因此,在高频电路中可以采用空心导线代替实心导线。
发明内容
为了克服现行电动机的外侧冷却技术之不足,本发明在综合“涡电流”、“漏磁通”和“趋肤效应”等技术的基础上,提出一种在电动机转子轴轴内设置流动管道以及自扇叶片的内冷却技术,提高了电动机的冷却和效率。
本发明解决其技术问题所采用的技术方案如下:
在电动机的转子轴里,对该轴在原直径尺寸基础上适当设置制定扩大倍比,并对该转子的内径尺寸与该扩大直径尺寸后的轴调整配套,直径尺寸扩大后的轴在保证电机转矩等机械强度条件下设置流通管道,流通管道的一侧设置自扇叶片。在相关条件下,转子、转子轴以及自扇叶片加工完成和组装,本发明所采用的技术方案即完成。
本发明的有益效果是,在电动机转子轴轴内设置流通管道以及自扇叶片的内冷却技术,提高了电动机的冷却和效率。
附图说明
下面结合附图和实例对本发明进一步说明。
图1是本发明示范的剖视图。
图中,1、转子,2、转子轴,3、自扇叶片,4、流通管道。
具体实施方式
图1中,转子(1)、转子轴(2)相连,自扇叶片(3)和流通管道(4)一端端顶相连。
Claims (1)
1.一种转子轴内设置内冷却装置的电动机,在转子、转子轴、流通管道和自扇叶片的连接,其特征是:转子和设置流通管道的转子轴连接,流通管道顶端和自扇叶片连接。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210179689XA CN102694432A (zh) | 2012-06-04 | 2012-06-04 | 一种转子轴内设置内冷却装置的电动机 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210179689XA CN102694432A (zh) | 2012-06-04 | 2012-06-04 | 一种转子轴内设置内冷却装置的电动机 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102694432A true CN102694432A (zh) | 2012-09-26 |
Family
ID=46859743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210179689XA Pending CN102694432A (zh) | 2012-06-04 | 2012-06-04 | 一种转子轴内设置内冷却装置的电动机 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102694432A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103321958A (zh) * | 2013-06-28 | 2013-09-25 | 周峰 | 一种轴流风机 |
CN103321959A (zh) * | 2013-06-28 | 2013-09-25 | 周峰 | 一种风机 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2468208Y (zh) * | 2001-03-10 | 2001-12-26 | 翁韶 | 一种通用交直流电机 |
CN1374731A (zh) * | 2001-03-10 | 2002-10-16 | 翁韶 | 一种通用交直流电机 |
CN1395353A (zh) * | 2001-07-05 | 2003-02-05 | 翁韶 | 一种轴向磁通电机 |
CN202749928U (zh) * | 2012-06-04 | 2013-02-20 | 郑亚华 | 一种转子轴内设置内冷却装置的电动机 |
-
2012
- 2012-06-04 CN CN201210179689XA patent/CN102694432A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2468208Y (zh) * | 2001-03-10 | 2001-12-26 | 翁韶 | 一种通用交直流电机 |
CN1374731A (zh) * | 2001-03-10 | 2002-10-16 | 翁韶 | 一种通用交直流电机 |
CN1395353A (zh) * | 2001-07-05 | 2003-02-05 | 翁韶 | 一种轴向磁通电机 |
CN202749928U (zh) * | 2012-06-04 | 2013-02-20 | 郑亚华 | 一种转子轴内设置内冷却装置的电动机 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103321958A (zh) * | 2013-06-28 | 2013-09-25 | 周峰 | 一种轴流风机 |
CN103321959A (zh) * | 2013-06-28 | 2013-09-25 | 周峰 | 一种风机 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Du et al. | Power loss and thermal analysis for high-power high-speed permanent magnet machines | |
Liao et al. | 3-D coupled electromagnetic-fluid-thermal analysis of oil-immersed triangular wound core transformer | |
Du et al. | Effects of design parameters on the multiphysics performance of high-speed permanent magnet machines | |
Zhang et al. | Electrothermal combined optimization on notch in air-cooled high-speed permanent-magnet generator | |
Liu et al. | Minimization of AC copper loss in permanent magnet machines by transposed coil connection | |
Ma et al. | Optimal split ratio in small high speed PM machines considering both stator and rotor loss limitations | |
Huang et al. | Design and analysis of a high-speed claw pole motor with soft magnetic composite core | |
Kim et al. | Design and analysis of cooling structure on advanced air-core stator for megawatt-class HTS synchronous motor | |
CN101626185A (zh) | 一种永磁同步电动机 | |
Bobba et al. | Multi-physics based analysis and design of stator coil in high power density PMSM for aircraft propulsion applications | |
CN102694432A (zh) | 一种转子轴内设置内冷却装置的电动机 | |
Peter et al. | Manufacturing of asynchronous motors with squirrel cage rotor, included in the premium efficiency category IE3, at SC Electroprecizia Electrical-Motors SRL Săcele | |
CN201499071U (zh) | 一种永磁同步电动机 | |
CN202749928U (zh) | 一种转子轴内设置内冷却装置的电动机 | |
Borisavljevic et al. | Toroidally-wound permanent magnet machines in high-speed applications | |
Bhagubai et al. | Multi-objective optimization of electrical machine magnetic core using a vanadium–cobalt–iron alloy | |
CA2516737A1 (en) | Continuous extrusion apparatus | |
Chen et al. | Comparison between thermal-circuit model and finite element model for dry-type transformer | |
Li et al. | Assessment of high-speed multi-megawatt electric machines | |
Li et al. | Thermal analysis of high speed permanent magnetic generator | |
Zhang et al. | Topology investigation on high speed PM generator with back wound windings | |
Lindner et al. | Alternative ways of cooling an e-core flux-switching permanent magnet machine with large air-gap | |
Peter | Induction motors with squirrel cage rotor, with IE2 efficiency level, up to 18.5 kW. Methods for increasing the efficiency | |
Kudrjavtsev et al. | Thermal analysis of the PM generator with outer rotor for wind turbine application | |
Zhang et al. | Novel Blade-Shaped Rotor Hub Design for Electric Machine Cooling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120926 |