CN102694373B - Intelligent electronic device using transient fault information and relay protection method - Google Patents
Intelligent electronic device using transient fault information and relay protection method Download PDFInfo
- Publication number
- CN102694373B CN102694373B CN201210000851.7A CN201210000851A CN102694373B CN 102694373 B CN102694373 B CN 102694373B CN 201210000851 A CN201210000851 A CN 201210000851A CN 102694373 B CN102694373 B CN 102694373B
- Authority
- CN
- China
- Prior art keywords
- fault
- protection
- module
- transient
- line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000001052 transient effect Effects 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims abstract description 54
- 238000004891 communication Methods 0.000 claims abstract description 53
- 230000008569 process Effects 0.000 claims abstract description 32
- 230000009471 action Effects 0.000 claims abstract description 12
- 238000005070 sampling Methods 0.000 claims description 10
- 238000009434 installation Methods 0.000 claims description 7
- 239000000284 extract Substances 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 3
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 claims description 2
- 230000006835 compression Effects 0.000 claims 1
- 238000007906 compression Methods 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 38
- 238000012545 processing Methods 0.000 abstract description 8
- 230000010354 integration Effects 0.000 abstract description 6
- 238000012423 maintenance Methods 0.000 abstract description 3
- 230000005540 biological transmission Effects 0.000 description 11
- 241000272814 Anser sp. Species 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 4
- 230000004913 activation Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Landscapes
- Emergency Protection Circuit Devices (AREA)
Abstract
本发明涉及利用暂态故障信息的智能电子设备及继电保护方法,智能电子设备包括通过过程层通信模块、站控层通信模块分别与过程层、站控层通信连接的测距录波模块、保护模块和测控模块,保护模块和测距录波模块分别用于根据过程层上传的暂态故障信息进行故障识别、线路保护和故障测距、录波;各模块之间及对外通信主要采用100Mbps以太网,实现了数据的高速交换和并行处理,保护模块在故障发生后的极短时间内识别故障方向、极性和距离等暂态故障信息,采用三取二逻辑,构成纵联保护,既实现了保护功能的快速动作,也提高了动作的可靠性;本发明实现了多功能一体化,适用于现有的智能变电站,提高了保护性能和测距精度,降低了设备成本和运行维护费用。
The invention relates to an intelligent electronic device utilizing transient fault information and a relay protection method. The intelligent electronic device includes a distance measuring and wave recording module respectively connected to the process layer and the station control layer through a process layer communication module and a station control layer communication module, The protection module and the measurement and control module, the protection module and the distance measurement and wave recording module are respectively used for fault identification, line protection, fault distance measurement, and wave recording according to the transient fault information uploaded by the process layer; the communication between each module and the external communication mainly adopts 100Mbps Ethernet realizes high-speed exchange and parallel processing of data. The protection module identifies transient fault information such as fault direction, polarity, and distance within a very short time after the fault occurs, and adopts two-out-of-three logic to form a longitudinal protection. The quick action of the protection function is realized, and the reliability of the action is also improved; the invention realizes the multi-functional integration, is applicable to the existing intelligent substation, improves the protection performance and distance measurement accuracy, and reduces the equipment cost and operation and maintenance cost .
Description
技术领域 technical field
本发明属于电力系统自动化技术领域,涉及一种利用暂态故障信息的智能电子设备及继电保护方法。 The invention belongs to the technical field of power system automation, and relates to an intelligent electronic device and a relay protection method utilizing transient fault information.
背景技术 Background technique
减小继电保护的动作时间是提高输电线路传送功率和增强系统暂态稳定性的有效措施之一。准确识别、处理和利用暂态故障信息,就能够在故障发生后的极短时间内正确的判定故障,通常只需1~3ms的时间,因此可以实现继电保护的超高速动作。但是,目前现场广泛应用的继电保护装置所采用的保护原理是建立在工频电气量的基础之上,通常采用滤波等方法来消除暂态过程对保护的影响,暂态故障信息往往被视为有害的干扰而被滤除掉,这样就延长了保护的动作时间。而仅利用暂态故障信息的继电保护仍停留在原理、算法研究阶段,实用化难度较大。 Reducing the action time of relay protection is one of the effective measures to increase the transmission power of transmission lines and enhance the transient stability of the system. Accurate identification, processing and utilization of transient fault information can correctly determine the fault in a very short time after the fault occurs, usually only 1~3ms, so the ultra-high-speed operation of relay protection can be realized. However, the protection principle adopted by the relay protection devices widely used in the field is based on the power frequency electrical quantity, and filtering and other methods are usually used to eliminate the influence of the transient process on the protection, and the transient fault information is often regarded as It is filtered out for harmful interference, which prolongs the action time of the protection. However, the relay protection that only uses transient fault information is still in the stage of principle and algorithm research, and it is difficult to be practical.
随着智能电网的兴起与发展,光学电子式互感器、光纤以太网通信、高性能硬件平台、IEC61850和IEEE1588标准在智能变电站的应用取得了长足进步。这些不仅使暂态故障信息的有效利用成为可能,而且可以实现智能电子设备的多功能一体化,降低设备成本和运行维护费用。光学电子式互感器具有良好的暂态响应特性,准确记录暂态过程;动态范围宽,可同时满足高精度计量和保护的双重需求。光纤以太网通信和IEC61850的应用为实现信息共享标准化、多种功能一体化提供了条件。高性能硬件平台可满足快速处理暂态信号、执行多种功能的要求。采用IEEE1588网络对时,精度达1ms。 With the rise and development of the smart grid, optical electronic transformers, optical fiber Ethernet communications, high-performance hardware platforms, and IEC61850 and IEEE1588 standards have made great progress in the application of smart substations. These not only make the effective use of transient fault information possible, but also realize the multifunctional integration of intelligent electronic devices, reducing equipment costs and operation and maintenance costs. The optical electronic transformer has good transient response characteristics and can accurately record the transient process; it has a wide dynamic range and can meet the dual needs of high-precision measurement and protection at the same time. The application of optical fiber Ethernet communication and IEC61850 provides conditions for the realization of standardized information sharing and integration of multiple functions. The high-performance hardware platform can meet the requirements of fast processing of transient signals and execution of various functions. Using IEEE1588 network time synchronization, the accuracy is up to 1ms.
发明内容 Contents of the invention
本发明的目的是提供一种利用暂态故障信息的智能电子设备及继电保护方法,以减小继电保护的动作时间,提高测距精度,实现多功能一体化。 The purpose of the present invention is to provide an intelligent electronic device and a relay protection method using transient fault information, so as to reduce the action time of relay protection, improve the distance measurement accuracy, and realize multi-functional integration.
为实现上述目的,本发明的利用暂态故障信息的智能电子设备包括通过过程层通信模块、站控层通信模块分别与过程层、站控层通信连接的测距录波模块、保护模块和测控模块,所述保护模块和测距录波模块分别用于根据过程层上传的暂态故障信息进行故障识别、线路保护和故障测距、录波;所述站控层通信模块还串行通信连接有人机接口模块。 In order to achieve the above object, the intelligent electronic device utilizing transient fault information of the present invention includes a distance measuring and recording module, a protection module and a measurement and control module respectively connected to the process layer and the station control layer through the process layer communication module and the station control layer communication module. module, the protection module and the distance measurement and wave recording module are respectively used for fault identification, line protection, fault distance measurement and wave recording according to the transient fault information uploaded by the process layer; the station control layer communication module is also connected by serial communication There is a machine interface module.
进一步的,所述保护模块与过程层通信模块之间设有FPGA,该FPGA分别通过并行总线与保护模块、过程层通信模块连接。 Further, an FPGA is provided between the protection module and the process layer communication module, and the FPGA is respectively connected to the protection module and the process layer communication module through a parallel bus.
进一步的,所述过程层通信模块和站控层通信模块内均设有网络对时模块和以太网接口模块。 Further, both the process layer communication module and the station control layer communication module are equipped with a network time synchronization module and an Ethernet interface module.
进一步的,所述测距录波模块、保护模块、测控模块均采用100Mbps以太网与站控层通信模块连接,测距录波模块、测控模块均采用100Mbps以太网与过程层通信模块连接。 Further, the distance measuring and recording module, the protection module and the measurement and control module are all connected to the station control layer communication module by 100Mbps Ethernet, and the distance measurement and recording module and the measurement and control module are all connected to the process layer communication module by 100Mbps Ethernet.
进一步的,该智能电子设备对外通信均采用以太网,其中与过程层中合并单元之间的采样值传输采用点对点光纤以太网,传输协议符合IEC61850-9-2,与智能终端之间的开关量传输采用GOOSE点对点以太网;与其它间隔层设备之间采用GOOSE网络通信;与站控层设备之间采用MMS网络通信;对时采用IEEE1588网络对时。 Further, the external communication of the intelligent electronic device adopts Ethernet, and the sampling value transmission between the merge unit in the process layer adopts point-to-point optical fiber Ethernet, and the transmission protocol conforms to IEC61850-9-2, and the switching value between the intelligent terminal GOOSE point-to-point Ethernet is used for transmission; GOOSE network communication is used for other interval layer devices; MMS network communication is used for station control layer devices; IEEE1588 network time synchronization is used for time synchronization.
本发明的利用暂态故障信息的继电保护方法步骤如下: The steps of the relay protection method utilizing transient fault information of the present invention are as follows:
(1)智能电子设备的保护模块读取过程层上传的三相电压、电流采样数据; (1) The protection module of the intelligent electronic device reads the three-phase voltage and current sampling data uploaded by the process layer;
(2)基于改进梯度算法的启动元件动作后,提取启动时刻后1~3ms的暂态故障分量; (2) After the start element action based on the improved gradient algorithm, extract the transient fault component 1~3ms after the start time;
(3)根据故障方向、极性、距离判据进行故障识别,若其中两个或两个以上判据判别出故障发生在被保护线路,则发出跳闸命令;若未判别出被保护线路故障,则切换进入反应工频电气量的传统保护,进行相应的故障判别。 (3) Fault identification is carried out according to the fault direction, polarity, and distance criteria. If two or more of the criteria determine that the fault occurs in the protected line, a trip command is issued; if no fault is identified in the protected line, Then switch to the traditional protection that responds to the power frequency electrical quantity, and carry out corresponding fault discrimination.
进一步的,所述步骤(2)中基于改进梯度算法的启动元件启动判据为:对电流故障分量进行相模变换,对所得到的线模量采用改进梯度算法,当前点后3个数据之和减去当前点前3个数据之和,得到当前点的梯度值,若该值大于启动定值,则当前点所在的时刻即为启动时刻,启动元件动作。 Further, the start-up criterion based on the improved gradient algorithm in step (2) is: perform phase-mode transformation on the current fault component, use the improved gradient algorithm for the obtained linear modulus, and the sum of the three data after the current point Subtract the sum of the 3 data before the current point to get the gradient value of the current point. If the value is greater than the start-up fixed value, the moment where the current point is is the start-up time, and the start-up element will act.
进一步的,所述步骤(3)中保护模块与线路对侧智能电子设备通过通信通道连接构成纵联保护,以获取线路对侧的暂态故障信息,故障方向、极性、距离的判据分别为: Further, in the step (3), the protection module and the intelligent electronic device on the opposite side of the line are connected through a communication channel to form a longitudinal protection, so as to obtain the transient fault information on the opposite side of the line, and the criteria for fault direction, polarity, and distance are respectively for:
a)使用电压、电流暂态故障分量,利用经中值滤波后模量前、反行波的时域能量之比判别故障方向:若时域能量之比小于定值,为正向故障;否则,为反向故障;经通信通道得到线路对侧的故障方向信息,若均为正向故障,则判别故障发生在被保护线路; a) Use voltage and current transient fault components, and use the ratio of time-domain energy of the modulus forward and reverse traveling waves after median filtering to determine the fault direction: if the ratio of time-domain energy is less than a fixed value, it is a forward fault; otherwise , is a reverse fault; the fault direction information on the opposite side of the line is obtained through the communication channel, and if they are all forward faults, it is judged that the fault occurred on the protected line;
b)使用电流暂态故障分量,若线路两端电流初始行波同极性,则判定为区内故障,异极性则判定为区外故障; b) Using the current transient fault component, if the initial traveling waves at both ends of the line have the same polarity, it is judged as an internal fault, and if the polarity is different, it is judged as an external fault;
c)使用电流暂态故障分量标定电流初始行波到达本侧智能电子设备安装处的时间,经通信通道得到线路对侧记录的电流初始行波到达时间,若两者时间之差大于或等于被保护线路长度与暂态电流波速的比值,则为区外故障,否则为区内故障。 c) Use the current transient fault component to calibrate the time when the initial traveling wave of the current arrives at the installation place of the intelligent electronic device on this side, and obtain the arrival time of the initial traveling wave of the current recorded on the opposite side of the line through the communication channel. If the ratio of the length of the protection line to the wave velocity of the transient current is an external fault, otherwise it is an internal fault.
进一步的,测距录波模块利用暂态故障信息的测距是通过线路内部故障产生的初始行波到达线路两端所述智能电子设备安装处的绝对时间之差计算出故障距离;测距录波模块采用插值拟合方法逼近真实的到达时刻。 Further, the distance measurement and wave recording module uses the distance measurement of transient fault information to calculate the fault distance through the absolute time difference between the initial traveling wave generated by the internal fault of the line and reaching the installation place of the intelligent electronic device at both ends of the line; The wave module uses an interpolation fitting method to approximate the real arrival time.
进一步的,测距录波模块的录波采用第二代小波变换算法——提升算法进行故障录波数据无损压缩,采用大容量存储设备记录电力系统受到各种扰动后的变化全过程。 Furthermore, the wave recording of the ranging wave recording module adopts the second-generation wavelet transform algorithm-the lifting algorithm to compress the fault record data without loss, and uses a large-capacity storage device to record the whole process of changes in the power system after various disturbances.
本发明的利用暂态故障信息的智能电子设备,遵循IEC61850标准,采用多CPU分布式结构,包括过程层通信模块、保护模块、测距录波模块、测控模块、站控层通信模块和人机接口模块,集成保护、测距、录波和测控等多种功能。过程层通信模块和保护模块之间采用FPGA进行并行数据交换,可快速传输大批量数据,充分保证保护的实时性。智能电子设备的对外通信均采用以太网,过程层通信模块通过直采方式接收光学电子式互感器传变的暂态信号,内部各模块之间主要采用100Mbps以太网,实现数据的快速传输和并行处理。本发明适用于现有的智能变电站,不需要新增或改造其它设备,提高了保护性能和测距精度,实现了多功能一体化,降低了设备成本和运行维护费用。 The intelligent electronic device using transient fault information of the present invention follows the IEC61850 standard and adopts a multi-CPU distributed structure, including a process layer communication module, a protection module, a distance measurement and wave recording module, a measurement and control module, a station control layer communication module and a man-machine The interface module integrates various functions such as protection, distance measurement, wave recording and measurement and control. FPGA is used for parallel data exchange between the process layer communication module and the protection module, which can quickly transmit a large amount of data and fully guarantee the real-time performance of protection. The external communication of intelligent electronic equipment adopts Ethernet, and the communication module of the process layer receives the transient signal transmitted by the optical electronic transformer through direct sampling. The internal modules mainly use 100Mbps Ethernet to realize fast data transmission and parallelism. deal with. The invention is applicable to the existing intelligent substation, does not need to add or modify other equipment, improves the protection performance and distance measurement accuracy, realizes multifunctional integration, and reduces equipment cost and operation and maintenance expenses.
本发明的利用暂态故障信息的继电保护方法,在故障发生后的极短时间内(1~3ms),准确识别故障方向、电流初始行波极性和电流初始行波到达时间等暂态故障信息,采用三取二逻辑,构成纵联保护,既实现了保护功能的快速动作,也提高了动作的可靠性;若利用暂态故障信息未判别出被保护线路故障,则切换进入传统保护原理,进行相应的故障判别,暂态故障信息的利用使保护性能进一步提高。 The relay protection method using transient fault information of the present invention can accurately identify transient states such as fault direction, current initial traveling wave polarity, and current initial traveling wave arrival time within a very short time (1~3ms) after the fault occurs The fault information adopts two out of three logic to form a longitudinal protection, which not only realizes the rapid action of the protection function, but also improves the reliability of the action; if the fault of the protected line is not judged by using the transient fault information, it will switch to the traditional protection According to the principle, the corresponding fault discrimination is carried out, and the utilization of transient fault information further improves the protection performance.
附图说明 Description of drawings
图1是本发明的智能电子设备IED结构示意图; Fig. 1 is a schematic structural diagram of an intelligent electronic device IED of the present invention;
图2是IED在智能变电站中的应用示意图; Figure 2 is a schematic diagram of the application of IEDs in smart substations;
图3是IED的保护模块工作流程图。 Fig. 3 is the working flowchart of the protection module of IED.
具体实施方式 Detailed ways
针对暂态故障信息在继电保护中实际利用难的问题,将暂态故障信息的利用与现有继电保护装置的成熟原理相结合,各取所长,互为补充,是一种行之有效的解决方案。 Aiming at the problem that the transient fault information is difficult to use in relay protection, it is a practical way to combine the utilization of transient fault information with the mature principles of existing relay protection devices. effective solution.
多功能一体化智能电子设备IED的结构如图1所示,该智能电子设备IED包括过程层通信模块、保护模块、测距录波模块、测控模块、站控层通信模块和人机接口模块,集成保护、测距、录波和测控等多种功能于一体。 The structure of the multifunctional integrated intelligent electronic device IED is shown in Figure 1. The intelligent electronic device IED includes a process layer communication module, a protection module, a distance measurement and wave recording module, a measurement and control module, a station control layer communication module and a human-machine interface module. Integrated protection, distance measurement, wave recording, measurement and control and other functions in one.
智能电子设备IED在智能变电站中的应用如图2所示,IED属于间隔层设备,遵循IEC61850标准,对外通信均采用以太网: The application of the intelligent electronic device IED in the smart substation is shown in Figure 2. The IED belongs to the bay layer equipment, follows the IEC61850 standard, and uses Ethernet for external communication:
a)与过程层设备(合并单元、智能终端)的连接采用“直采直跳”方式,即与合并单元之间的采样值(SV)传输采用点对点光纤以太网,传输协议符合IEC61850-9-2,与智能终端之间的开关量传输采用GOOSE点对点以太网。这样可以减小网络传输延时,加快IED保护模块的动作速度。 a) The connection with the process layer equipment (merging unit, intelligent terminal) adopts the "direct sampling and direct jumping" method, that is, the sampling value (SV) transmission with the merging unit adopts point-to-point optical fiber Ethernet, and the transmission protocol conforms to IEC61850-9- 2. GOOSE point-to-point Ethernet is used for the switch transmission between intelligent terminals. In this way, the network transmission delay can be reduced, and the action speed of the IED protection module can be accelerated.
b)与其它间隔层设备之间采用GOOSE网络通信。 b) Use GOOSE network communication with other bay layer devices.
c)与站控层设备(监控系统)之间采用MMS网络通信。 c) Use MMS network communication with the station control layer equipment (monitoring system).
d)对时采用IEEE1588网络对时,精度达1ms。 d) Time synchronization adopts IEEE1588 network time synchronization, with an accuracy of 1ms.
智能电子设备IED的硬件体系采用多CPU分布式结构。过程层通信模块一方面对从过程层接收到的采样值、开关量输入等数据进行预处理并快速分发给所述保护模块、测距录波模块和测控模块进行各自功能的处理,另一方面接收来自所述保护模块、测控模块的开关量输出等数据向过程层发送。站控层通信模块汇聚保护模块、测距录波模块和测控模块的处理结果向站控层发送,从站控层接收控制命令和定值等数据并下发;还接收人机接口模块(MMI)的输入信息,向所述MMI发送需显示的输出信息。 The hardware system of the intelligent electronic device IED adopts a multi-CPU distributed structure. On the one hand, the process layer communication module preprocesses the data received from the process layer, such as sampling values and switch input, and quickly distributes them to the protection module, distance measurement and wave recording module, and measurement and control module for processing their respective functions. Receive data such as switching output from the protection module and the measurement and control module and send it to the process layer. The station control layer communication module aggregates the processing results of the protection module, distance measurement and recording module, and measurement and control module to the station control layer, and receives control commands and fixed values from the station control layer and sends them out; it also receives the man-machine interface module (MMI ) input information, and send the output information to be displayed to the MMI.
各模块之间数据的高速交换是IED能否实现暂态故障信息利用和功能一体化的关键技术之一。鉴于对外通信均为以太网且以太网通信高速可靠,为了避免使用多种通信手段时需进行的数据转换,减少硬件种类,简化软件设计,各模块之间数据的高速交换仍主要采用100Mbps以太网。各模块之间的数据交换方式如下: The high-speed exchange of data between modules is one of the key technologies for IEDs to realize the utilization of transient fault information and functional integration. In view of the fact that the external communication is Ethernet and the high-speed and reliable Ethernet communication, in order to avoid data conversion when using multiple communication methods, reduce hardware types, and simplify software design, the high-speed data exchange between modules still mainly uses 100Mbps Ethernet . The data exchange method between modules is as follows:
a)过程层通信模块和保护模块之间采用FPGA(内含双口RAM)进行并行数据交换,可快速传输大批量数据,充分保证保护的实时性。 a) FPGA (including dual-port RAM) is used for parallel data exchange between the process layer communication module and the protection module, which can quickly transmit large quantities of data and fully guarantee the real-time performance of protection.
b)站控层通信模块与MMI之间的数据交换实时性要求不高,采用串行RS232通信方式。 b) The data exchange between the station control layer communication module and the MMI does not require high real-time performance, and the serial RS232 communication method is adopted.
c)过程层通信模块和测距录波模块之间、过程层通信模块和测控模块之间、保护模块和站控层通信模块之间、测距录波模块和站控层通信模块之间、测控模块和站控层通信模块之间,均采用100Mbps以太网,实现数据的高速交换和并行处理。 c) Between the process layer communication module and the distance measurement and recording module, between the process layer communication module and the measurement and control module, between the protection module and the station control layer communication module, between the distance measurement and recording wave module and the station control layer communication module, Between the measurement and control module and the station control layer communication module, 100Mbps Ethernet is used to realize high-speed data exchange and parallel processing.
上述方式对CPU的通信处理能力提出了很高要求。因此,所述IED除MMI外,其它各模块采用MPC8358处理器,该处理器频率400MHz,集成了PowerPC内核和专用通信处理模块,可提供多达8个100M以太网接口。MMI模块采用单片机。 The above method puts forward very high requirements on the communication processing capability of the CPU. Therefore, except the MMI, the other modules of the IED use the MPC8358 processor, which has a frequency of 400MHz, integrates a PowerPC core and a dedicated communication processing module, and can provide up to eight 100M Ethernet interfaces. The MMI module uses a single-chip microcomputer.
为了获取暂态故障信息,过程层设备需满足以下要求: In order to obtain transient fault information, the process layer equipment needs to meet the following requirements:
a)采用光学电子式互感器,可提供输电线路的三相电压和电流,频率响应范围至少从直流到100次谐波。 a) Optical electronic transformers are used to provide the three-phase voltage and current of the transmission line, and the frequency response range is at least from DC to the 100th harmonic.
b)合并单元输出采样速率应为每周波400点及以上。 b) The output sampling rate of the merging unit should be 400 points per cycle and above.
利用暂态故障信息的继电保护方法的步骤如下: The steps of the relay protection method using transient fault information are as follows:
(1)智能电子设备的保护模块读取过程层上传的三相电压、电流采样数据; (1) The protection module of the intelligent electronic device reads the three-phase voltage and current sampling data uploaded by the process layer;
(2)基于改进梯度算法的启动元件动作后,提取启动时刻后1~3ms的暂态故障分量; (2) After the start element action based on the improved gradient algorithm, extract the transient fault component 1~3ms after the start time;
(3)根据故障方向、故障极性和故障距离判据进行故障识别,采用三取二逻辑,即两个或两个以上判据判别出故障发生在被保护线路,则发出跳闸命令;若未判别出被保护线路故障,则切换进入反应工频电气量的传统保护,进行相应的故障判别。 (3) Fault identification is carried out according to the fault direction, fault polarity and fault distance criteria, and two out of three logic is adopted, that is, two or more criteria determine that the fault occurs in the protected line, and a trip command is issued; if not If the fault of the protected line is judged, it will switch to the traditional protection that reflects the power frequency electrical quantity, and carry out corresponding fault judgment.
暂态故障信息集中体现在故障初始行波中,根据故障初始行波的特征可检出故障,进行测距。IED对暂态故障信息的利用主要体现在保护模块和测距录波模块中。 Transient fault information is concentrated in the fault initial traveling wave, and the fault can be detected and distanced according to the characteristics of the fault initial traveling wave. The utilization of transient fault information by IED is mainly reflected in the protection module and the distance measurement and wave recording module.
IED的保护模块软件流程图如图3所示,该图中称利用暂态故障信息的保护为快速保护,与传统保护相区别。保护模块在基于改进梯度算法的启动元件动作后,提取启动时刻后1~3ms的暂态故障分量——数据窗长与被保护线路长度有关,故障初始行波即包含在此数据窗内。然后,根据如下3个判据进行故障识别: The software flow chart of the protection module of IED is shown in Figure 3. In this figure, the protection using transient fault information is called fast protection, which is different from traditional protection. After the activation element based on the improved gradient algorithm operates, the protection module extracts the transient fault component 1~3ms after the activation time—the length of the data window is related to the length of the protected line, and the initial traveling wave of the fault is included in this data window. Then, fault identification is carried out according to the following three criteria:
a)使用电压、电流暂态故障分量,利用经中值滤波后模量前、反行波的时域能量之比判别故障方向:若时域能量之比小于定值,为正向故障;否则,为反向故障。经通信通道得到线路对侧的故障方向信息,若均为正向故障,则判别故障发生在被保护线路。 a) Use voltage and current transient fault components, and use the ratio of time-domain energy of the modulus forward and reverse traveling waves after median filtering to determine the fault direction: if the ratio of time-domain energy is less than a fixed value, it is a forward fault; otherwise , for a reverse fault. The fault direction information on the opposite side of the line is obtained through the communication channel. If they are all positive faults, it is judged that the fault occurred on the protected line.
b)使用电流暂态故障分量,若线路两端电流初始行波同极性,则判定为区内故障,异极性则判定为区外故障。 b) Using the current transient fault component, if the initial traveling waves at both ends of the line have the same polarity, it is judged as an internal fault, and if the polarity is different, it is judged as an external fault.
c)使用电流暂态故障分量,准确标定电流初始行波到达本侧所述IED安装处的时间(精度达1ms),经通信通道得到线路对侧记录的电流初始行波到达时间,若两者时间之差大于或等于被保护线路长度与暂态电流波速的比值,则为区外故障,否则为区内故障。 c) Use the current transient fault component to accurately calibrate the time for the initial traveling wave of the current to arrive at the IED installation on this side (with an accuracy of 1ms), and obtain the arrival time of the initial traveling wave of the current recorded on the opposite side of the line through the communication channel. If both If the time difference is greater than or equal to the ratio of the length of the protected line to the wave velocity of the transient current, it is an external fault, otherwise it is an internal fault.
为了保证所述保护模块动作的可靠性,所述3个判据采用三取二逻辑,即只有两个或两个以上判据判别出故障发生在被保护线路,才发出跳闸命令。所述3个判据都需要线路对侧的暂态故障信息,因此保护模块与线路对侧IED通过通信通道连接构成纵联保护,以获取线路对侧的暂态故障信息。 In order to ensure the reliability of the action of the protection module, the three criteria adopt a two-out-of-three logic, that is, only when two or more criteria determine that the fault occurs in the protected line, the trip command is issued. The above three criteria all require the transient fault information on the opposite side of the line, so the protection module and the IED on the opposite side of the line are connected through a communication channel to form a longitudinal protection to obtain the transient fault information on the opposite side of the line.
若保护模块利用暂态故障信息未判别出被保护线路故障,则切换进入反应工频电气量的传统保护原理,进行相应的故障判别。因此,暂态故障信息的利用只会使保护性能得到提高,并不会降低原有保护的性能。 If the protection module does not judge the fault of the protected line by using the transient fault information, it will switch to the traditional protection principle that reflects the power frequency electrical quantity, and carry out corresponding fault judgment. Therefore, the use of transient fault information will only improve the protection performance, and will not reduce the performance of the original protection.
基于改进梯度算法的启动元件为:对电流故障分量进行相模变换,对所得到的线模量采用改进梯度算法,即当前点后3个数据之和减去当前点前3个数据之和,得到当前点的梯度值,若该值大于启动定值,则当前点所在的时刻即为启动时刻,启动元件动作。 The starting element based on the improved gradient algorithm is: perform phase-to-mode transformation on the current fault component, and use the improved gradient algorithm on the obtained linear modulus, that is, the sum of the three data after the current point minus the sum of the three data before the current point to obtain The gradient value of the current point, if the value is greater than the start-up setting value, then the moment where the current point is located is the start-up time, and the start-up element operates.
测距录波模块利用暂态故障信息的测距原理为:通过线路内部故障产生的初始行波到达线路两端所述IED安装处的绝对时间之差计算出故障距离。影响测距精度的关键是准确获取故障初始行波到达所述IED安装处的时间。GPS系统和IEEE1588标准的应用能够使线路两端所述IED的时间同步误差不超过1ms。但是,由于合并单元输出采样速率有限(每周波400点及以上),可能无法采集到故障初始行波真实的到达时刻,所述测距录波模块采用插值拟合的方法尽可能地逼近真实的到达时刻,提高测距的精度。 The ranging principle of the distance measuring and recording module using transient fault information is as follows: the fault distance is calculated by the absolute time difference between the initial traveling wave generated by the internal fault of the line and arriving at the IED installation at both ends of the line. The key to affecting the distance measurement accuracy is to accurately obtain the time when the fault initial traveling wave arrives at the IED installation. The application of the GPS system and the IEEE1588 standard can make the time synchronization error of the IEDs at both ends of the line not exceed 1 ms. However, due to the limited output sampling rate of the merging unit (400 points per cycle and above), it may not be possible to collect the real arrival time of the initial traveling wave of the fault. Arrival time, improve the accuracy of distance measurement.
测距录波模块还利用基于工频量的测距原理进行故障距离的计算。两种方法的测距结果可与实际故障距离相比较,以进一步改进测距算法。 The ranging wave recording module also uses the ranging principle based on power frequency to calculate the fault distance. The ranging results of the two methods can be compared with the actual fault distance to further improve the ranging algorithm.
测距录波模块采用第二代小波变换算法——提升算法进行故障录波数据无损压缩,采用大容量存储设备(Flash)完整记录电力系统受到各种扰动后的变化全过程,为系统动态过程的分析提供基础数据。 The distance measurement and wave recording module adopts the second generation wavelet transform algorithm - the lifting algorithm to compress the fault record data without loss, and uses a large-capacity storage device (Flash) to completely record the whole process of the power system after various disturbances, which is the dynamic process of the system. The analysis provides basic data.
测控模块的功能与传统测控装置的测控功能相同,在此不再赘述。 The function of the measurement and control module is the same as that of the traditional measurement and control device, and will not be repeated here.
最后所应说明的是:以上实施例仅用以说明而非限定本发明的技术方案,尽管参照上述实施例对本发明进行了详细说明,本领域的普通技术人员应当理解;依然可以对本发明进行修改或者等同替换,而不脱离本发明的精神和范围的任何修改或局部替换,其均应涵盖在本发明的权利要求范围当中。 Finally, it should be noted that: the above embodiments are only used to illustrate and not limit the technical solutions of the present invention, although the present invention has been described in detail with reference to the above embodiments, those of ordinary skill in the art should understand; the present invention can still be modified Or an equivalent replacement, any modification or partial replacement without departing from the spirit and scope of the present invention shall fall within the scope of the claims of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210000851.7A CN102694373B (en) | 2012-01-04 | 2012-01-04 | Intelligent electronic device using transient fault information and relay protection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210000851.7A CN102694373B (en) | 2012-01-04 | 2012-01-04 | Intelligent electronic device using transient fault information and relay protection method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102694373A CN102694373A (en) | 2012-09-26 |
CN102694373B true CN102694373B (en) | 2014-12-03 |
Family
ID=46859690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210000851.7A Expired - Fee Related CN102694373B (en) | 2012-01-04 | 2012-01-04 | Intelligent electronic device using transient fault information and relay protection method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102694373B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103051056B (en) * | 2012-11-29 | 2016-08-17 | 辽宁省电力有限公司朝阳供电公司 | A kind of process layer devices with vertical connection optical-fibre channel transmission-receiving function |
CN103513159A (en) * | 2013-09-24 | 2014-01-15 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | Method and device for locating fault on direct current grounding electrode circuit |
CN103837795B (en) * | 2014-02-18 | 2014-12-03 | 国网山东省电力公司 | Dispatching end grid fault diagnosis method based on wide-area fault recording information |
CN104156515B (en) * | 2014-07-28 | 2017-09-15 | 湖北文理学院 | A kind of IED formalized description method for analyzing performance based on Markov process |
CN106506591A (en) * | 2016-09-28 | 2017-03-15 | 华北电力大学 | Intelligent substation status monitoring data collection system based on multi-layer hybrid network |
CN106300678B (en) * | 2016-09-28 | 2019-06-18 | 江苏方天电力技术有限公司 | A kind of digital protective relay system for supporting unification of three nets network |
CN107732882B (en) * | 2017-11-22 | 2019-06-11 | 广东电网有限责任公司电力调度控制中心 | A kind of hvdc transmission line direction pilot protection method |
CN108427089B (en) * | 2018-03-22 | 2020-07-24 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | A testing system and method for non-contact distributed ranging system |
CN109713706B (en) * | 2018-12-21 | 2020-11-17 | 山东大学 | Single-end ultra-high-speed protection method for AC line on inverter side of AC-DC hybrid system |
CN113484683B (en) * | 2021-07-14 | 2022-11-08 | 贵州电网有限责任公司 | Power distribution network fault positioning system and method based on transient information |
CN118739216B (en) * | 2024-09-04 | 2024-12-06 | 中国电建集团西北勘测设计研究院有限公司 | A transmission line traveling wave protection method and system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202405773U (en) * | 2012-01-04 | 2012-08-29 | 河南科技大学 | Intelligent electronic equipment for using transient fault information |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070121238A (en) * | 2006-06-21 | 2007-12-27 | 한전케이디엔 주식회사 | IC64-based digital substation system for partial discharge measurement in substations |
KR100843130B1 (en) * | 2007-01-30 | 2008-07-03 | 명지대학교 산학협력단 | On-line IC failure diagnosis device and method in IC61850 based substation automation system |
-
2012
- 2012-01-04 CN CN201210000851.7A patent/CN102694373B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202405773U (en) * | 2012-01-04 | 2012-08-29 | 河南科技大学 | Intelligent electronic equipment for using transient fault information |
Non-Patent Citations (15)
Title |
---|
基于IEC61850-9-2的数字化变电站设计方案;陈宏辉;《中国电力教育》;20091231;正文第237页左栏第12-20行、右栏第1-20行、第238页第26-28行及图1 * |
基于IEC61850-9-2的电子式互感器合并单元的研制;赵应兵等;《电力系统保护与控制》;20100316;第28卷(第6期);正文第105页第5-12行、第26-28行 * |
基于中值滤波的超高速暂态量方向元件;罗四倍等;《中国电机工程学报》;20071231;第27卷(第34期);正文第64页右栏第20-23行、第65页右栏第2-9行、第67页左栏第5-13行 * |
基于故障暂态分量的高压输电线路继电保护方法研究;杨帅雄等;《硕士学位论文》;20110413;正文第1页第9-25行、第2页第12-13行、第28-32行及第3页第1-5行 * |
基于暂态量的EHV/UHV输电线路超高速保护研究现状与展望;罗四倍等;《电网技术》;20061130;第30卷(第22期);正文第34页左栏第5-7行、正文第34页左栏第5-7行、右栏第35-44行 * |
基于第二代小波变换的电力系统故障录波数据压缩方法;黄天戍等;《电力自动化设备》;20040330;第24卷(第3期);正文第59页左栏第3-8行、第19-24行) * |
张保会等.智能电网继电保护研究的进展(一)-故障甄别新原理.《电力自动化设备》.2010,第30卷(第1期),参见正文第1页右栏第1-19行、第2页左栏第6-22行、第33-35行、右栏第1行、第11-14行、第3页左栏第25-27行、第7-15行、第27-29行、第4页左栏第1行、右栏第4-7行. * |
智能变电站GOOSE网配置方案研究;黄少雄等;《东北电力技术》;20101031(第10期);正文第47页左栏第4-13行、第19-28行 * |
杨帅雄等.基于故障暂态分量的高压输电线路继电保护方法研究.《硕士学位论文》.2011,参见正文第1页第9-25行、第2页第12-13行、第28-32行及第3页第1-5行. * |
罗四倍等.基于中值滤波的超高速暂态量方向元件.《中国电机工程学报》.2007,第27卷(第34期),参见正文第64页右栏第20-23行、第65页右栏第2-9行、第67页左栏第5-13行. * |
罗四倍等.基于暂态量的EHV/UHV输电线路超高速保护研究现状与展望.《电网技术》.2006,第30卷(第22期),参见正文第34页左栏第5-7行、正文第34页左栏第5-7行、右栏第35-44行. * |
赵应兵等.基于IEC61850-9-2的电子式互感器合并单元的研制.《电力系统保护与控制》.2010,第28卷(第6期),参见正文第105页第5-12行、第26-28行. * |
陈宏辉.基于IEC61850-9-2的数字化变电站设计方案.《中国电力教育》.2009,参见正文第237页左栏第12-20行、右栏第1-20行、第238页第26-28行及图1. * |
黄天戍等.基于第二代小波变换的电力系统故障录波数据压缩方法.《电力自动化设备》.2004,第24卷(第3期),参见正文第59页左栏第3-8行、第19-24行). * |
黄少雄等.智能变电站GOOSE网配置方案研究.《东北电力技术》.2010,(第10期),参见正文第47页左栏第4-13行、第19-28行. * |
Also Published As
Publication number | Publication date |
---|---|
CN102694373A (en) | 2012-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102694373B (en) | Intelligent electronic device using transient fault information and relay protection method | |
CN103675522B (en) | The multi-functional secondary device of a kind of intelligent substation towards interval | |
CN203166626U (en) | Intelligent traction substation | |
CN203561700U (en) | An online monitoring system for lightning arresters | |
CN102033190A (en) | Traveling wave fault location method for transmission line based on electronic transformer | |
CN101576743A (en) | Distributed ring main unit monitor terminal | |
CN111725776B (en) | FPGA-based power distribution network current differential protection device | |
CN102721902A (en) | Electric transmission line fault detection method based on voltage traveling wave prediction | |
CN102035261A (en) | Monitoring system for smart grid | |
CN103683507B (en) | Distributed generation micro-grid control and electric energy quality monitoring integrated device and method | |
CN105024356B (en) | A kind of 35kV and following voltage class ratiometric dynamic formula bus bar protecting method | |
CN202405773U (en) | Intelligent electronic equipment for using transient fault information | |
CN205753657U (en) | A load shedding device for photovoltaic power generation microgrid system based on local area network | |
CN109470998B (en) | Distribution network medium-voltage fault judgment method based on multi-dimensional fault characteristic quantity | |
CN113725827B (en) | Ship power supply network selective protection method based on circuit breaker communication cooperation | |
CN201438645U (en) | Standby-power automatic switching device for digital transformer station | |
CN206226121U (en) | A kind of intelligent distribution network automated remote terminal of power data collecting system | |
CN203365559U (en) | Fault wave recording device with impact load being considered | |
CN203056694U (en) | Substation area intelligent control host device for digital substation | |
CN103178619B (en) | APF (accurate position finder), SVG (static var generator) control device for realizing 3G (the third generation telecommunication) monitoring | |
CN102013728A (en) | IEC61850 (International Electrotechnical Commission 61850) standard based method and device for realizing regional integrated protection measurement and control | |
CN202393811U (en) | On-line monitoring apparatus for lightning arrester for protecting series compensation capacitor | |
CN205620497U (en) | Ore deposit lost circulation electricity fault line selection device | |
CN105048631B (en) | A kind of multi-functional Top-down design device towards interval | |
CN106226588A (en) | A kind of optical current acquisition method adapting to travelling wave ranging demand |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141203 Termination date: 20180104 |
|
CF01 | Termination of patent right due to non-payment of annual fee |