CN102694165A - High-capacity lithium-rich layered crystalline structured lithium battery cathode material and preparation thereof - Google Patents

High-capacity lithium-rich layered crystalline structured lithium battery cathode material and preparation thereof Download PDF

Info

Publication number
CN102694165A
CN102694165A CN2012101890016A CN201210189001A CN102694165A CN 102694165 A CN102694165 A CN 102694165A CN 2012101890016 A CN2012101890016 A CN 2012101890016A CN 201210189001 A CN201210189001 A CN 201210189001A CN 102694165 A CN102694165 A CN 102694165A
Authority
CN
China
Prior art keywords
lithium
rich layered
layered crystal
crystal structure
linbo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012101890016A
Other languages
Chinese (zh)
Inventor
张联齐
周恩娄
宋大卫
郭建
侯配玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN2012101890016A priority Critical patent/CN102694165A/en
Publication of CN102694165A publication Critical patent/CN102694165A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

The invention discloses a high-capacity lithium-rich layered crystalline structured lithium battery cathode material, which is characterized in that a layer of LiNbO3 coats the particle surfaces of a powdery lithium-rich layered crystalline structured material, and the powdery lithium-rich layered crystalline structured material has a chemical formula xLi2MnO3.(1-x)LiNimConMn1-m-nO2, wherein x is more than or equal to 0.2 and less than or equal to 0.9, m is more than or equal to 0.1 and less than 1, and n is more than or equal to 0 and less than or equal to 0.5. A preparation method comprises the following steps of: first preparing a lithium-rich layered precursor, then preparing lithium-rich layered crystalline structured particles, and finally coating the particles by using the LiNbO3. The invention has the advantages that 1) the cathode material has high specific capacity, and the maximum specific capacity can reach 280mAh/g; 2) compared with an uncoated lithium-rich layered crystalline structured material, the lithium-rich layered crystalline structured material coated with the LiNbO3 has higher charge and discharge specific capacity and longer cycle life; and 3) the cathode material has high electrochemical performance under high voltage and high current density.

Description

一种高容量富锂层状晶体结构锂电池正极材料及其制备A high-capacity lithium-rich layered crystal structure lithium battery cathode material and its preparation

技术领域 technical field

本发明涉及锂离子电池正极材料技术领域,特别是一种高容量富锂层状晶体结构锂电池正极材料及其制备。The invention relates to the technical field of lithium-ion battery cathode materials, in particular to a high-capacity lithium-rich layered crystal structure lithium battery cathode material and its preparation.

背景技术 Background technique

锂电池自1991年sony公司首次商品化以来,在手机、数码相机、笔记本电脑等3C产品中受到广泛应用,在人们的日常生活中发挥着重要的作用。由于具有高功率密度、高能量密度、高循环性能等优点,锂电池也已经成为目前比较公认的电动汽车的首选电池。随着国际不可再生能源储量的不断减少和环境污染的日益加深,电动汽车用电池尤其的是锂电池的研究备受关注。就目前情况来看,锂电池正极材料的研究与负极相比相对滞后,无论是理论上还是在实际应用中,所采用的正极材料的容量都低于负极材料,而电动汽车所需的动力电池既需要功率密度,也需要能量密度,因此研究开发出高性能的锂电池正极材料已经成为动力电池发展的关键所在。其中,最早商品化的钴酸锂生产工艺最成熟,循环寿命好,但是其充电后形成的4价钴强氧化性,存在安全隐患,而且钴酸锂的实际容量只有148mA/g,相对于动力电池的需求偏低。并且钴资源匮乏,价格昂贵且具有毒性。近年来以Ni、Co、Mn为基础的三元材料和以LiMn2O4为代表的尖晶石形材料得到了广泛的研究,但由于其各自存在缺陷,制约了他们的发展。最近,主要由Li2MnO3与层状材料LiMO2(M=Mn,Ni,Co等其中的一种或几种)形成的固溶体作为锂电池富锂层状正极材料具有理论容量高、工作电压高、成本低、安全性能好等优点,有望成为新一代的高能量密度的锂电池正极材料。但是已经报道的富锂材料循环性能差,倍率性能不理想,限制了其竞争优势和广泛应用。Since the first commercialization of Sony in 1991, lithium batteries have been widely used in 3C products such as mobile phones, digital cameras, and notebook computers, and play an important role in people's daily lives. Due to the advantages of high power density, high energy density, and high cycle performance, lithium batteries have become the preferred battery for electric vehicles. With the continuous reduction of international non-renewable energy reserves and the deepening of environmental pollution, the research on batteries for electric vehicles, especially lithium batteries, has attracted much attention. As far as the current situation is concerned, the research on anode materials for lithium batteries lags behind that of anode materials. Both in theory and in practical applications, the capacity of anode materials used is lower than that of anode materials, and the power batteries required for electric vehicles Both power density and energy density are required, so the research and development of high-performance lithium battery cathode materials has become the key to the development of power batteries. Among them, the earliest commercialized lithium cobalt oxide has the most mature production process and good cycle life, but the tetravalent cobalt formed after charging has strong oxidative properties, which has potential safety hazards, and the actual capacity of lithium cobalt oxide is only 148mA/g. Battery demand is low. And cobalt resources are scarce, expensive and toxic. In recent years, ternary materials based on Ni, Co, and Mn and spinel materials represented by LiMn 2 O 4 have been widely studied, but their development is restricted due to their respective defects. Recently, the solid solution mainly formed by Li 2 MnO 3 and the layered material LiMO 2 (M=Mn, Ni, Co, etc., one or more of them) has high theoretical capacity and high working voltage as the lithium-rich layered cathode material for lithium batteries. High, low cost, good safety performance and other advantages, it is expected to become a new generation of high energy density lithium battery cathode material. However, the reported lithium-rich materials have poor cycle performance and unsatisfactory rate performance, which limits their competitive advantage and wide application.

发明内容 Contents of the invention

本发明的目的是针对上述存在问题,提供一种能量密度大、倍率性能佳、成本低、安全性好且使用寿命长的高容量富锂层状晶体结构锂电池正极材料及其制备。The purpose of the present invention is to solve the above existing problems and provide a high-capacity lithium-rich layered crystal structure lithium battery cathode material with high energy density, good rate performance, low cost, good safety and long service life and its preparation.

本发明的技术方案:Technical scheme of the present invention:

一种高容量富锂层状晶体结构锂电池正极材料,结构为在粉末状富锂层状晶体材料的颗粒表面包覆一层LiNbO3,其中粉末状富锂层状晶体材料的化学式为xLi2MnO3·(1-x)Li NimConMn1-m-nO2,式中:0.2≤x≤0.9、0.1≤m<1、0≤n≤0.5。A high-capacity lithium-rich layered crystal structure lithium battery cathode material, the structure is that a layer of LiNbO 3 is coated on the particle surface of the powdery lithium-rich layered crystal material, wherein the chemical formula of the powdered lithium-rich layered crystal material is xLi 2 MnO 3 ·(1-x)Li Ni m Co n Mn 1-mn O 2 , where: 0.2≤x≤0.9, 0.1≤m<1, 0≤n≤0.5.

所述LiNbO3的质量占材料总质量的1-10%。The mass of LiNbO 3 accounts for 1-10% of the total mass of the material.

所述包覆层LiNbO3的厚度小于1μm。The thickness of the cladding layer LiNbO 3 is less than 1 μm.

一种所述高容量富锂层状晶体结构锂电池正极材料的制备方法,步骤如下:A preparation method of the high-capacity lithium-rich layered crystal structure lithium battery positive electrode material, the steps are as follows:

(一)富锂层状[xMn·(1-x)NimConMn1-m-n][OH]2前驱体的制备:(1) Preparation of Li-rich layered [xMn·(1-x)Ni m Co n Mn 1-mn ][OH] 2 precursor:

1)以摩尔比Ni:Co:Mn=(1-x)m:(1-x)n:[(1-x)(1-m-n)+x]的比例配制镍钴锰硫酸盐溶液,其中0.2≤x≤0.9、0.1≤m<1、0≤n≤0.5;0<m+n<1;1) Prepare nickel-cobalt-manganese sulfate solution at the ratio of molar ratio Ni:Co:Mn=(1-x)m:(1-x)n:[(1-x)(1-m-n)+x], wherein 0.2≤x≤0.9, 0.1≤m<1, 0≤n≤0.5; 0<m+n<1;

2)以1L/h的速度向反应釜中匀速加入配制好的上述盐溶液,通过浓度为2-10M的氢氧化钠溶液在pH值为10-12的条件下进行共沉淀反应得到前驱体固液混合物;2) Add the prepared above-mentioned salt solution into the reaction kettle at a uniform speed at a rate of 1L/h, and carry out a co-precipitation reaction with a sodium hydroxide solution with a concentration of 2-10M at a pH value of 10-12 to obtain a precursor solid liquid mixture;

3)在所有盐溶液完全注入反应釜后停止反应,固液混合物通过离心过滤分离,用去离子水洗涤至中性后,在80-200℃下烘干4-10h,得到分子式为[xMn·(1-x)NimConMn1-m-n][OH]2,式中0.2≤x≤0.9、0.1≤m<1、0≤n≤0.5、0<m+n<1的前驱体;3) Stop the reaction after all the salt solution is completely injected into the reactor, the solid-liquid mixture is separated by centrifugal filtration, washed with deionized water until neutral, and dried at 80-200°C for 4-10h to obtain the molecular formula [xMn· (1-x)Ni m Co n Mn 1-mn ][OH] 2 , where 0.2≤x≤0.9, 0.1≤m<1, 0≤n≤0.5, 0<m+n<1 is a precursor;

(二)高温固相法制备富锂层状晶体结构xLi2MnO3·(1-x)Li NimConMn1-m-nO2颗粒:(2) Preparation of lithium-rich layered crystal structure xLi 2 MnO 3 ·(1-x)Li Ni m Co n Mn 1-mn O 2 particles by high-temperature solid-state method:

1)将上述前驱体与碳酸锂粉末按摩尔比1:1-2混合均匀;1) Mix the above precursor and lithium carbonate powder evenly at a molar ratio of 1:1-2;

2)将上述混合物置于马弗炉中进行多段焙烧,焙烧温度为300-1200℃,焙烧时间8-30h,然后经冷却、破碎、过筛得到待包覆的富锂层状晶体结构的粉体颗粒xLi2MnO3·(1-x)Li NimConMn1-m-nO2,式中0.2≤x≤0.9、0.1≤m<1、0≤n≤0.5、0<m+n<1;2) Put the above mixture in a muffle furnace for multi-stage calcination, the calcination temperature is 300-1200 ℃, the calcination time is 8-30h, and then the powder with lithium-rich layered crystal structure to be coated is obtained by cooling, crushing and sieving Bulk particles xLi 2 MnO 3 ·(1-x)Li Ni m Co n Mn 1-mn O 2 , where 0.2≤x≤0.9, 0.1≤m<1, 0≤n≤0.5, 0<m+n<1;

(三)用LiNbO3包覆xLi2MnO3·(1-x)LiNimConMn1-m-nO2颗粒:( 3 ) Coating xLi 2 MnO 3 ·(1-x)LiNi m Co n Mn 1-mn O 2 particles with LiNbO 3 :

1)将上述焙烧得到的富锂层状晶体结构的粉体颗粒和乙醇按质量比为1:5-20放入搅拌器中以每分钟50-500转的搅拌速度使粉体颗粒悬浮;1) Put the powder particles of the lithium-rich layered crystal structure obtained by the above roasting and ethanol in a mass ratio of 1:5-20 into a stirrer to suspend the powder particles at a stirring speed of 50-500 revolutions per minute;

2)称取一定量的乙醇铌倒入搅拌器中,乙醇铌的用量是以最后LiNbO3所占产物总质量所需要的比例来计算确定,乙醇铌在旋转的乙醇中均匀水解于富锂层状晶体结构的粉体颗粒表面;2) Weigh a certain amount of niobium ethoxide and pour it into the stirrer. The amount of niobium ethoxide is calculated based on the ratio of the final LiNbO 3 to the total mass of the product. Niobium ethoxide is evenly hydrolyzed in the lithium-rich layer in the rotating ethanol Surface of powder particles with crystal structure;

3)称取与乙醇铌相同化学计量比的碳酸锂加入搅拌器中,使其分散均匀;3) Weigh lithium carbonate with the same stoichiometric ratio as niobium ethoxide and add it to the agitator to disperse it evenly;

4)在搅拌的过程中加热至80℃,搅拌至乙醇完全挥发后将其置于烘箱中100℃干燥5个小时,得到块状物;4) Heat to 80°C during the stirring process, stir until the ethanol is completely volatilized, then place it in an oven and dry at 100°C for 5 hours to obtain a lump;

5)将上述块状物置于马弗炉中在500-800℃温度下焙烧10小时即可得到LiNbO3包覆的xLi2MnO3·(1-x)LiNimConMn1-m-nO2颗粒的高容量富锂层状晶体结构锂电池正极材料。5) Put the above block in a muffle furnace and bake it at 500-800°C for 10 hours to get LiNbO 3 coated xLi 2 MnO 3 ·(1-x)LiNi m Co n Mn 1-mn O 2 Granular high-capacity lithium-rich layered crystal structure lithium battery cathode material.

本发明的优点是:该锂电池正极材料与传统的锂电池正极材料相比有以下优点:1)比容量高,最高比容量能达到280mAh/g;2)经过LiNbO3包覆的富锂层状结构材料与未包覆之前相比表现出更高的充放电比容量和循环寿命;3)在高电压大电流密度下具有更加优良的电化学性能。The advantages of the present invention are: compared with traditional lithium battery positive electrode materials, the lithium battery positive electrode material has the following advantages: 1) High specific capacity, the highest specific capacity can reach 280mAh/g; 2) Lithium-rich layer coated with LiNbO 3 Compared with uncoated materials, the material with the shape structure exhibits higher charge-discharge specific capacity and cycle life; 3) it has better electrochemical performance at high voltage and high current density.

附图说明 Description of drawings

图1为实施例1富锂层状晶体颗粒包覆前后的XRD图。FIG. 1 is the XRD pattern of Example 1 before and after coating lithium-rich layered crystal particles.

图2为实施例1富锂层状晶体颗粒包覆前后的扫描电镜照片。FIG. 2 is a scanning electron micrograph of Example 1 before and after coating lithium-rich layered crystal particles.

图3为实施例1富锂层状晶体颗粒包覆前后的300次1C循环曲线图。Fig. 3 is a graph of 300 1C cycles before and after coating the lithium-rich layered crystal particles in Example 1.

图4为实施例1富锂层状晶体颗粒包覆前后的首次充放电曲线图。FIG. 4 is the first charge and discharge curves before and after coating the lithium-rich layered crystal particles in Example 1. FIG.

图5为实施例5富锂层状晶体颗粒包覆前后在大电流充放电条件下的首次充放电曲线图。Fig. 5 is the first charge and discharge curves under high current charge and discharge conditions before and after coating the lithium-rich layered crystal particles in Example 5.

图6为实施例6富锂层状晶体颗粒包覆前后的20次0.1C循环曲线图。Fig. 6 is a graph of 20 cycles at 0.1C before and after coating the lithium-rich layered crystal particles in Example 6.

具体实施方式 Detailed ways

实施例1:Example 1:

一种高容量富锂层状晶体结构锂电池正极材料的制备方法:A preparation method of a high-capacity lithium-rich layered crystal structure lithium battery positive electrode material:

1)未包覆LiNbO3的xLi2MnO3·(1-x)LiNimConMn1-m-nO2颗粒的制备:1) Preparation of xLi 2 MnO 3 ·(1-x)LiNi m Co n Mn 1-mn O 2 particles without LiNbO 3 coating:

用2767g硫酸镍、2924g硫酸钴、7044g硫酸锰配制浓度为2.5M的盐溶液25L。将配制好的溶液以1L/h的速度注入转速为200rps的反应釜中,同时注入10M的NaOH溶液,注意调节碱溶液流速,保持pH值在10-11之间,至盐溶液完全注入反应釜中,前驱体制备反应完成。将反应完成后的固液混合物通过离心分离,洗涤至中性后在120℃下烘干6h。将烘干后的前驱体与碳酸锂按摩尔比1:1.5混合均匀后在马弗炉中950℃焙烧16h,焙烧后的材料经过破碎过筛得到均一的富锂层状晶体结构的粉体颗粒材料0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2With 2767g of nickel sulfate, 2924g of cobalt sulfate and 7044g of manganese sulfate, 25L of salt solution with a concentration of 2.5M was prepared. Inject the prepared solution at a rate of 1L/h into the reaction kettle with a rotation speed of 200rps, and inject 10M NaOH solution at the same time, pay attention to adjusting the flow rate of the alkali solution, and keep the pH value between 10-11 until the salt solution is completely injected into the reaction kettle , the precursor preparation reaction is complete. After the reaction, the solid-liquid mixture was separated by centrifugation, washed to neutrality and then dried at 120°C for 6 hours. Mix the dried precursor and lithium carbonate uniformly at a molar ratio of 1:1.5, and then roast in a muffle furnace at 950°C for 16 hours. The roasted material is crushed and sieved to obtain a uniform lithium-rich layered crystal structure powder. Material 0.5Li 2 MnO 3 ·0.5LiNi 1/3 Co 1/3 Mn 1/3 O 2 .

2)包覆LiNbO3的xLi2MnO3·(1-x)LiNimConMn1-m-nO2颗粒的制备:2) Preparation of xLi 2 MnO 3 ·(1-x) LiNi m Co n Mn 1-mn O 2 particles coated with LiNbO 3 :

将上述制得的球形富锂层状晶体结构的粉体颗粒材料取出9.6克与适量乙醇置于搅拌器中快速搅拌中使其悬浮。称取0.8609克乙醇铌倒入搅拌器中,乙醇铌在高速旋转的乙醇中均匀降解于球形富锂层状晶体结构的粉体颗粒表面。再称取0.1克碳酸锂加入搅拌器中,使其分散均匀。在搅拌的过程中对整个体系加热至80℃,搅拌至乙醇完全挥发后将其置于烘箱中100℃干燥5个小时,得到块状物体。将上面的混合块状物置于马弗炉中700℃焙烧10小时即可得到LiNbO3包覆来增加0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2颗粒产物。最终LiNbO3的质量占总产物的4%,包覆层LiNbO3的厚度为20-100nm。Take out 9.6 grams of the above-prepared spherical lithium-rich layered crystal powder granular material and place an appropriate amount of ethanol in a stirrer for rapid stirring to suspend. Weigh 0.8609 g of niobium ethoxide and pour it into a stirrer, and the niobium ethoxide is uniformly degraded on the surface of the powder particles with spherical lithium-rich layered crystal structure in the high-speed rotating ethanol. Then weigh 0.1 gram of lithium carbonate and add it to the stirrer to disperse it evenly. During the stirring process, the whole system was heated to 80° C., stirred until the ethanol was completely volatilized, and then dried in an oven at 100° C. for 5 hours to obtain a lump. The above mixed block is placed in a muffle furnace and calcined at 700°C for 10 hours to obtain a LiNbO 3 coating to increase the 0.5Li 2 MnO 3 ·0.5LiNi 1/3 Co 1/3 Mn 1/3 O 2 particle product. The final mass of LiNbO 3 accounts for 4% of the total product, and the thickness of the cladding layer LiNbO 3 is 20-100nm.

将包覆前后两种材料分别制成2032扣式电池,在2.0-4.8V 0.1C首次放电比容量分别为265mAh/g和261mAh/g,如图3所示,2.0-4.8V 1C 300次循环后容量保持率分别为37.7%和53.6%,如见图4所示;在55℃高温下2.0-4.8V 1C循环50次后容量保持率分别为79%和88%。The two materials before and after coating were made into 2032 button batteries, and the first discharge specific capacity at 2.0-4.8V 0.1C was 265mAh/g and 261mAh/g respectively, as shown in Figure 3, 2.0-4.8V 1C 300 cycles The post-capacity retention rates were 37.7% and 53.6%, respectively, as shown in Figure 4; the capacity retention rates were 79% and 88% after 50 cycles of 2.0-4.8V 1C at a high temperature of 55°C.

实施例2:Example 2:

一种高容量富锂层状晶体结构锂电池正极材料的制备方法:A preparation method of a high-capacity lithium-rich layered crystal structure lithium battery positive electrode material:

1)未包覆LiNbO3的xLi2MnO3·(1-x)LiNimConMn1-m-nO2颗粒的制备:1) Preparation of xLi 2 MnO 3 ·(1-x)LiNi m Co n Mn 1-mn O 2 particles without LiNbO 3 coating:

用2767g硫酸镍、2924g硫酸钴、7044g硫酸锰配制浓度为2.5M的盐溶液25L。将配制好的溶液以1L/h的速度注入转速为200rps的反应釜中,同时注入10M的NaOH溶液,注意调节碱溶液流速,保持pH值在10-11之间,至盐溶液完全注入反应釜中,前驱体制备反应完成。将反应完成后的固液混合物通过离心分离,洗涤至中性后在120℃下烘干6h。将烘干后的前驱体与碳酸锂按摩尔比1:1.5混合均匀后在马弗炉中950℃焙烧16h,焙烧后的材料经过破碎过筛得到均一的富锂层状晶体结构的粉体颗粒材料0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2With 2767g of nickel sulfate, 2924g of cobalt sulfate and 7044g of manganese sulfate, 25L of salt solution with a concentration of 2.5M was prepared. Inject the prepared solution at a rate of 1L/h into the reaction kettle with a rotation speed of 200rps, and inject 10M NaOH solution at the same time, pay attention to adjusting the flow rate of the alkali solution, and keep the pH value between 10-11 until the salt solution is completely injected into the reaction kettle , the precursor preparation reaction is complete. After the reaction, the solid-liquid mixture was separated by centrifugation, washed to neutrality and then dried at 120°C for 6 hours. Mix the dried precursor and lithium carbonate uniformly at a molar ratio of 1:1.5, and then roast in a muffle furnace at 950°C for 16 hours. The roasted material is crushed and sieved to obtain a uniform lithium-rich layered crystal structure powder. Material 0.5Li 2 MnO 3 ·0.5LiNi 1/3 Co 1/3 Mn 1/3 O 2 .

2)包覆LiNbO3的xLi2MnO3·(1-x)LiNimConMn1-m-nO2颗粒的制备:2) Preparation of xLi 2 MnO 3 ·(1-x) LiNi m Co n Mn 1-mn O 2 particles coated with LiNbO 3 :

将上述制得的球形富锂层状晶体结构的粉体颗粒材料取出9.2克与适量乙醇置于搅拌器中快速搅拌中使其悬浮。称取1.7219克乙醇铌倒入搅拌器中,乙醇铌在高速旋转的乙醇中均匀降解于球形富锂层状晶体结构的粉体颗粒表面。再称取0.2克碳酸锂加入搅拌器中,使其分散均匀。在搅拌的过程中对整个体系加热至80℃,搅拌至乙醇完全挥发后将其置于烘箱中100℃干燥5个小时,得到块状物体。将上面的混合块状物置于马弗炉中700℃焙烧10小时即可得到LiNbO3包覆来增加0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2颗粒产物。最终LiNbO3的质量占总产物的8%,包覆层LiNbO3的厚度为30-150nm。Take out 9.2 grams of the above-prepared spherical lithium-rich layered crystal powder granular material and put an appropriate amount of ethanol in a stirrer for rapid stirring to suspend. Weigh 1.7219 g of niobium ethoxide and pour it into a stirrer, and the niobium ethoxide is uniformly degraded on the surface of the powder particles with a spherical lithium-rich layered crystal structure in ethanol rotating at high speed. Then weigh 0.2 g of lithium carbonate and add it to the stirrer to make it evenly dispersed. During the stirring process, the whole system was heated to 80° C., stirred until the ethanol was completely volatilized, and then dried in an oven at 100° C. for 5 hours to obtain a lump. The above mixed block is placed in a muffle furnace and calcined at 700°C for 10 hours to obtain a LiNbO 3 coating to increase the 0.5Li 2 MnO 3 ·0.5LiNi 1/3 Co 1/3 Mn 1/3 O 2 particle product. The final mass of LiNbO 3 accounts for 8% of the total product, and the thickness of the cladding layer LiNbO 3 is 30-150nm.

将包覆前后两种材料分别制成2032扣式电池,在2.0-4.8V 0.1C首次放电比容量分别为262.3mAh/g和243.2mAh/g;2.0-4.8V 1C 100次循环后容量保持率分别为77%和89%;在55℃高温下2.0-4.8V 1C循环50次后容量保持率分别为79%和90%。The two materials before and after coating were made into 2032 button batteries, and the first discharge specific capacity at 2.0-4.8V 0.1C was 262.3mAh/g and 243.2mAh/g respectively; the capacity retention rate after 100 cycles at 2.0-4.8V 1C They are 77% and 89%, respectively; after 50 cycles of 2.0-4.8V 1C at a high temperature of 55 °C, the capacity retention rates are 79% and 90%, respectively.

实施例3:Example 3:

一种高容量富锂层状晶体结构锂电池正极材料的制备方法:A preparation method of a high-capacity lithium-rich layered crystal structure lithium battery positive electrode material:

1)未包覆LiNbO3的xLi2MnO3·(1-x)LiNimConMn1-m-nO2颗粒的制备:1) Preparation of xLi 2 MnO 3 ·(1-x)LiNi m Co n Mn 1-mn O 2 particles without LiNbO 3 coating:

用2767g硫酸镍、2924g硫酸钴、7044g硫酸锰配制浓度为2.5M的盐溶液25L。将配制好的溶液以1L/h的速度注入转速为200rps的反应釜中,同时注入10M的NaOH溶液,注意调节碱溶液流速,保持pH值在10-11之间,至盐溶液完全注入反应釜中,前驱体制备反应完成。将反应完成后的固液混合物通过离心分离,洗涤至中性后在120℃下烘干6h。将烘干后的前驱体与碳酸锂按摩尔比1:1.5混合均匀后在马弗炉中950℃焙烧16h,焙烧后的材料经过破碎过筛得到均一的富锂层状晶体结构的粉体颗粒材料0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2With 2767g of nickel sulfate, 2924g of cobalt sulfate and 7044g of manganese sulfate, 25L of salt solution with a concentration of 2.5M was prepared. Inject the prepared solution at a rate of 1L/h into the reaction kettle with a rotation speed of 200rps, and inject 10M NaOH solution at the same time, pay attention to adjusting the flow rate of the alkali solution, and keep the pH value between 10-11 until the salt solution is completely injected into the reaction kettle , the precursor preparation reaction is complete. After the reaction, the solid-liquid mixture was separated by centrifugation, washed to neutrality and then dried at 120°C for 6 hours. Mix the dried precursor and lithium carbonate uniformly at a molar ratio of 1:1.5, and then roast in a muffle furnace at 950°C for 16 hours. The roasted material is crushed and sieved to obtain a uniform lithium-rich layered crystal structure powder. Material 0.5Li 2 MnO 3 ·0.5LiNi 1/3 Co 1/3 Mn 1/3 O 2 .

2)包覆LiNbO3的xLi2MnO3·(1-x)LiNimConMn1-m-nO2颗粒的制备:2) Preparation of xLi 2 MnO 3 ·(1-x) LiNi m Co n Mn 1-mn O 2 particles coated with LiNbO 3 :

将上述制得的球形富锂层状晶体结构的粉体颗粒材料取出9.6克与适量乙醇置于搅拌器中快速搅拌中使其悬浮。称取0.4305克乙醇铌倒入搅拌器中,乙醇铌在高速旋转的乙醇中均匀降解于球形富锂层状晶体结构的粉体颗粒表面。再称取0.05克碳酸锂加入搅拌器中,使其分散均匀。在搅拌的过程中对整个体系加热至80℃,搅拌至乙醇完全挥发后将其置于烘箱中100℃干燥5个小时,得到块状物体。将上面的混合块状物置于马弗炉中700℃焙烧10小时即可得到LiNbO3包覆来增加0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2颗粒产物。最终LiNbO3的质量占总产物的2%,包覆层LiNbO3的厚度为150-80nm。Take out 9.6 grams of the above-prepared spherical lithium-rich layered crystal powder granular material and place an appropriate amount of ethanol in a stirrer for rapid stirring to suspend. Weigh 0.4305 g of niobium ethoxide and pour it into a stirrer, and the niobium ethoxide is uniformly degraded on the surface of the powder particles with spherical lithium-rich layered crystal structure in the high-speed rotating ethanol. Then weigh 0.05 gram of lithium carbonate and add it into the stirrer to make it disperse evenly. During the stirring process, the whole system was heated to 80° C., stirred until the ethanol was completely volatilized, and then dried in an oven at 100° C. for 5 hours to obtain a lump. The above mixed block is placed in a muffle furnace and calcined at 700°C for 10 hours to obtain a LiNbO 3 coating to increase the 0.5Li 2 MnO 3 ·0.5LiNi 1/3 Co 1/3 Mn 1/3 O 2 particle product. The final mass of LiNbO 3 accounts for 2% of the total product, and the thickness of the cladding layer LiNbO 3 is 150-80nm.

将包覆前后两种材料分别制成2032扣式电池,在2.0-4.8V 0.1C首次放电比容量分别为262.3mAh/g和257.6mAh/g;2.0-4.8V 1C 100次循环后容量保持率分别为77%和83%;在55℃高温下2.0-4.8V 1C循环50次后容量保持率分别为79%和85%。The two materials before and after coating were made into 2032 button batteries, and the first discharge specific capacity at 2.0-4.8V 0.1C was 262.3mAh/g and 257.6mAh/g respectively; the capacity retention rate after 100 cycles at 2.0-4.8V 1C They are 77% and 83%, respectively; after 50 cycles of 2.0-4.8V 1C at a high temperature of 55 °C, the capacity retention rates are 79% and 85%, respectively.

实施例4:Example 4:

一种高容量富锂层状晶体结构锂电池正极材料的制备方法:A preparation method of a high-capacity lithium-rich layered crystal structure lithium battery positive electrode material:

1)未包覆LiNbO3的xLi2MnO3·(1-x)LiNimConMn1-m-nO2颗粒的制备:1) Preparation of xLi 2 MnO 3 ·(1-x)LiNi m Co n Mn 1-mn O 2 particles without LiNbO 3 coating:

用3873g硫酸镍、4192g硫酸钴、5635g硫酸锰配制浓度为2.5M的盐溶液25L。将配制好的溶液以1L/h的速度注入转速为200rps的反应釜中,同时注入10M的NaOH溶液,注意调节碱溶液流速,保持pH值在10-11之间,至盐溶液完全注入反应釜中,前驱体制备反应完成。将反应完成后的固液混合物通过离心分离,洗涤至中性后在120℃下烘干6h。将烘干后的前驱体与碳酸锂按摩尔比1:1.3混合均匀后在马弗炉中950℃焙烧16h,焙烧后的材料经过破碎过筛得到均一的富锂层状晶体结构的粉体颗粒材料0.3Li2MnO3·0.7LiNi1/3Co1/3Mn1/3O225L of salt solution with a concentration of 2.5M was prepared with 3873g of nickel sulfate, 4192g of cobalt sulfate and 5635g of manganese sulfate. Inject the prepared solution at a rate of 1L/h into the reaction kettle with a rotation speed of 200rps, and inject 10M NaOH solution at the same time, pay attention to adjusting the flow rate of the alkali solution, and keep the pH value between 10-11 until the salt solution is completely injected into the reaction kettle , the precursor preparation reaction is complete. After the reaction, the solid-liquid mixture was separated by centrifugation, washed to neutrality and then dried at 120°C for 6 hours. Mix the dried precursor and lithium carbonate uniformly at a molar ratio of 1:1.3, and then roast in a muffle furnace at 950°C for 16 hours. The roasted material is crushed and sieved to obtain a uniform lithium-rich layered crystal structure powder. Material 0.3Li 2 MnO 3 ·0.7LiNi 1/3 Co 1/3 Mn 1/3 O 2 .

2)包覆LiNbO3的xLi2MnO3·(1-x)LiNimConMn1-m-nO2颗粒的制备:2) Preparation of xLi 2 MnO 3 ·(1-x) LiNi m Co n Mn 1-mn O 2 particles coated with LiNbO 3 :

将上述制得的球形富锂层状晶体结构的粉体颗粒材料取出9.6克与适量乙醇置于搅拌器中快速搅拌中使其悬浮。称取0.8609克乙醇铌倒入搅拌器中,乙醇铌在高速旋转的乙醇中均匀降解于球形富锂层状晶体结构的粉体颗粒表面。再称取0.1克碳酸锂加入搅拌器中,使其分散均匀。在搅拌的过程中对整个体系加热至80℃,搅拌至乙醇完全挥发后将其置于烘箱中100℃干燥5个小时,得到块状物体。将上面的混合块状物置于马弗炉中700℃焙烧10小时即可得到LiNbO3包覆来增加0.3Li2MnO3·0.7LiNi1/3Co1/3Mn1/3O2颗粒产物。最终LiNbO3的质量占总产物的4%,包覆层LiNbO3的厚度为20-100nm。Take out 9.6 grams of the above-prepared spherical lithium-rich layered crystal powder granular material and place an appropriate amount of ethanol in a stirrer for rapid stirring to suspend. Weigh 0.8609 g of niobium ethoxide and pour it into a stirrer, and the niobium ethoxide is uniformly degraded on the surface of the powder particles with spherical lithium-rich layered crystal structure in the high-speed rotating ethanol. Then weigh 0.1 gram of lithium carbonate and add it to the stirrer to disperse it evenly. During the stirring process, the whole system was heated to 80° C., stirred until the ethanol was completely volatilized, and then dried in an oven at 100° C. for 5 hours to obtain a lump. The above mixed block is placed in a muffle furnace and calcined at 700°C for 10 hours to obtain a LiNbO 3 coating to increase the 0.3Li 2 MnO 3 ·0.7LiNi 1/3 Co 1/3 Mn 1/3 O 2 particle product. The final mass of LiNbO 3 accounts for 4% of the total product, and the thickness of the cladding layer LiNbO 3 is 20-100nm.

将包覆前后两种材料分别制成2032扣式电池,在2.0-4.8V 0.1C首次放电比容量分别为285.7mAh/g和271.9mAh/g;2.0-4.8V 1C 100次循环后容量保持率分别为73%和86%;在55℃高温下2.0-4.8V 1C循环50次后容量保持率分别为75%和84%。The two materials before and after coating were made into 2032 button batteries, and the specific capacities of the first discharge at 2.0-4.8V 0.1C were 285.7mAh/g and 271.9mAh/g respectively; the capacity retention rate after 100 cycles at 2.0-4.8V 1C They were 73% and 86%, respectively; the capacity retention rates were 75% and 84% after 50 cycles at 2.0-4.8V 1C at a high temperature of 55°C.

实施例5:Example 5:

一种高容量富锂层状晶体结构锂电池正极材料的制备方法:A preparation method of a high-capacity lithium-rich layered crystal structure lithium battery positive electrode material:

1)未包覆LiNbO3的xLi2MnO3·(1-x)LiNimConMn1-m-nO2颗粒的制备:1) Preparation of xLi 2 MnO 3 ·(1-x)LiNi m Co n Mn 1-mn O 2 particles without LiNbO 3 coating:

用1660g硫酸镍、1797g硫酸钴、8452g硫酸锰配制浓度为2.5M的盐溶液25L。将配制好的溶液以1L/h的速度注入转速为200rps的反应釜中,同时注入10M的NaOH溶液,注意调节碱溶液流速,保持pH值在10-11之间,至盐溶液完全注入反应釜中,前驱体制备反应完成。将反应完成后的固液混合物通过离心分离,洗涤至中性后在120℃下烘干6h。将烘干后的前驱体与碳酸锂按摩尔比1:1.7混合均匀后在马弗炉中950℃焙烧16h,焙烧后的材料经过破碎过筛得到均一的富锂层状晶体结构的粉体颗粒材料0.7Li2MnO3·0.3LiNi1/3Co1/3Mn1/3O2Prepare 25L of salt solution with a concentration of 2.5M with 1660g of nickel sulfate, 1797g of cobalt sulfate and 8452g of manganese sulfate. Inject the prepared solution at a rate of 1L/h into the reaction kettle with a rotation speed of 200rps, and inject 10M NaOH solution at the same time, pay attention to adjusting the flow rate of the alkali solution, and keep the pH value between 10-11 until the salt solution is completely injected into the reaction kettle , the precursor preparation reaction is complete. After the reaction, the solid-liquid mixture was separated by centrifugation, washed to neutrality and then dried at 120°C for 6 hours. Mix the dried precursor and lithium carbonate uniformly at a molar ratio of 1:1.7, and then roast in a muffle furnace at 950°C for 16 hours. The roasted material is crushed and sieved to obtain a uniform lithium-rich layered crystal structure powder. Material 0.7Li 2 MnO 3 ·0.3LiNi 1/3 Co 1/3 Mn 1/3 O 2 .

2)包覆LiNbO3的xLi2MnO3·(1-x)LiNimConMn1-m-nO2颗粒的制备:2) Preparation of xLi 2 MnO 3 ·(1-x) LiNi m Co n Mn 1-mn O 2 particles coated with LiNbO 3 :

将上述制得的球形富锂层状晶体结构的粉体颗粒材料取出9.6克与适量乙醇置于搅拌器中快速搅拌中使其悬浮。称取0.8609克乙醇铌倒入搅拌器中,乙醇铌在高速旋转的乙醇中均匀降解于球形富锂层状晶体结构的粉体颗粒表面。再称取0.1克碳酸锂加入搅拌器中,使其分散均匀。在搅拌的过程中对整个体系加热至80℃,搅拌至乙醇完全挥发后将其置于烘箱中100℃干燥5个小时,得到块状物体。将上面的混合块状物置于马弗炉中700℃焙烧10小时即可得到LiNbO3包覆来增加0.7Li2MnO3·0.3LiNi1/3Co1/3Mn1/3O2颗粒产物。最终LiNbO3的质量占总产物的4%,包覆层LiNbO3的厚度为20-100nm。Take out 9.6 grams of the above-prepared spherical lithium-rich layered crystal powder granular material and place an appropriate amount of ethanol in a stirrer for rapid stirring to suspend. Weigh 0.8609 g of niobium ethoxide and pour it into a stirrer, and the niobium ethoxide is uniformly degraded on the surface of the powder particles with spherical lithium-rich layered crystal structure in the high-speed rotating ethanol. Then weigh 0.1 gram of lithium carbonate and add it to the stirrer to disperse it evenly. During the stirring process, the whole system was heated to 80° C., stirred until the ethanol was completely volatilized, and then dried in an oven at 100° C. for 5 hours to obtain a lump. Put the above mixed block in a muffle furnace and bake at 700°C for 10 hours to obtain LiNbO 3 coating to increase the 0.7Li 2 MnO 3 ·0.3LiNi 1/3 Co 1/3 Mn 1/3 O 2 particle product. The final mass of LiNbO 3 accounts for 4% of the total product, and the thickness of the cladding layer LiNbO 3 is 20-100nm.

将包覆前后两种材料分别制成2032扣式电池后2.0-4.8V 0.1C首次放电比容量分别为252.3mAh/g和247.6mAh/g;2.0-4.8V 1C 100次循环后容量保持率分别为81%和87%;2.0-4.8V 3C首次放电比容量分别为159.3mAh/g和178.6mAh/g,如见图5所示,倍率性能明显提高;在55℃高温下3.0-4.3V 1C循环50次后容量保持率分别为83%和90%。After the two materials before and after coating were made into 2032 button batteries, the first discharge specific capacities at 2.0-4.8V 0.1C were 252.3mAh/g and 247.6mAh/g respectively; the capacity retention rates after 100 cycles at 2.0-4.8V 1C were respectively 81% and 87%; 2.0-4.8V 3C first discharge specific capacity is 159.3mAh/g and 178.6mAh/g respectively, as shown in Figure 5, the rate performance is significantly improved; 3.0-4.3V 1C at a high temperature of 55°C The capacity retention rates after 50 cycles were 83% and 90%, respectively.

实施例6:Embodiment 6:

一种高容量富锂层状晶体结构锂电池正极材料的制备方法:A preparation method of a high-capacity lithium-rich layered crystal structure lithium battery positive electrode material:

1)未包覆LiNbO3的xLi2MnO3·(1-x)LiNimConMn1-m-nO2颗粒的制备:1) Preparation of xLi 2 MnO 3 ·(1-x)LiNi m Co n Mn 1-mn O 2 particles without LiNbO 3 coating:

用5809g硫酸镍、6868g硫酸锰配制浓度为2.5M的盐溶液25L。将配制好的溶液以1L/h的速度注入转速为200rps的反应釜中,同时注入10M的NaOH溶液,注意调节碱溶液流速,保持pH值在10-11之间,至盐溶液完全注入反应釜中,前驱体制备反应完成。将反应完成后的固液混合物通过离心分离,洗涤至中性后在120℃下烘干6h。将烘干后的前驱体与碳酸锂按摩尔比1:1.3混合均匀后在马弗炉中950℃焙烧16h,焙烧后的材料经过破碎过筛得到均一的富锂层状晶体结构的粉体颗粒材料0.3Li2MnO3·0.7LiNi0.5Mn0.5O2Use 5809g of nickel sulfate and 6868g of manganese sulfate to prepare 25L of salt solution with a concentration of 2.5M. Inject the prepared solution at a rate of 1L/h into the reaction kettle with a rotation speed of 200rps, and inject 10M NaOH solution at the same time, pay attention to adjusting the flow rate of the alkali solution, and keep the pH value between 10-11 until the salt solution is completely injected into the reaction kettle , the precursor preparation reaction is complete. After the reaction, the solid-liquid mixture was separated by centrifugation, washed to neutrality and then dried at 120°C for 6 hours. Mix the dried precursor and lithium carbonate uniformly at a molar ratio of 1:1.3, and then roast in a muffle furnace at 950°C for 16 hours. The roasted material is crushed and sieved to obtain a uniform lithium-rich layered crystal structure powder. Material 0.3Li 2 MnO 3 ·0.7LiNi 0.5 Mn 0.5 O 2 .

2)包覆LiNbO3的xLi2MnO3·(1-x)LiNimConMn1-m-nO2颗粒的制备:2) Preparation of xLi 2 MnO 3 ·(1-x) LiNi m Co n Mn 1-mn O 2 particles coated with LiNbO 3 :

将上述制得的球形富锂层状晶体结构的粉体颗粒材料取出9.6克与适量乙醇置于搅拌器中快速搅拌中使其悬浮。称取0.8609克乙醇铌倒入搅拌器中,乙醇铌在高速旋转的乙醇中均匀降解于球形富锂层状晶体结构的粉体颗粒表面。再称取0.1克碳酸锂加入搅拌器中,使其分散均匀。在搅拌的过程中对整个体系加热至80℃,搅拌至乙醇完全挥发后将其置于烘箱中100℃干燥5个小时,得到块状物体。将上面的混合块状物置于马弗炉中700℃焙烧10小时即可得到LiNbO3包覆来增加0.3Li2MnO3·0.7LiNi0.5Mn0.5O2颗粒产物。最终LiNbO3的质量占总产物的4%,包覆层LiNbO3的厚度为20-100nm。Take out 9.6 grams of the above-prepared spherical lithium-rich layered crystal powder granular material and place an appropriate amount of ethanol in a stirrer for rapid stirring to suspend. Weigh 0.8609 g of niobium ethoxide and pour it into a stirrer, and the niobium ethoxide is uniformly degraded on the surface of the powder particles with spherical lithium-rich layered crystal structure in the high-speed rotating ethanol. Then weigh 0.1 gram of lithium carbonate and add it to the stirrer to disperse it evenly. During the stirring process, the whole system was heated to 80° C., stirred until the ethanol was completely volatilized, and then dried in an oven at 100° C. for 5 hours to obtain a lump. The above mixed block is placed in a muffle furnace and calcined at 700°C for 10 hours to obtain a LiNbO 3 coating to increase the 0.3Li 2 MnO 3 ·0.7LiNi 0.5 Mn 0.5 O 2 particle product. The final mass of LiNbO 3 accounts for 4% of the total product, and the thickness of the cladding layer LiNbO 3 is 20-100nm.

将包覆前后两种材料分别制成2032扣式电池,在2.0-4.8V 0.1C首次放电比容量分别为244.5mAh/g和239.6mAh/g;2.0-4.8V 0.1C 20次循环后容量保持率分别为88.1%和94.5%,如图6所示,循环性能明显提高;在55℃高温下3.0-4.3V 1C循环20次后容量保持率分别为83%和90%。The two materials before and after coating were made into 2032 button batteries, and the specific capacities of the first discharge at 2.0-4.8V 0.1C were 244.5mAh/g and 239.6mAh/g respectively; the capacity was maintained after 20 cycles at 2.0-4.8V 0.1C The rates are 88.1% and 94.5%, respectively. As shown in Figure 6, the cycle performance is significantly improved; after 20 cycles of 3.0-4.3V 1C at a high temperature of 55 °C, the capacity retention rates are 83% and 90%, respectively.

综上所述,LiNbO3包覆材料与相比,循环稳定性、高温循环性能及热稳定性方面中的多个方面有较为明显的性能改善。To sum up, compared with LiNbO 3 coated materials, cycle stability, high temperature cycle performance and thermal stability have obvious performance improvements in many aspects.

尽管上面结合图对本发明进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨的情况下,还可以作出很多变形,这些均属于本发明的保护之内。Although the present invention has been described above in conjunction with the drawings, the present invention is not limited to the above-mentioned specific embodiments, and the above-mentioned specific embodiments are only illustrative, rather than restrictive. Under the inspiration, many modifications can be made without departing from the gist of the present invention, and these all belong to the protection of the present invention.

Claims (4)

1.一种高容量富锂层状晶体结构锂电池正极材料,其特征在于:结构为在粉末状富锂层状晶体材料的颗粒表面包覆一层LiNbO3,其中粉末状富锂层状晶体材料的化学式为xLi2MnO3·(1-x)Li NimConMn1-m-nO2,式中:0.2≤x≤0.9、0.1≤m<1、0≤n≤0.5。1. A high-capacity lithium-rich layered crystal structure lithium battery positive electrode material, characterized in that: the structure is to coat a layer of LiNbO 3 on the particle surface of the powdery lithium-rich layered crystal material, wherein the powdered lithium-rich layered crystal The chemical formula of the material is xLi 2 MnO 3 ·(1-x)Li Ni m Co n Mn 1-mn O 2 , where: 0.2≤x≤0.9, 0.1≤m<1, 0≤n≤0.5. 2.根据权利要求1所述高容量富锂层状晶体结构锂电池正极材料,其特征在于:所述LiNbO3的质量占材料总质量的1-10%。2. The anode material for a high-capacity lithium-rich layered crystal structure lithium battery according to claim 1, wherein the mass of the LiNbO 3 accounts for 1-10% of the total mass of the material. 3.根据权利要求1所述高容量富锂层状晶体结构锂电池正极材料,其特征在于:所述包覆层LiNbO3的厚度小于1μm。3. The anode material for a high-capacity lithium-rich layered crystal structure lithium battery according to claim 1, wherein the thickness of the coating layer LiNbO 3 is less than 1 μm. 4.一种如权利要求1所述高容量富锂层状晶体结构锂电池正极材料的制备方法,其特征在于步骤如下:4. A method for preparing a high-capacity lithium-rich layered crystal structure lithium battery positive electrode material as claimed in claim 1, characterized in that the steps are as follows: (一)富锂层状[xMn·(1-x)NimConMn1-m-n][OH]2前驱体的制备:(1) Preparation of Li-rich layered [xMn·(1-x)Ni m Co n Mn 1-mn ][OH] 2 precursor: 1)以摩尔比Ni:Co:Mn=(1-x)m:(1-x)n:[(1-x)(1-m-n)+x]的比例配制镍钴锰硫酸盐溶液,其中0.2≤x≤0.9、0.1≤m<1、0≤n≤0.5;0<m+n<1;1) Prepare nickel-cobalt-manganese sulfate solution at the ratio of molar ratio Ni:Co:Mn=(1-x)m:(1-x)n:[(1-x)(1-m-n)+x], wherein 0.2≤x≤0.9, 0.1≤m<1, 0≤n≤0.5; 0<m+n<1; 2)以1L/h的速度向反应釜中匀速加入配制好的上述盐溶液,通过浓度为2-10M的氢氧化钠溶液在pH值为10-12的条件下进行共沉淀反应得到前驱体固液混合物;2) Add the prepared above-mentioned salt solution into the reaction kettle at a uniform speed at a rate of 1L/h, and carry out a co-precipitation reaction with a sodium hydroxide solution with a concentration of 2-10M at a pH value of 10-12 to obtain a precursor solid liquid mixture; 3)在所有盐溶液完全注入反应釜后停止反应,固液混合物通过离心过滤分离,用去离子水洗涤至中性后,在80-200℃下烘干4-10h,得到分子式为[xMn·(1-x)NimConMn1-m-n][OH]2,式中0.2≤x≤0.9、0.1≤m<1、0≤n≤0.5、0<m+n<1的前驱体;3) Stop the reaction after all the salt solution is completely injected into the reactor, the solid-liquid mixture is separated by centrifugal filtration, washed with deionized water until neutral, and dried at 80-200°C for 4-10h to obtain the molecular formula [xMn· (1-x)Ni m Co n Mn 1-mn ][OH] 2 , where 0.2≤x≤0.9, 0.1≤m<1, 0≤n≤0.5, 0<m+n<1 is a precursor; (二)高温固相法制备富锂层状晶体结构xLi2MnO3·(1-x)Li NimConMn1-m-nO2颗粒:(2) Preparation of lithium-rich layered crystal structure xLi 2 MnO 3 ·(1-x)Li Ni m Co n Mn 1-mn O 2 particles by high-temperature solid-state method: 1)将上述前驱体与碳酸锂粉末按摩尔比1:1-2混合均匀;1) Mix the above precursor and lithium carbonate powder evenly at a molar ratio of 1:1-2; 2)将上述混合物置于马弗炉中进行多段焙烧,焙烧温度为300-1200℃,焙烧时间8-30h,然后经冷却、破碎、过筛得到待包覆的富锂层状晶体结构的粉体颗粒xLi2MnO3·(1-x)Li NimConMn1-m-nO2,式中0.2≤x≤0.9、0.1≤m<1、0≤n≤0.5、0<m+n<1;2) Put the above mixture in a muffle furnace for multi-stage calcination, the calcination temperature is 300-1200 ℃, the calcination time is 8-30h, and then the powder with lithium-rich layered crystal structure to be coated is obtained by cooling, crushing and sieving Bulk particles xLi 2 MnO 3 ·(1-x)Li Ni m Co n Mn 1-mn O 2 , where 0.2≤x≤0.9, 0.1≤m<1, 0≤n≤0.5, 0<m+n<1; (三)用LiNbO3包覆xLi2MnO3·(1-x)LiNimConMn1-m-nO2颗粒:( 3 ) Coating xLi 2 MnO 3 ·(1-x)LiNi m Co n Mn 1-mn O 2 particles with LiNbO 3 : 1)将上述焙烧得到的富锂层状晶体结构的粉体颗粒和乙醇按质量比为1:5-20放入搅拌器中以每分钟50-500转的搅拌速度使粉体颗粒悬浮;1) Put the powder particles of the lithium-rich layered crystal structure obtained by the above roasting and ethanol in a mass ratio of 1:5-20 into a stirrer to suspend the powder particles at a stirring speed of 50-500 revolutions per minute; 2)称取一定量的乙醇铌倒入搅拌器中,乙醇铌的用量是以最后LiNbO3所占产物总质量所需要的比例来计算确定,乙醇铌在旋转的乙醇中均匀水解于富锂层状晶体结构的粉体颗粒表面;2) Weigh a certain amount of niobium ethoxide and pour it into the stirrer. The amount of niobium ethoxide is calculated based on the ratio of the final LiNbO 3 to the total mass of the product. Niobium ethoxide is evenly hydrolyzed in the lithium-rich layer in the rotating ethanol Surface of powder particles with crystal structure; 3)称取与乙醇铌相同化学计量比的碳酸锂加入搅拌器中,使其分散均匀;3) Weigh lithium carbonate with the same stoichiometric ratio as niobium ethoxide and add it to the stirrer to disperse it evenly; 4)在搅拌的过程中加热至80℃,搅拌至乙醇完全挥发后将其置于烘箱中100℃干燥5个小时,得到块状物;4) Heat to 80°C during the stirring process, stir until the ethanol is completely volatilized, then place it in an oven and dry it at 100°C for 5 hours to obtain a lump; 5)将上述块状物置于马弗炉中在500-800℃温度下焙烧10小时即可得到LiNbO3包覆的xLi2MnO3·(1-x)LiNimConMn1-m-nO2颗粒的高容量富锂层状晶体结构锂电池正极材料。5) Put the above block in a muffle furnace and bake it at 500-800°C for 10 hours to get LiNbO 3 coated xLi 2 MnO 3 ·(1-x)LiNi m Co n Mn 1-mn O 2 Granular high-capacity lithium-rich layered crystal structure lithium battery cathode material.
CN2012101890016A 2012-06-08 2012-06-08 High-capacity lithium-rich layered crystalline structured lithium battery cathode material and preparation thereof Pending CN102694165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012101890016A CN102694165A (en) 2012-06-08 2012-06-08 High-capacity lithium-rich layered crystalline structured lithium battery cathode material and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012101890016A CN102694165A (en) 2012-06-08 2012-06-08 High-capacity lithium-rich layered crystalline structured lithium battery cathode material and preparation thereof

Publications (1)

Publication Number Publication Date
CN102694165A true CN102694165A (en) 2012-09-26

Family

ID=46859498

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012101890016A Pending CN102694165A (en) 2012-06-08 2012-06-08 High-capacity lithium-rich layered crystalline structured lithium battery cathode material and preparation thereof

Country Status (1)

Country Link
CN (1) CN102694165A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103956479A (en) * 2014-05-20 2014-07-30 天津理工大学 Preparation method of spherical high-capacity lithium-rich positive electrode material
CN104078667A (en) * 2013-03-25 2014-10-01 日电(中国)有限公司 Modified manganese-based laminated material, preparing method of modified manganese-based laminated material, and lithium ion battery containing modified manganese-based laminated material
CN104617286A (en) * 2015-01-18 2015-05-13 北京工业大学 Simple surface modification method of Li-rich cathode material
CN104979531A (en) * 2014-04-02 2015-10-14 郭建 Acid-pickling and coating method of lithium-rich manganese-based material
CN105428637A (en) * 2014-09-18 2016-03-23 宁德时代新能源科技有限公司 Lithium ion battery, positive electrode material of lithium ion battery and preparation method for positive electrode material
CN105493318A (en) * 2013-09-12 2016-04-13 丰田自动车株式会社 Active material composite powder, lithium battery, method for producing active material composite powder, and method for manufacturing lithium battery
CN106935832A (en) * 2017-03-31 2017-07-07 四川浩普瑞新能源材料股份有限公司 Lithium manganese phosphate composite, its preparation method and lithium ion battery
CN107159184A (en) * 2017-04-27 2017-09-15 河南师范大学 The method that hydro-thermal auxiliary prepares the lithium niobate photochemical catalyst of meso-hole structure three
CN109502657A (en) * 2018-12-26 2019-03-22 柳州申通汽车科技有限公司 A kind of preparation method of continous way nickel-cobalt-manganese ternary presoma
CN109524638A (en) * 2018-10-15 2019-03-26 中国科学院大学 Sodium ion conductor coats the preparation method of lithium-rich manganese-based layered cathode material
CN109638232A (en) * 2018-10-25 2019-04-16 宁夏汉尧石墨烯储能材料科技有限公司 A kind of preparation method of cladded type ternary cobalt nickel oxide manganses lithium anode material
WO2019095615A1 (en) * 2017-11-16 2019-05-23 中国科学院宁波材料技术与工程研究所 Positive electrode material having nano rivet structure and preparation method therefor
CN110148737A (en) * 2019-06-06 2019-08-20 山东省科学院能源研究所 A kind of lithium-rich manganese-based electrode material and preparation method thereof
CN110190276A (en) * 2019-07-10 2019-08-30 河南电池研究院有限公司 A kind of preparation method of niobium, aluminum co-doped lithium ion battery cathode material
WO2019200464A1 (en) * 2018-04-18 2019-10-24 Nano One Materials Corp. One-pot synthesis for linbo3 coated spinel
CN110911737A (en) * 2019-11-04 2020-03-24 浙江锋锂新能源科技有限公司 Sulfide-based all-ceramic solid-state battery
CN111435735A (en) * 2019-12-27 2020-07-21 蜂巢能源科技有限公司 Lithium-rich manganese-based positive electrode material and preparation method and application thereof
CN113611862A (en) * 2021-07-29 2021-11-05 广州大学 Preparation method of lithium niobate-coated positive electrode material, lithium niobate-coated positive electrode material and application
CN114005984A (en) * 2021-10-18 2022-02-01 中南大学 A kind of high-nickel ternary cathode material modified by lithium niobate coating and niobium doping coupling modification, preparation method and application thereof
WO2024131093A1 (en) * 2022-12-20 2024-06-27 天津巴莫科技有限责任公司 Lithium-rich layered oxide material, preparation method therefor, and use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244259A (en) * 2011-06-17 2011-11-16 中国科学院化学研究所 Composite lithium-rich anode material, its preparation method and its application
CN102394298A (en) * 2011-12-20 2012-03-28 中国电子科技集团公司第十八研究所 LiNi 0.133 Co 0.133 Mn 0.544 O 2 Method for coating material
CN102484249A (en) * 2009-08-27 2012-05-30 安维亚系统公司 Layer-layer lithium rich complex metal oxides with high specific capacity and excellent cycling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102484249A (en) * 2009-08-27 2012-05-30 安维亚系统公司 Layer-layer lithium rich complex metal oxides with high specific capacity and excellent cycling
CN102244259A (en) * 2011-06-17 2011-11-16 中国科学院化学研究所 Composite lithium-rich anode material, its preparation method and its application
CN102394298A (en) * 2011-12-20 2012-03-28 中国电子科技集团公司第十八研究所 LiNi 0.133 Co 0.133 Mn 0.544 O 2 Method for coating material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NARUMI OHTA, ET AL.: "LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries", 《ELECTROCHEMISTRY COMMUNICATIONS》 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104078667A (en) * 2013-03-25 2014-10-01 日电(中国)有限公司 Modified manganese-based laminated material, preparing method of modified manganese-based laminated material, and lithium ion battery containing modified manganese-based laminated material
CN105493318A (en) * 2013-09-12 2016-04-13 丰田自动车株式会社 Active material composite powder, lithium battery, method for producing active material composite powder, and method for manufacturing lithium battery
CN105493318B (en) * 2013-09-12 2020-01-17 丰田自动车株式会社 Active material composite powder, lithium battery, and method for producing the same
CN104979531A (en) * 2014-04-02 2015-10-14 郭建 Acid-pickling and coating method of lithium-rich manganese-based material
CN103956479A (en) * 2014-05-20 2014-07-30 天津理工大学 Preparation method of spherical high-capacity lithium-rich positive electrode material
CN105428637B (en) * 2014-09-18 2019-03-29 宁德时代新能源科技股份有限公司 Lithium ion battery and preparation method of anode material thereof
CN105428637A (en) * 2014-09-18 2016-03-23 宁德时代新能源科技有限公司 Lithium ion battery, positive electrode material of lithium ion battery and preparation method for positive electrode material
CN104617286A (en) * 2015-01-18 2015-05-13 北京工业大学 Simple surface modification method of Li-rich cathode material
CN106935832A (en) * 2017-03-31 2017-07-07 四川浩普瑞新能源材料股份有限公司 Lithium manganese phosphate composite, its preparation method and lithium ion battery
CN107159184B (en) * 2017-04-27 2021-05-04 河南师范大学 Hydrothermal-assisted preparation of mesoporous LiNb3O8 photocatalysts
CN107159184A (en) * 2017-04-27 2017-09-15 河南师范大学 The method that hydro-thermal auxiliary prepares the lithium niobate photochemical catalyst of meso-hole structure three
WO2019095615A1 (en) * 2017-11-16 2019-05-23 中国科学院宁波材料技术与工程研究所 Positive electrode material having nano rivet structure and preparation method therefor
WO2019200464A1 (en) * 2018-04-18 2019-10-24 Nano One Materials Corp. One-pot synthesis for linbo3 coated spinel
CN112074973B (en) * 2018-04-18 2024-04-05 纳诺万材料公司 For LiNbO 3 One-pot synthesis of coated spinels
CN112074973A (en) * 2018-04-18 2020-12-11 纳诺万材料公司 For LiNbO3One-pot synthesis of coated spinels
CN109524638A (en) * 2018-10-15 2019-03-26 中国科学院大学 Sodium ion conductor coats the preparation method of lithium-rich manganese-based layered cathode material
CN109524638B (en) * 2018-10-15 2021-08-13 中国科学院大学 Preparation method of lithium-rich manganese-based layered cathode material coated with sodium ion conductor
CN109638232A (en) * 2018-10-25 2019-04-16 宁夏汉尧石墨烯储能材料科技有限公司 A kind of preparation method of cladded type ternary cobalt nickel oxide manganses lithium anode material
CN109502657A (en) * 2018-12-26 2019-03-22 柳州申通汽车科技有限公司 A kind of preparation method of continous way nickel-cobalt-manganese ternary presoma
CN110148737A (en) * 2019-06-06 2019-08-20 山东省科学院能源研究所 A kind of lithium-rich manganese-based electrode material and preparation method thereof
CN110148737B (en) * 2019-06-06 2021-04-27 山东省科学院能源研究所 Lithium-rich manganese-based electrode material and preparation method thereof
CN110190276A (en) * 2019-07-10 2019-08-30 河南电池研究院有限公司 A kind of preparation method of niobium, aluminum co-doped lithium ion battery cathode material
CN110911737B (en) * 2019-11-04 2023-10-27 浙江锋锂新能源科技有限公司 Sulfide-based all-ceramic solid-state battery
CN110911737A (en) * 2019-11-04 2020-03-24 浙江锋锂新能源科技有限公司 Sulfide-based all-ceramic solid-state battery
CN111435735A (en) * 2019-12-27 2020-07-21 蜂巢能源科技有限公司 Lithium-rich manganese-based positive electrode material and preparation method and application thereof
CN111435735B (en) * 2019-12-27 2022-10-25 蜂巢能源科技有限公司 Lithium-rich manganese-based positive electrode material and preparation method and application thereof
CN113611862A (en) * 2021-07-29 2021-11-05 广州大学 Preparation method of lithium niobate-coated positive electrode material, lithium niobate-coated positive electrode material and application
CN114005984A (en) * 2021-10-18 2022-02-01 中南大学 A kind of high-nickel ternary cathode material modified by lithium niobate coating and niobium doping coupling modification, preparation method and application thereof
WO2024131093A1 (en) * 2022-12-20 2024-06-27 天津巴莫科技有限责任公司 Lithium-rich layered oxide material, preparation method therefor, and use thereof

Similar Documents

Publication Publication Date Title
CN102694165A (en) High-capacity lithium-rich layered crystalline structured lithium battery cathode material and preparation thereof
CN102544475B (en) Method for preparing lithium-enriched lithium manganese oxide solid solution cathode material
CN102627332B (en) Oxide solid solution, preparation method of oxide solid solution, lithium ion battery anode material and preparation method of lithium ion battery anode material
CN108091843B (en) A core-shell structure lithium-rich manganese-based composite cathode material and preparation method thereof
CN104852038B (en) Preparation method of high-capacity quickly-chargeable/dischargeable lithium ion battery ternary anode material
CN103956477B (en) A kind of preparation method of rich lithium ternary compound potassium ion battery plus plate material
CN106532029A (en) High-voltage ternary positive electrode material for lithium-ion battery and preparation method of high-voltage ternary positive electrode material
CN107585794A (en) Tertiary cathode material, its presoma and the preparation method of the material and presoma
CN106711434B (en) Sea urchin-like sodium-containing lithium-rich layered cathode material and preparation method thereof
CN104868122A (en) Preparation method of single-crystal Li(NiCoMn)O2 ternary cathode material
CN102201573A (en) Rich-lithium positive electrode material of lithium ion battery having coreshell structure and preparation method of rich-lithium positive electrode material
CN107910531A (en) A kind of preparation method of high nickel base ternary cathode material
CN103441252A (en) Method for preparing lithium-enriched manganese-based anode material of nano-oxide-coated lithium ion battery
CN101335348A (en) Preparing method of lithium ionic cell 5V anode material spherical LiNi*Mn*O*
CN110323432A (en) A kind of miscellaneous modification lithium-ion battery anode material of cation-anion co-doping and preparation method thereof
CN104362332B (en) Preparation method of lithium-rich cathode material for lithium ion battery
CN102569773B (en) Anode material for lithium-ion secondary battery and preparation method thereof
CN102219262B (en) Improved method for preparing layered enriched lithium-manganese-nickel oxide by low-heat solid-phase reaction
CN105938899A (en) Preparation method and application of cathode material of fast ion conductor coated modified lithium ion battery
CN105185980A (en) A kind of preparation method of TiO2-coated layered lithium-rich ternary positive electrode material
CN106025208A (en) Preparation method for carbon-coated ternary positive electrode material
CN107706366A (en) A kind of positive electrode of indium oxide or tin-doped indium oxide cladding and preparation method thereof
CN103178252B (en) A kind of anode material for lithium-ion batteries and preparation method thereof
CN107204426A (en) A kind of cobalt nickel oxide manganses lithium/titanate composite anode material for lithium of zirconium doping vario-property
CN104779385A (en) High-specific capacity lithium ion battery cathode material and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120926