CN102693879A - Thermal actuator and relay - Google Patents
Thermal actuator and relay Download PDFInfo
- Publication number
- CN102693879A CN102693879A CN2011100680228A CN201110068022A CN102693879A CN 102693879 A CN102693879 A CN 102693879A CN 2011100680228 A CN2011100680228 A CN 2011100680228A CN 201110068022 A CN201110068022 A CN 201110068022A CN 102693879 A CN102693879 A CN 102693879A
- Authority
- CN
- China
- Prior art keywords
- soft magnetic
- circuit
- magnetic
- magnetic element
- control unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001285 shape-memory alloy Inorganic materials 0.000 claims abstract description 57
- 230000004907 flux Effects 0.000 claims abstract description 49
- 238000001514 detection method Methods 0.000 claims abstract description 37
- 230000007704 transition Effects 0.000 claims description 19
- 230000007246 mechanism Effects 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 6
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 20
- 238000010586 diagram Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- 230000009471 action Effects 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 230000035699 permeability Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- -1 copper-zinc-aluminum-nickel Chemical compound 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 208000032365 Electromagnetic interference Diseases 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000006386 memory function Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Landscapes
- Thermally Actuated Switches (AREA)
Abstract
本发明公开了一种热执行器,包括磁力控制单元,磁通控制单元,热探测单元和第一软磁元件。磁力控制单元包括永久磁铁和第二软磁元件,磁通控制单元包括磁滞伸缩元件和形状记忆合金元件;形状记忆合金元件附着在磁滞伸缩元件外侧;磁通控制单元与磁力控制单元形成第一磁路;第一软磁元件与磁力控制单元形成第二磁路;热探测单元从外部获取热量,并加热形状记忆合金元件;形状记忆合金元件在自身温度大于跃变温度时,向磁滞伸缩元件施加压力,使第一磁路的磁通小于第二磁路的磁通,第一软磁元件与第二软磁元件吸合。另外,本发明还公开了一种继电器。本发明实施例提供的热执行器和继电器能够在各种工业环境中为电气设备提供可靠的过载保护。
The invention discloses a thermal actuator, which comprises a magnetic force control unit, a magnetic flux control unit, a thermal detection unit and a first soft magnetic element. The magnetic force control unit includes a permanent magnet and a second soft magnetic element, the magnetic flux control unit includes a magnetostrictive element and a shape memory alloy element; the shape memory alloy element is attached to the outside of the magnetostrictive element; the magnetic flux control unit and the magnetic force control unit form a second A magnetic circuit; the first soft magnetic element and the magnetic control unit form a second magnetic circuit; the thermal detection unit obtains heat from the outside, and heats the shape memory alloy element; The stretching element exerts pressure to make the magnetic flux of the first magnetic circuit smaller than the magnetic flux of the second magnetic circuit, and the first soft magnetic element is attracted to the second soft magnetic element. In addition, the invention also discloses a relay. The thermal actuator and relay provided by the embodiments of the present invention can provide reliable overload protection for electrical equipment in various industrial environments.
Description
技术领域 technical field
本发明涉及电气控制技术领域,具体涉及一种热执行器和继电器。 The invention relates to the technical field of electrical control, in particular to a thermal actuator and a relay. the
背景技术 Background technique
过载继电器(overload relay)是一种电气开关,主要用于保护电气设备,防止过电流引起的过热损坏电气设备。例如,当电动机发生过载时,电动机绕阻中的电流将增大,使电动机的绕阻温度升高。通过使用过载继电器,能够及时断开电动机的电源,防止温度过高造成的电动机绕阻烧毁。 Overload relay (overload relay) is an electrical switch, mainly used to protect electrical equipment and prevent overheating caused by overcurrent from damaging electrical equipment. For example, when the motor is overloaded, the current in the winding of the motor will increase, which will increase the temperature of the winding of the motor. By using the overload relay, the power supply of the motor can be disconnected in time to prevent the motor winding from being burned due to overheating. the
目前,在实际应用中普遍采用的过载继电器包括双金属继电器(bimetallic-based relay)和基于电路的继电器(circuit-based relay)。 At present, overload relays commonly used in practical applications include bimetallic-based relays and circuit-based relays. the
双金属继电器中包括两种膨胀系数不同的金属片,当通过发热元件的电流过大时,发热产生的热量使双金属片受热弯曲,从而推动驱动机构,使触头动作,将电路断开。但是,由于双金属片的刚度较低,实际运输或应用过程中出现机械振动很容易使双金属片发生共振,最终毁坏双金属继电器。另外,双金属继电器无法检测电流或热量的数值,因此双金属继电器不能精确地确定何时断开电路。 The bimetallic relay includes two kinds of metal sheets with different expansion coefficients. When the current passing through the heating element is too large, the heat generated by the heating causes the bimetal sheet to be heated and bent, thereby pushing the driving mechanism to make the contacts move and disconnect the circuit. However, due to the low rigidity of the bimetallic strip, mechanical vibrations during actual transportation or application can easily cause the bimetallic strip to resonate, eventually destroying the bimetallic relay. Also, bimetallic relays cannot sense the magnitude of current or heat, so bimetallic relays cannot precisely determine when to break a circuit. the
基于电路的继电器包括微处理器,能够通过附着在电动机上的相导体(phase conductor)监控电流,并根据电流的采样值估计温度。当估计的温度大于预定值时,微处理器控制触点动作,将电路断开。但是,由于基于电路的继电器中的电气元件容易受到电磁干扰(Electro Magnetic Interference,EMI)的影响,降低基于电路的继电器的可靠性。另外,基于电路的继电器通常包括电源电路,因此对电源电路的干扰同样会影响基于电路的继电器的可靠性。 Circuit-based relays include a microprocessor capable of monitoring current through phase conductors attached to the motor and estimating temperature based on samples of the current. When the estimated temperature is greater than the predetermined value, the microprocessor controls the contact action to disconnect the circuit. However, since the electrical components in the circuit-based relay are susceptible to electromagnetic interference (Electro Magnetic Interference, EMI), the reliability of the circuit-based relay is reduced. In addition, circuit-based relays often include power circuits, so disturbances to the power circuits can also affect the reliability of circuit-based relays. the
可见,现有的继电器,如双金属继电器和基于电路的继电器存在上述缺点,因此在实际的工业应用中,尤其是在恶劣的工业环境中,现有的继电器的可靠性不够高。 It can be seen that the existing relays, such as bimetallic relays and circuit-based relays, have the above-mentioned disadvantages, so in practical industrial applications, especially in harsh industrial environments, the reliability of the existing relays is not high enough. the
发明内容 Contents of the invention
本发明实施例提供了一种热执行器和一种继电器,以能够在各种工业环境中为电气设备提供可靠的过载保护。 The embodiment of the present invention provides a thermal actuator and a relay to provide reliable overload protection for electrical equipment in various industrial environments. the
为了解决上述技术问题,本发明实施例提供如下技术方案。 In order to solve the above technical problems, embodiments of the present invention provide the following technical solutions. the
本发明的一种实施方法提供了一种热执行器,包括: An implementation method of the present invention provides a thermal actuator, comprising:
磁力控制单元,磁通控制单元,热探测单元和第一软磁元件;其中,所述磁力控制单元包括永久磁铁和第二软磁元件,所述磁通控制单元包括磁滞伸缩元件和形状记忆合金元件;所述形状记忆合金元件附着在所述磁滞伸缩元件的外侧;所述磁通控制单元与所述磁力控制单元形成第一磁路;所述第一软磁元件与所述磁力控制单元形成第二磁路; A magnetic control unit, a magnetic flux control unit, a thermal detection unit and a first soft magnetic element; wherein, the magnetic control unit includes a permanent magnet and a second soft magnetic element, and the magnetic flux control unit includes a magnetostrictive element and a shape memory alloy element; the shape memory alloy element is attached to the outside of the magnetostrictive element; the flux control unit and the magnetic force control unit form a first magnetic circuit; the first soft magnetic element and the magnetic force control unit The unit forms a second magnetic circuit;
所述热探测单元用于从外部获取热量,并加热所述形状记忆合金元件; The heat detection unit is used to obtain heat from the outside, and heat the shape memory alloy element;
所述形状记忆合金元件在自身温度大于跃变温度时,向所述磁滞伸缩元件施加压力,使所述第一磁路 的磁通小于所述第二磁路的磁通; When the shape memory alloy element's own temperature is greater than the transition temperature, it applies pressure to the magnetostrictive element, so that the magnetic flux of the first magnetic circuit is smaller than the magnetic flux of the second magnetic circuit;
当所述第一磁路的磁通小于所述第二磁路的磁通时,所述第一软磁元件与所述第二软磁元件吸合。 When the magnetic flux of the first magnetic circuit is smaller than the magnetic flux of the second magnetic circuit, the first soft magnetic element is attracted to the second soft magnetic element. the
本发明的一种实施方式中,所述热探测单元包括: In one embodiment of the present invention, the thermal detection unit includes:
第一热探测模块,用于从外部电路获取热量;和/或 a first heat detection module for capturing heat from an external circuit; and/or
第二热探测模块,用于从外部环境中获取热量。 The second heat detection module is used to obtain heat from the external environment. the
本发明的一种实施方式中,所述热探测单元包括加热线圈,所述加热线圈缠绕在所述形状记忆合金元件上;或者,所述热探测单元包括热电阻;所述热电阻附着在所述形状记忆合金元件上。 In one embodiment of the present invention, the thermal detection unit includes a heating coil, and the heating coil is wound on the shape memory alloy element; or, the thermal detection unit includes a thermal resistor; the thermal resistor is attached to the on the shape memory alloy element. the
本发明的一种实施方式中,所述永久磁体构成一凹槽,所述第二软磁元件包括第一部分和第二部分,所述永久磁体的一端与所述第一部分的一端相连,所述永久磁体的另一端与所述第二部分的一端相连,所述磁滞伸缩元件的两端分别与所述第一部分和所述第二部分相连。 In one embodiment of the present invention, the permanent magnet forms a groove, the second soft magnetic element includes a first part and a second part, one end of the permanent magnet is connected with one end of the first part, and the The other end of the permanent magnet is connected to one end of the second part, and the two ends of the magnetostrictive element are respectively connected to the first part and the second part. the
本发明的一种实施方式中,所述第二软磁元件附着在所述永久磁铁的外围,并与所述永久磁体形成凹槽,所述磁滞伸缩元件位于所述凹槽内,与所述第二软磁元件连接。 In one embodiment of the present invention, the second soft magnetic element is attached to the periphery of the permanent magnet, and forms a groove with the permanent magnet, and the hysteresis stretching element is located in the groove, and is in contact with the permanent magnet. The second soft magnetic element is connected. the
本发明的一种实施方式中,所述永久磁铁分为两个部分,所述第二软磁元件包括第一部分,第二部分和第三部分,所述第二软磁元件的第一部分的两端分别连接所述永久磁铁的两个部分的第一端,所述第二软磁元件的第二部分与所述永久磁铁的一个部分的第二端相连,所述第二软磁元件的第三部分与所述永久磁铁的另一部分的第二端相连,所述磁滞伸缩元件与所述第二软磁元件的所述第二部分和第三部分相连。 In one embodiment of the present invention, the permanent magnet is divided into two parts, the second soft magnetic element includes a first part, a second part and a third part, and the two parts of the first part of the second soft magnetic element The ends are respectively connected to the first ends of the two parts of the permanent magnet, the second part of the second soft magnetic element is connected to the second end of one part of the permanent magnet, and the first end of the second soft magnetic element The three parts are connected with the second end of the other part of the permanent magnet, and the hysteresis stretch element is connected with the second part and the third part of the second soft magnetic element. the
本发明的一种实施方式中,所述形状记忆合金元件包围所述磁滞伸缩元件。 In one embodiment of the present invention, the shape memory alloy element surrounds the magnetostrictive element. the
本发明的一种实施方式提供了一种继电器,包括:上述热执行器,带扣元件,绝缘元件,导电元件和至少两个电路触点,所述带扣元件与所述热执行器的第一软磁元件和第二软磁元件接触,所述导电元件通过所述绝缘元件与所述第一软磁元件连接; An embodiment of the present invention provides a relay, including: the above-mentioned thermal actuator, a buckle element, an insulating element, a conductive element and at least two circuit contacts, the buckle element and the first contact of the thermal actuator A soft magnetic element is in contact with the second soft magnetic element, and the conductive element is connected to the first soft magnetic element through the insulating element;
所述至少两个电路触点与外部电路连接; The at least two circuit contacts are connected to an external circuit;
当所述第一软磁元件与所述第二软磁元件分离时,所述导电元件与所述至少两个电路触点接触,且当所述第一软磁元件与所述第二软磁元件吸合时,所述导电元件与所述至少两个电路触点分离。 When the first soft magnetic element is separated from the second soft magnetic element, the conductive element is in contact with the at least two circuit contacts, and when the first soft magnetic element is separated from the second soft magnetic element When the element is attracted, the conductive element is separated from the at least two circuit contacts. the
本发明的一种实施方式中,所述至少两个电路触点中的至少一个电路触点与所述外部电路的电源相连,且所述至少两个电路触点中的至少另一个电路触点与所述外部电路的电气设备相连。 In one embodiment of the present invention, at least one circuit contact of the at least two circuit contacts is connected to the power supply of the external circuit, and at least another circuit contact of the at least two circuit contacts Connected to the electrical equipment of the external circuit. the
本发明的一种实施方式中,所述热探测单元与所述外部电路串联。 In one embodiment of the present invention, the thermal detection unit is connected in series with the external circuit. the
本发明的一种实施方式中,所述继电器还包括:重置单元,用于分离处于吸合状态的所述第一软磁元件和第二软磁元件。 In one embodiment of the present invention, the relay further includes: a reset unit, configured to separate the first soft magnetic element and the second soft magnetic element that are in the attracted state. the
本发明的一种实施方式中,所述重置单元包括重置按钮和与所述重置按钮刚性连接重置机构, In one embodiment of the present invention, the reset unit includes a reset button and a reset mechanism rigidly connected to the reset button,
所述重置按钮,用于在被按下时为所述重置机构提供机械驱动力; The reset button is used to provide a mechanical driving force for the reset mechanism when pressed;
所述重置机构,用于利用来自所述重置按钮的机械驱动力将处于吸合状态的所述第一软磁元件和第二 软磁元件分离。 The reset mechanism is used to separate the first soft magnetic element and the second soft magnetic element in the suction state by using the mechanical driving force from the reset button. the
本发明实施例提供的热执行器和继电器具有如下优点。 The thermal actuator and relay provided by the embodiments of the present invention have the following advantages. the
首先,在本发明实施例提供的热执行器和继电器中,形状记忆合金元件被加热到自身温度大于跃变温度时,对磁滞伸缩元件施加压力,通过磁通的变化使第一软磁元件和第二软磁元件吸合,无需微处理器或者电源电路,因此不会被来自外部的EMI和来自电源电路的干扰影响。 First, in the thermal actuator and relay provided by the embodiments of the present invention, when the shape memory alloy element is heated to a temperature higher than the transition temperature, pressure is applied to the hysteretic element, and the first soft magnetic element It is attracted to the second soft magnetic element without a microprocessor or a power circuit, so it will not be affected by EMI from the outside and interference from the power circuit. the
其次,本发明实施例中的热执行器和继电器中各个组件的刚度都较高,能够很好的抵抗外部的机械振动。 Secondly, the rigidity of each component in the thermal actuator and the relay in the embodiment of the present invention is relatively high, which can well resist external mechanical vibration. the
进一步地,本发明实施例中的形状记忆合金元件只有在自身温度高于跃变温度时才会发生形变,从而对磁滞伸缩元件施加压力。因此可以根据需要选择不同跃变温度的形状记忆合金元件,从而确定断开电路时的温度值或电流值,精确地确定何时断开电路。 Further, the shape memory alloy element in the embodiment of the present invention will only deform when its own temperature is higher than the transition temperature, thereby exerting pressure on the magnetostrictive element. Therefore, shape memory alloy elements with different transition temperatures can be selected according to needs, so as to determine the temperature value or current value when the circuit is disconnected, and accurately determine when to disconnect the circuit. the
进一步地,本发明实施例中的热执行器和继电器的机械结构更简单,并且第二软磁元件的冲程较长,无需使用专门的驱动机构来放大冲程就能使触头动作,将电路断开,进一步避免了机械疲劳的产生,提高了热执行器和继电器的可靠性。 Further, the mechanical structure of the thermal actuator and the relay in the embodiment of the present invention is simpler, and the stroke of the second soft magnetic element is longer, so that the contact can be actuated without using a special driving mechanism to amplify the stroke, and the circuit can be disconnected. Open, further avoiding the generation of mechanical fatigue, improving the reliability of thermal actuators and relays. the
另外,使用本发明实施例中的热执行器和继电器,不仅能够避免电气设备过载造成的损坏,同时不会对外部释放热量,降低了对外部设备和环境影响。并且,当外部环境过高时也能够切断电路,避免了火灾的产生。 In addition, using the thermal actuators and relays in the embodiments of the present invention can not only avoid damage caused by electrical equipment overload, but also not release heat to the outside, reducing the impact on external equipment and the environment. Moreover, when the external environment is too high, the circuit can also be cut off, thereby avoiding the occurrence of fire. the
附图说明 Description of drawings
图1是本发明实施例中热执行器的结构的示意图。 Fig. 1 is a schematic diagram of the structure of a thermal actuator in an embodiment of the present invention. the
图2是本发明实施例中热执行器在开通状态的磁通分布的示意图。 Fig. 2 is a schematic diagram of the magnetic flux distribution of the thermal actuator in the on state in the embodiment of the present invention. the
图3是本发明实施例中热执行器在进入关闭状态的过程中某一时刻的磁通分布的示意图。 Fig. 3 is a schematic diagram of the magnetic flux distribution at a certain moment in the process of entering the closed state of the thermal actuator in the embodiment of the present invention. the
图4是本发明实施例中继电器在开通状态的结构的示意图。 Fig. 4 is a schematic diagram of the structure of the relay in the on state in the embodiment of the present invention. the
图5是本发明实施例中继电器在关闭状态的结构的示意图。 Fig. 5 is a schematic diagram of the structure of the relay in the off state in the embodiment of the present invention. the
图6是本发明实施例中包括重置单元的继电器的结构的示意图。 FIG. 6 is a schematic diagram of the structure of a relay including a reset unit in an embodiment of the present invention. the
具体实施方式Detailed ways
为了使本发明实施例的目的、技术方案和优点更加清楚,以下举例对本发明实施例进一步详细说明。 In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the following examples are given to further describe the embodiments of the present invention in detail. the
本发明实施例提供的热执行器包括磁力控制单元,磁通控制单元,热探测单元和第一软磁元件。其中,该磁力控制单元包括永久磁铁和第二软磁元件,该磁通控制单元包括磁滞伸缩元件和形状记忆合金元件。其中,形状记忆合金元件附着在磁滞伸缩元件的外侧;磁通控制单元与磁力控制单元形成第一磁路,第一软磁元件与磁力控制单元形成第二磁路。热探测单元用于从外部获取热量,并加热该形状记忆合金元件;该形状记忆合金元件在自身温度大于跃变温度时,向该磁滞伸缩元件施加压力,使磁滞伸缩元件的磁阻增加,当第一磁路的磁通小于第二磁路的磁通时,第一软磁元件与第二软磁元件吸合,从而提供驱动动作。 The thermal actuator provided by the embodiment of the present invention includes a magnetic force control unit, a magnetic flux control unit, a thermal detection unit and a first soft magnetic element. Wherein, the magnetic force control unit includes a permanent magnet and a second soft magnetic element, and the magnetic flux control unit includes a hysteresis stretch element and a shape memory alloy element. Wherein, the shape memory alloy element is attached to the outside of the magnetostrictive element; the flux control unit and the magnetic force control unit form a first magnetic circuit, and the first soft magnetic element and the magnetic force control unit form a second magnetic circuit. The thermal detection unit is used to obtain heat from the outside and heat the shape memory alloy element; when the shape memory alloy element itself is higher than the transition temperature, it applies pressure to the magnetostrictive element, increasing the magnetic resistance of the magnetostrictive element , when the magnetic flux of the first magnetic circuit is smaller than the magnetic flux of the second magnetic circuit, the first soft magnetic element is attracted to the second soft magnetic element, thereby providing a driving action. the
下面通过附图对本发明实施例进行详细说明。 Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. the
图1示出了本发明实施例中热执行器的结构的示意图。如图1所示,该热执行器包括磁力控制单元10,磁通控制单元11,热探测单元12和第一软磁元件13。其中,该磁力控制单元10包括永久磁铁101和第二软磁元件102,该磁通控制单元11包括磁滞伸缩元件111和形状记忆合金元件112。
Fig. 1 shows a schematic diagram of the structure of a thermal actuator in an embodiment of the present invention. As shown in FIG. 1 , the thermal actuator includes a magnetic
在本实施例中,永久磁体101可以是长方体或者圆柱体,相应地,第二软磁元件102的横截面为长方体或者圆柱体。如图1所示,磁力控制单元10的形状为U型,第二软磁元件102附着在永久磁铁101的外围,并与永久磁体101形成凹槽,磁滞伸缩元件111位于该凹槽内并与第二软磁元件102连接。较佳地,永久磁铁101分为两个部分,第二软磁元件102分为三个部分,并分别附着在永久磁铁101的两个部分的外围。具体地,第二软磁元件102的第一部分的两端与永久磁铁101的两个部分的第一端分别相连,第二软磁元件102的第二部分与永久磁铁101的一个部分的第二端相连,且第二软磁元件102的第三部分与永久磁铁101的另一个部分的第二端相连。磁通控制单元11位于磁力控制单元10形成的凹槽中,其中磁滞伸缩元件111与第二软磁元件102连接,较佳地,磁滞伸缩元件111分别与第二软磁元件102的第二部分和第三部分相连。
In this embodiment, the
图1所示的磁力控制单元10只是本发明的较佳示例,在实际应用中,磁力控制单元10也可以采用其他结构,如上述第二软磁元件102的第一部分也可以是永久磁铁,即磁力控制单元10包括自身形状构成凹槽的永久磁铁101和附着在永久磁体两端的第二软磁元件102。
The magnetic
形状记忆合金元件112包围磁滞伸缩元件111,热探测单元12与形状记忆合金元件112连接,对其进行加热。可见,在本实施例中,磁通控制单元11与磁力控制单元10形成第一磁路;第一软磁元件13磁力控制单元10形成第二磁路。
The shape
具体地,本实施例中的第一软磁元件13和第二软磁元件102本身不生产磁场,只在磁路中起到磁力线传输的作用。在实际应用中,第二软磁元件102可以是轭状物(yoke)。
Specifically, the first soft
热探测单元12可以从外部获取热量。具体地,热探测单元12可以包括第一热探测模块,用于从外部电路获取热量。例如,当与外部电路串联时,热探测单元12的温度与流过该热探测单元12的电流成正比,从而热探测单元12可以从该外部电路获取热量。在实际应用中,热探测单元12可以是加热线圈,缠绕在形状记忆合金元件112上;或者热探测单元12可以是热电阻,附着在形状记忆合金元件112上。另外,热探测单元12还可以包括第二热探测模块,用于直接从外部环境中获取热量。例如,热探测单元12可以直接通过热传导的方式,从周围环境中获取热量。
The
在实施例中,磁滞伸缩元件111的磁导率比空隙大很多,并且根据反向磁滞伸缩效应,当压力施加在磁滞伸缩元件111上时,磁滞伸缩元件111的磁导率随着该压力的增加而降低,即磁阻增加,从而使第一磁路的磁力线减少,磁通量降低。当施加的压力被释放时,磁滞伸缩元件111的磁导率增加,即磁阻减小,从而使第一磁路的磁力线增加,磁通量升高。
In the embodiment, the magnetic permeability of the
如图1所示,本实施例中的磁滞伸缩元件111是长方体,形状记忆合金元件112可以附着在磁滞伸缩 元件111的至少一面。较佳地,为了对磁滞伸缩元件111施加均匀的收缩力,形状记忆合金元件112包围磁滞伸缩元件111,即附着在该磁滞伸缩元件111的4个面上。在本实施例中,形状记忆合金140可以附着在磁滞伸缩元件111的四周。另外,本实施例中的磁滞伸缩元件111还可以是圆柱体,形状记忆合金元件112包围磁滞伸缩元件111,即该形状记忆合金元件112的横截面为环形。
As shown in Figure 1, the
在实际应用中,磁滞伸缩元件111可以是超磁致伸缩材料(TERFENOL-D)。上述只是本发明的一示例,在实施本发明时还可以使用其他材料作为磁滞伸缩元件111。
In practical applications, the
由于形状记忆合金元件112具有形状记忆功能,其用来提供施加在磁滞伸缩元件111上的压力。当被加热到跃变温度时,形状记忆合金元件112能够迅速地恢复到原来的形状,并且,在被加热到跃变温度之前,形状记忆合金元件112不会因受热发生膨胀,因此也不会对磁滞伸缩元件111施加压力,不会造成误操作。在实际应用中,形状记忆合金元件112可以是铜-锌-铝-镍合金,铜-铝-镍合金,或者镍-钛合金。上述只是本发明的一示例,在实施本发明时还可以使用其他材料作为形状记忆合金元件112。
Since the shape
本领域技术人员可以理解,本发明实施例主要是通过形状记忆合金元件112对磁致伸缩元件111施加力,而导致磁致伸缩元件111的磁导率发生变化,从而改变第一磁路和第二磁路中的磁通量。因此,在具体实施本发明实施例时,能够实现上述功能的其他构建方式也在本发明的保护范围内。
Those skilled in the art can understand that in the embodiment of the present invention, the force applied to the
下面基于图1所示的热执行器,对本发明实施例中的热执行器的工作过程进行说明。 The working process of the thermal actuator in the embodiment of the present invention will be described below based on the thermal actuator shown in FIG. 1 . the
图2示出了本发明实施例中热执行器在开通状态的磁通分布的示意图。在本实施例中,将形状记忆合金元件112被加热到跃变温度之前的状态,即第一软磁元件13与第二软磁元件102分离时的状态作为该热执行器的开通状态。
Fig. 2 shows a schematic diagram of the magnetic flux distribution of the thermal actuator in the on state in the embodiment of the present invention. In this embodiment, the state before the shape
如图2所示,磁通控制单元11与磁力控制单元10形成第一磁路;第一软磁元件13通过空隙与磁力控制单元10形成第二磁路。当热执行器处于开通状态时,如果热探测单元12从外部获取的热量无法将形状记忆合金元件112加热到其跃变温度,则形状记忆合金元件112不会对磁滞伸缩元件111施加压力。此时,由于磁滞伸缩元件111的磁导率比空隙高得多,第一磁路的磁通量比第二磁路的磁通量大得多。这样一来,永久磁铁101和第一软磁元件13之间的磁力很小,从而使第一软磁元件13和第二软磁元件102保持分离状态。
As shown in FIG. 2 , the magnetic
图3示出了本发明实施例中热执行器在进入关闭状态的过程中某一时刻的磁通分布的示意图。 Fig. 3 shows a schematic diagram of the magnetic flux distribution at a certain moment in the process of entering the closed state of the thermal actuator in the embodiment of the present invention. the
在本实施例中,将形状记忆合金元件112被加热到跃变温度之后的状态,即第一软磁元件13与第二软磁元件102吸合时的状态作为该热执行器的关闭状态。
In this embodiment, the state after the shape
如图3所示,当热探测单元12从外部获取的热量将形状记忆合金元件112加热到其跃变温度时,形状记忆合金元件112发生形变,对磁滞伸缩元件111施加压力,使磁滞伸缩元件111的磁导率降低。相应地,第一磁路的磁阻增加,第二磁路的磁通增大。这样一来,永久磁铁101和第一软磁元件13之间的磁力增大,第一软磁元件13向永久磁铁101移动。图3示出的是第一软磁元件13向永久磁铁101移动的过 程中某一时刻的示意图,随着第一软磁元件13与第二软磁元件102之间的空隙的减少,第二磁路的磁通量不断增大,直到第一软磁元件13和第二软磁元件102吸合。
As shown in Figure 3, when the heat obtained from the outside by the
可见,本发明实施例提供的热执行器在提供驱动动作的同时,无需微处理器或者电源电路,因此不会被来自外部的EMI和来自电源电路的干扰影响;并且本发明实施例中的热执行器中各个元件的硬度都较高,能够很高的抵抗外部的机械震动;进一步地,在应用时,可以根据需要选择形状记忆合金元件的跃变温度,从而确定提供驱动动作的时机;同时,本发明实施例中的热执行器的机械结构更简单,并能够避免机械疲劳的产生,提高了热执行器和继电器的可靠性;另外,本发明实施例提供的热执行器不会对外部释放热量,降低了对外部设备和环境的影响;并且,当外部环境的温度达到形状记忆合金的跃变温度时,本发明实施例提供的热执行器也能提供驱动动作,避免火灾的产生。 It can be seen that the thermal actuator provided by the embodiment of the present invention does not need a microprocessor or a power supply circuit while providing driving action, so it will not be affected by external EMI and interference from the power supply circuit; and the thermal actuator in the embodiment of the present invention The hardness of each component in the actuator is relatively high, which can resist external mechanical shocks; further, in the application, the transition temperature of the shape memory alloy component can be selected according to the needs, so as to determine the timing of providing driving action; at the same time , the mechanical structure of the thermal actuator in the embodiment of the present invention is simpler, and can avoid the generation of mechanical fatigue, and improves the reliability of the thermal actuator and the relay; The release of heat reduces the impact on external equipment and the environment; and, when the temperature of the external environment reaches the transition temperature of the shape memory alloy, the thermal actuator provided by the embodiment of the present invention can also provide driving action to avoid the occurrence of fire. the
基于本发明实施例中热执行器的驱动动作,可以实现继电器的功能。将第一软磁元件13与电路触点连接,就可以利用热执行器的驱动动作,将电路断开。
Based on the driving action of the thermal actuator in the embodiment of the present invention, the function of the relay can be realized. Connecting the first soft
本发明实施例还提供了一种继电器,包括上述热执行器,带扣元件,绝缘元件,导电元件和至少两个电路触点。该带扣元件与热执行器的第一软磁元件和第二软磁元件接触。该导电元件通过该绝缘元件与该第一软磁元件连接。至少两个电路触点与需要保护的电路连接,如串联。具体地,该至少两个电路触点中的至少一个电路触点与外部电路的电源相连,且该至少两个电路触点中的至少另一个电路触点与外部电路的电气设备相连。当第一软磁元件与所述第二软磁元件分离时,导电元件与该至少两个电路触点接触,且当第一软磁元件与第二软磁元件吸合时,导电元件与该至少两个电路触点分离。在实际应用中,电路触点的数量可以根据实际电路的需要进行设置。 The embodiment of the present invention also provides a relay, including the above-mentioned thermal actuator, a buckle element, an insulating element, a conductive element and at least two circuit contacts. The buckle element is in contact with the first soft magnetic element and the second soft magnetic element of the thermal actuator. The conductive element is connected with the first soft magnetic element through the insulating element. At least two circuit contacts are connected, eg in series, to the circuit to be protected. Specifically, at least one circuit contact of the at least two circuit contacts is connected to a power source of the external circuit, and at least another circuit contact of the at least two circuit contacts is connected to an electrical device of the external circuit. When the first soft magnetic element is separated from the second soft magnetic element, the conductive element contacts the at least two circuit contacts, and when the first soft magnetic element is attracted to the second soft magnetic element, the conductive element is in contact with the at least two circuit contacts. At least two circuit contacts are separated. In practical applications, the number of circuit contacts can be set according to the needs of the actual circuit. the
下面结合附图,对本发明实施例提供的继电器的工作过程进行详细说明。 The working process of the relay provided by the embodiment of the present invention will be described in detail below with reference to the accompanying drawings. the
图4示出了本发明实施例中继电器在开通状态的结构。在本实施例中,电路触点的数量为两个,导电元件与两个电路触点连接时的状态为继电器的开通状态。 Fig. 4 shows the structure of the relay in the on state in the embodiment of the present invention. In this embodiment, the number of circuit contacts is two, and the state when the conductive element is connected to the two circuit contacts is the on state of the relay. the
如图4所示,该继电器包括热执行器,带扣元件14,绝缘元件15,导电元件16和两个电路触点17。
As shown in FIG. 4 , the relay includes a thermal actuator, a
在本发明实施例中,带扣元件14至少包括弹簧141和滑块142。当第一软磁元件和第二软磁元件分离时,该弹簧141通过滑块142向第一软磁元件施加压力,不仅使第一软磁元件与第二软磁元件保持分离状态,同时使导电元件16和两个电路触点17紧密接触。在第一软磁元件向第二软磁元件移动的过程中,弹簧141向第一软磁元件施加的压力小于永久磁体与第一软磁元件之间的磁力,因此弹簧141被压缩,滑块142移动到第一软磁元件的外侧,第一软磁元件向第二软磁元件滑动。图4仅示出了本发明实施例中带扣元件14的一示例,在应用本实施例时,还可以采用具有其他结构的带扣,并不影响本发明的实施。
In the embodiment of the present invention, the
在本实施例中,两个电路触点17位于外部电路的电源和电气设备之间,从而当外部电路发生过载时,通过两个电路触点17可以断开外部电路中电源和电气设备之间的连接,起到过载保护的作用。在实际应用中,两个电路触点17也可以串联在外部电路的其他位置,并不影响本发明的实施。
In this embodiment, the two
在本实施例中,热探测器与外部电路串联,这样一来,当外部电路没有发生过载,即外部电路中的电流值没有大于预定值时,流经该热探测器的电流产生的热量不足以使形状记忆合金元件的温度达到其跃变温度,因此第一磁路的磁通量大于第二磁路的磁通量,第一软磁元件与第二软磁元件保持分离状态,导电元件与两电路触点连接,外部电路中的电源和电气设备之间连通,从而使外部电路正常工作,继电器处于开通状态。 In this embodiment, the thermal detector is connected in series with the external circuit, so that when the external circuit is not overloaded, that is, when the current value in the external circuit is not greater than a predetermined value, the heat generated by the current flowing through the thermal detector is insufficient Make the temperature of the shape memory alloy element reach its transition temperature, so the magnetic flux of the first magnetic circuit is greater than the magnetic flux of the second magnetic circuit, the first soft magnetic element and the second soft magnetic element are kept separated, and the conductive element contacts the two circuits. Point connection, the power supply in the external circuit is connected with the electrical equipment, so that the external circuit works normally, and the relay is in the open state. the
图5示出了本发明实施例中继电器在关闭状态的结构。在本实施例中,导电元件16与电路触点17断开时的状态为继电器的关闭状态。
Fig. 5 shows the structure of the relay in the off state in the embodiment of the present invention. In this embodiment, the state when the
当外部电路发生过载,即外部电路中的电流值大于预定值时,流经热探测器的电流产生的热量使形状记忆合金元件的温度达到其跃变温度,从而使形状记忆合金元件发生形变,对磁滞伸缩元件施加压力。根据前面所述的热执行器的工作原理,由于磁滞伸缩元件的磁阻降低,第二磁路的磁通量增大。当永久磁铁与第一软磁元件之间的磁力大于带扣元件14的压力时,第一软磁元件向第二软磁元件的方向移动。随着空隙的减小,第二磁路的磁阻降低,第二磁路的磁通量进一步增大,永久磁铁与第一软磁元件之间的磁力进一步增大,直到第一软磁元件与第二软磁元件吸合。图5示出了继电器在关闭状态的结构和磁通分布。如图5所示,第一软磁元件与第二软磁元件吸合,导电元件16和两个电路触点17分离,从而使外部电路中的电源和电气设备断开连接,从而起到过载保护的作用。
When the external circuit is overloaded, that is, the current value in the external circuit is greater than a predetermined value, the heat generated by the current flowing through the thermal detector makes the temperature of the shape memory alloy element reach its transition temperature, thereby causing the shape memory alloy element to deform. Apply pressure to the magnetostrictive element. According to the working principle of the thermal actuator described above, since the magnetic resistance of the magnetostrictive element decreases, the magnetic flux of the second magnetic circuit increases. When the magnetic force between the permanent magnet and the first soft magnetic element is greater than the pressure of the
从上述实施例中可以看出,本发明实施例提供的继电器不包括微处理器或者电源电路,因此不会被来自外部的EMI和来自电源电路的干扰影响。并且,本发明实施例中继电器中各个元件的硬度都较高,能够很高的抵抗外部的机械震动。另外,继电器中的形状记忆合金元件只有在自身温度高于跃变温度时才会发生形变,因此可以根据需要选择形状记忆合金元件的跃变温度,从而确定断开电路时的温度值或电流值,精确地确定何时断开电路。进一步地,本发明实施例中继电器的机械结构更简单,并且第二软磁元件的冲程较长,无需使用专门的驱动机构来放大冲程就能使触头动作,将电路断开,进一步避免了机械疲劳的产生,提高了热执行器和继电器的可靠性。另外,使用本发明实施例中的继电器,不仅能够避免电气设备过载造成的损坏,同时不会对外部释放热量,降低了对外部设备和环境影响。当外部环境的温度过高,达到形状记忆合金的跃变温度时,本发明实施例提供的继电器也能断开电路,避免了火灾的产生。 It can be seen from the above embodiments that the relay provided by the embodiment of the present invention does not include a microprocessor or a power circuit, so it will not be affected by external EMI and interference from the power circuit. Moreover, in the embodiment of the present invention, the hardness of each component in the relay is relatively high, which can highly resist external mechanical shock. In addition, the shape memory alloy element in the relay will only deform when its own temperature is higher than the transition temperature, so the transition temperature of the shape memory alloy element can be selected according to needs, so as to determine the temperature value or current value when the circuit is disconnected , to determine precisely when to break the circuit. Furthermore, the mechanical structure of the relay in the embodiment of the present invention is simpler, and the stroke of the second soft magnetic element is longer, and the contact can be moved without using a special driving mechanism to amplify the stroke, and the circuit is disconnected, further avoiding The generation of mechanical fatigue improves the reliability of thermal actuators and relays. In addition, the use of the relay in the embodiment of the present invention not only avoids damage caused by electrical equipment overload, but also does not release heat to the outside, reducing the impact on external equipment and the environment. When the temperature of the external environment is too high and reaches the transition temperature of the shape memory alloy, the relay provided by the embodiment of the present invention can also disconnect the circuit, thereby avoiding the occurrence of fire. the
为了使继电器能够重复使用,在本发明实施例中的继电器进一步包括重置单元60。如图6所示,该重置单元60包括重置按钮610和与该重置按钮610连接的重置机构620。重置按钮610在被按下后可以为重置机构提供机械驱动力,重置机构620利用来自该重置按钮610的机械驱动力将处于吸合状态的第一软磁元件与第二软磁元件分开,使继电器恢复到开通状态,继续对该电路进行保护。本实施例提供的重置单元60具有结构简单,操作方便的优点。图6仅示出了重置单元的一示例,在实际应用中也可以采用其他结构的重置单元60,并不影响本发明的实施。
In order to enable the relay to be used repeatedly, the relay in the embodiment of the present invention further includes a
本发明公开了一种热执行器,包括磁力控制单元,磁通控制单元,热探测单元和第一软磁元件。磁力 控制单元包括永久磁铁和第二软磁元件,磁通控制单元包括磁滞伸缩元件和形状记忆合金元件;形状记忆合金元件附着在磁滞伸缩元件外侧;磁通控制单元与磁力控制单元形成第一磁路;第一软磁元件与磁力控制单元形成第二磁路;热探测单元从外部获取热量,并加热形状记忆合金元件;形状记忆合金元件在自身温度大于跃变温度时,向磁滞伸缩元件施加压力,使第一磁路的磁通小于第二磁路的磁通,第一软磁元件与第二软磁元件吸合。另外,本发明还公开了一种继电器。本发明实施例提供的热执行器和继电器能够在各种工业环境中为电气设备提供可靠的过载保护。 The invention discloses a thermal actuator, which comprises a magnetic force control unit, a magnetic flux control unit, a thermal detection unit and a first soft magnetic element. The magnetic force control unit includes a permanent magnet and a second soft magnetic element, and the magnetic flux control unit includes a magnetostrictive element and a shape memory alloy element; the shape memory alloy element is attached to the outside of the magnetostrictive element; the magnetic flux control unit and the magnetic force control unit form a second A magnetic circuit; the first soft magnetic element and the magnetic control unit form a second magnetic circuit; the thermal detection unit obtains heat from the outside, and heats the shape memory alloy element; The stretching element exerts pressure to make the magnetic flux of the first magnetic circuit smaller than the magnetic flux of the second magnetic circuit, and the first soft magnetic element is attracted to the second soft magnetic element. In addition, the invention also discloses a relay. The thermal actuator and relay provided by the embodiments of the present invention can provide reliable overload protection for electrical equipment in various industrial environments. the
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。在具体的实施过程中可对根据本发明的优选实施例进行适当的改进,以适应具体情况的具体需要。因此可以理解,本文所述的本发明的具体实施方式只是起示范作用,并不用以限制本发明的保护范围。 The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention. Appropriate improvements can be made to the preferred embodiments according to the present invention in the specific implementation process, so as to meet the specific needs of specific situations. Therefore, it can be understood that the specific implementation manners of the present invention described herein are only exemplary, and are not intended to limit the protection scope of the present invention. the
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100680228A CN102693879A (en) | 2011-03-21 | 2011-03-21 | Thermal actuator and relay |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100680228A CN102693879A (en) | 2011-03-21 | 2011-03-21 | Thermal actuator and relay |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102693879A true CN102693879A (en) | 2012-09-26 |
Family
ID=46859245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011100680228A Pending CN102693879A (en) | 2011-03-21 | 2011-03-21 | Thermal actuator and relay |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102693879A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112103916A (en) * | 2020-10-19 | 2020-12-18 | 单奇 | Detection type overcurrent protection device convenient to judge |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1633021A (en) * | 2004-12-13 | 2005-06-29 | 沈阳工业大学 | Differential Magnetic Shape Memory Alloy Actuator |
US20070210659A1 (en) * | 2006-03-07 | 2007-09-13 | Long Johnny D | Radial magnetic cam |
US20080197208A1 (en) * | 2003-02-27 | 2008-08-21 | University Of Washington | Membrane actuator based on ferromagnetic shape memory alloy composite for synthetic jet actuator |
CN101626202A (en) * | 2008-07-11 | 2010-01-13 | 杨锦堂 | Magnetostrictor actuator |
US20110057751A1 (en) * | 2008-05-06 | 2011-03-10 | Wolfgang Feil | Switching device |
-
2011
- 2011-03-21 CN CN2011100680228A patent/CN102693879A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080197208A1 (en) * | 2003-02-27 | 2008-08-21 | University Of Washington | Membrane actuator based on ferromagnetic shape memory alloy composite for synthetic jet actuator |
CN1633021A (en) * | 2004-12-13 | 2005-06-29 | 沈阳工业大学 | Differential Magnetic Shape Memory Alloy Actuator |
US20070210659A1 (en) * | 2006-03-07 | 2007-09-13 | Long Johnny D | Radial magnetic cam |
US20110057751A1 (en) * | 2008-05-06 | 2011-03-10 | Wolfgang Feil | Switching device |
CN101626202A (en) * | 2008-07-11 | 2010-01-13 | 杨锦堂 | Magnetostrictor actuator |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112103916A (en) * | 2020-10-19 | 2020-12-18 | 单奇 | Detection type overcurrent protection device convenient to judge |
CN112103916B (en) * | 2020-10-19 | 2021-04-27 | 新昌县银邦电力科技有限公司 | Detection type overcurrent protection device convenient to judge |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6877579B2 (en) | relay | |
JP2014533423A (en) | High current repetitive fuse | |
CN103493167B (en) | Magnetic thermal actuator | |
CN105390315B (en) | System and method for quenching an arc | |
CN102693879A (en) | Thermal actuator and relay | |
CN105280450A (en) | Circuit breaker | |
US9355803B2 (en) | Actuator with thermomagnetic shunt, especially for triggering a circuit breaker | |
CN104054154B (en) | For the pyromagnetic relieving mechanism of circuit breaker | |
CN201918334U (en) | Electromagnetic trip components, electromagnetic trip devices, low-voltage circuit breakers | |
CN115206743B (en) | Electromagnetic leakage circuit breaker adopting leakage current relay to replace EMR | |
CN112382548B (en) | Electromagnetic tripping device for direct current breaker | |
GB2439359A (en) | A dual-magnetic control type high-sensitive leakage protector | |
JP2002542584A (en) | Integrated electric drive mechanical release mechanism | |
JP5449585B2 (en) | Electromagnetic relay | |
CN204289301U (en) | Quick pyromagnetic trip gear and circuit breaker | |
KR102088935B1 (en) | conical spring instant contact type circuit breaker | |
JP5422708B2 (en) | Circuit breaker having a thermal electromagnetic relay and circuit breaker having a complete electromagnetic relay | |
EP4125109B1 (en) | Overcurrent protection device based on thermo magnetically-shiftable material | |
KR102088932B1 (en) | instant elastic attraction type circuit breaker | |
JP2015046310A (en) | Circuit breaker | |
JP6584216B2 (en) | Circuit breaker instantaneous trip device | |
CN112768289B (en) | Fault current triggering device and vacuum circuit breaker | |
US2690485A (en) | Motor control switch | |
CN114320797A (en) | Shape memory alloy actuator | |
CN205452173U (en) | A electromagnetic relay device for electric power system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120926 |