CN102693025B - Touch finger identification method for multi-touch interaction system - Google Patents
Touch finger identification method for multi-touch interaction system Download PDFInfo
- Publication number
- CN102693025B CN102693025B CN201110068062.2A CN201110068062A CN102693025B CN 102693025 B CN102693025 B CN 102693025B CN 201110068062 A CN201110068062 A CN 201110068062A CN 102693025 B CN102693025 B CN 102693025B
- Authority
- CN
- China
- Prior art keywords
- class
- finger
- ellipse
- touch
- center
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 230000003993 interaction Effects 0.000 title abstract description 4
- 230000002452 interceptive effect Effects 0.000 claims abstract description 8
- 239000011159 matrix material Substances 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Image Analysis (AREA)
Abstract
本发明公开了一种多点触摸交互系统的触摸手识别方法,属于多点触摸技术领域。本方法为:1)获取某一帧内检测到的手指F0,F1,…Fn;2)将该帧内的每个手指Fj拟合为一个椭圆Ej;3)根据每个手指对应的椭圆和设定的手指距离T,对该帧内的手指进行聚类,得到k类手指;4)计算每个类H{F0,F1,…,Fp}的中心及该类的凸包区域R;5)将当前帧的每个类及其覆盖区域作为一个触摸手信息(H{F0,F1,…,Fp},R)。本发明识别到触摸手信息精确度高、鲁棒性好,使得触摸屏幕的多点触摸交互系统中识别触摸手更加精确,使得触摸屏更加实用。
The invention discloses a touch hand recognition method of a multi-point touch interaction system, which belongs to the technical field of multi-point touch. The method is as follows: 1) Obtain the detected fingers F 0 , F 1 , ... F n in a certain frame; 2) Fit each finger Fj in the frame to an ellipse E j ; 3) According to each finger The corresponding ellipse and the set finger distance T cluster the fingers in the frame to obtain k-type fingers; 4) Calculate the center of each class H{F 0 , F 1 ,...,F p } and the Convex hull region R of ; 5) Each class and its coverage area of the current frame is taken as a touch hand information (H{F 0 , F 1 ,...,F p }, R). The present invention recognizes the touch hand information with high accuracy and good robustness, which makes the touch hand recognition more accurate in the multi-touch interactive system of the touch screen, and makes the touch screen more practical.
Description
技术领域technical field
本发明属于多点触摸技术领域,具体地涉及一种多点触摸交互系统的触摸手识别方法。The invention belongs to the technical field of multi-point touch, and in particular relates to a touch hand recognition method of a multi-point touch interactive system.
背景技术Background technique
多点触摸系统最近几年逐步走向实用,在多点触摸系统中,用户通常用多个手指进行操作,比如用多个手指滑动、旋转、平移操作。The multi-touch system has gradually become practical in recent years. In the multi-touch system, users usually use multiple fingers to perform operations, such as sliding, rotating, and translating operations with multiple fingers.
传统的触摸桌面只能识别桌面上的手指,不能得到触摸手的信息以及手的运动信息,然而通常手的运动能更准确的提供手的平移、旋转信息。如果能直接获取触摸手的运动信息,将会方便用户使用系统,增强了人机交互和谐性。The traditional touch table can only recognize the fingers on the table, and cannot obtain the information of the touching hand and the motion information of the hand. However, the motion of the hand can provide more accurate translation and rotation information of the hand. If the motion information of the touching hand can be obtained directly, it will be convenient for users to use the system, and the harmony of human-computer interaction will be enhanced.
多点触摸系统当中,当桌面较大时,操作的用户增多,手指个数增多时,如何有效、准确的获取每个手指对应的手信息,包括每个触摸手指的具体对应左手还是右手,以及触摸左右手如何运动,左右触摸手的覆盖区域,这些信息都不能直接获取。因此迫切需要一种快速、稳定的触摸手识别算法。In a multi-touch system, when the desktop is large, the number of users operating and the number of fingers increases, how to effectively and accurately obtain the hand information corresponding to each finger, including whether each touching finger corresponds to the left hand or the right hand, and How the left and right hands move when touching, and the coverage area of the left and right touching hands, these information cannot be directly obtained. Therefore, there is an urgent need for a fast and stable touch hand recognition algorithm.
发明内容Contents of the invention
为了解决现有技术中在多点触摸交互系统中识别触摸手信息的问题,本发明的目的是在多点触摸交互系统中识别触摸手信息。In order to solve the problem of identifying touch hand information in a multi-touch interactive system in the prior art, the purpose of the present invention is to identify touch hand information in a multi-touch interactive system.
为实现上述目的,本发明提供一种在多点触摸交互系统的触摸手识别方法,此方法在初始状态对触点聚类,对同一类别的触摸手指识别左右手,在触点移动的过程中对触点进行连续跟踪,并对聚类结果进行动态调整。单个手中最大的手指间距离设为T。In order to achieve the above object, the present invention provides a touch hand recognition method in a multi-touch interactive system. This method clusters the touch points in the initial state, identifies the left and right hands for the same type of touch fingers, and recognizes the left and right hands during the movement of the touch points. Contacts are tracked continuously and clustering results are dynamically adjusted. The maximum inter-finger distance in a single hand is set to T.
本发明的技术方案为:Technical scheme of the present invention is:
一种多点触摸交互系统的触摸手识别方法,其步骤为:A touch hand recognition method of a multi-touch interactive system, the steps of which are:
1)获取某一帧内检测到的手指F0,F1,…Fn;其中,每个手指Fj={f0,f1,…fm},fi是手指内像素点;其中,m、n为正整数;1) Obtain the fingers F 0 , F 1 ,...F n detected in a certain frame; where, each finger F j ={f 0 , f 1 ,...f m }, f i is the pixel in the finger; where , m, n are positive integers;
2)将该帧内的每个手指Fj拟合为一个椭圆Ej;2) fitting each finger F j in the frame to an ellipse E j ;
3)根据每个手指对应的椭圆和设定的手指距离T,对该帧内的手指进行聚类,得到k类手指;其中,k为自然数;3) According to the ellipse corresponding to each finger and the set finger distance T, the fingers in the frame are clustered to obtain k-type fingers; wherein, k is a natural number;
4)计算每个类H{F0,F1,...,Fp}的中心及该类的凸包区域R;其中,p为正整数且p≤n;4) Calculate the center of each class H{F 0 , F 1 ,...,F p } and the convex hull area R of this class; where, p is a positive integer and p≤n;
5)将当前帧的每个类及其覆盖区域作为一个触摸手信息(H{F0,F1,...,Fp},R)。5) Take each class and its coverage area of the current frame as a touch hand information (H{F 0 , F 1 ,...,F p }, R).
进一步的,将手指Fj拟合为一个椭圆Ej的方法为:Further, the method of fitting finger F j to an ellipse E j is:
1)根据手指Fj内的像素点fi坐标(xi,yi),计算椭圆中心点坐标(xc,yc);1) Calculate the coordinates (x c , y c ) of the center point of the ellipse according to the coordinates (x i , y i ) of the pixel point f i in the finger F j ;
2)对Fj内像素点的每一坐标进行归一化,并计算归一化后xi、yi的协方差矩阵,得到椭圆的长短轴a、b,以及椭圆长轴与x轴的夹角θ;得到手指Fj拟合的椭圆Ej(xc,yc,a,b,θ)。2) Normalize each coordinate of the pixel points in F j , and calculate the covariance matrix of x i and y i after normalization, and obtain the major and minor axes a and b of the ellipse, and the relationship between the major axis of the ellipse and the x axis Angle θ; get the ellipse E j (x c , y c , a, b, θ) fitted by the finger F j .
进一步的,所述步骤3)的聚类方法为:Further, the clustering method of said step 3) is:
a)将该帧内的每个手指初始为一个类Hi;a) Initialize each finger in the frame as a class H i ;
b)计算Hi类中任意一个手指拟合椭圆Em与Hj类中任意一个手指拟合椭圆En的中心点距离L,如果L最大值小于设定手指距离T,则将Hi与Hj合并为一个类;b) Calculate the distance L between any finger fitting ellipse E m in class H i and the center point L of any finger fitting ellipse E n in class H j , if the maximum value of L is less than the set finger distance T, then combine Hi and H j merged into one class;
c)重复步骤b),直到没有可合并的类为止,得到k类手指。c) Repeat step b) until there is no class that can be merged, and k class fingers are obtained.
进一步的,根据类H{F0,F1,...,Fp}的中心及该类中每个手指的中心得到该类的凸包区域R。Further, according to the center of the class H{F 0 , F 1 ,...,F p } and the center of each finger in the class, the convex hull region R of the class is obtained.
进一步的,所述R的计算方法为:将H{F0,F1,...,Fp}的中心和该类内每个手指拟合椭圆的中心(xc,yc)组成的点集确定凸包区域R。Further, the calculation method of R is: the center of H{F 0 , F 1 ,...,F p } and the center (x c , y c ) of each finger fitting ellipse in this class are composed The set of points determines the convex hull region R.
进一步的,所述计算每个类H{F0,F1,...,Fp}的中心的方法为:Further, the method for calculating the center of each class H{F 0 , F 1 ,...,F p } is:
1)对于类H{F0,F1,...,Fp}中每个手指的拟合椭圆E(xc,yc,a,b,θ),按照θ值逆时针排序;1) For the fitting ellipse E(x c ,y c ,a,b,θ) of each finger in the class H{F 0 ,F 1 ,...,F p }, sort them counterclockwise according to the value of θ;
2)计算该类内所有拟合椭圆的长轴交点,计算所有交点的平均值,即为该类H{F0,F1,...,Fp}的中心(xh,yh)。2) Calculate the major axis intersection points of all fitted ellipses in this class, and calculate the average value of all intersection points, which is the center (x h , y h ) of this class H{F 0 ,F 1 ,...,F p } .
本发明的主要内容为:Main content of the present invention is:
步骤S1:设在某一帧检测到的手指F0,F1,…Fn,其中每个手指包含Fj={f0,f1,…fm},fi是手指内像素点。对每个手指Fj拟合一个椭圆Ej(xc,yc,a,b,θ),xc,yc是椭圆中心点坐标,a,b为椭圆的长短轴,θ为椭圆的长轴与x轴的夹角。Step S1: Assuming that fingers F 0 , F 1 ,...F n are detected in a certain frame, each finger contains F j ={f 0 , f 1 ,...f m }, and f i is a pixel in the finger. Fit an ellipse E j (x c , y c , a, b, θ) to each finger F j , where x c , y c are the coordinates of the center point of the ellipse, a, b are the major and minor axes of the ellipse, and θ is the The angle between the major axis and the x-axis.
我们的拟合算法如下,该方法复杂度低,容易实现:Our fitting algorithm is as follows, which is low in complexity and easy to implement:
设手指Fj内的一像素点fi坐标为(xi,yi),计算(xc,yc):Let the coordinates of a pixel point f i inside the finger F j be (x i , y i ), and calculate (x c , y c ):
将fi归一化:Normalize f i :
xi=xi-xc x i = x i - x c
yi=yi-yc y i =y i -y c
计算xi,yi的协方差矩阵:Calculate the covariance matrix of x i , y i :
对这个矩阵求特征值得到λ0,λ1,(λ0>λ1),λ0对应特征向量(v0,v1)则Calculate the eigenvalues of this matrix to get λ 0 , λ 1 , (λ 0 >λ 1 ), and λ 0 corresponds to the eigenvector (v 0 , v 1 ), then
θ=atan(v1/v0)θ=atan(v 1 /v 0 )
步骤S2:根据最大的触点间距离T,对F0,F1,…Fn聚类,将其聚类为H0,H1,…,Hk,总共k个类。Step S2: According to the largest distance T between contacts, cluster F 0 , F 1 , ... F n , and cluster them into H 0 , H 1 , ..., H k , a total of k clusters.
聚类算法:Clustering Algorithm:
1.初始每个手指为一个类Hi。1. Initially each finger is a class H i .
2.对于每个类Hi,寻找其最近的一个类为Hj,对于任意的Fm∈Hi,Fn∈Hj,若|Fm-Fn|<T(|Fm-Fn|表示手指距离,指触摸区域拟合的椭圆中心点的距离),则将Hi,Hj并为一个类。2. For each class H i , find its nearest class H j , for any F m ∈ H i , F n ∈ H j , if |F m -F n |<T(|F m -F n | represents the finger distance, which refers to the distance between the center point of the ellipse fitted to the touch area), then combine H i and H j into one class.
3.重复第2步,直到没有类可以合并为止。3. Repeat step 2 until there are no more classes to merge.
步骤S3:对于每个类H中的每个手指的拟合椭圆E(xc,yc,a,b,θ)中的θ以逆时针的方式排序。计算该类内所有椭圆长轴的交点,设为(x1,y1),(x2,y2),…,(xn,yn),取该类H的中心;该类H的中心为(xh,yh):其中Step S3: θ in the fitted ellipse E(x c , y c , a, b, θ) for each finger in each class H is sorted in a counterclockwise manner. Calculate the intersection of all the major axes of the ellipse in this class, set it as (x 1 ,y 1 ),(x 2 ,y 2 ),…,(x n ,y n ), take the center of this class H; The center is (x h ,y h ): where
计算H的中心和类H内每个手指中心组成的点集的凸包区域R,代表触摸手的区域。Calculate the convex hull region R of the center of H and the center of each finger in class H, representing the area of the touching hand.
步骤S4:将每个类作为当前帧的一个触摸手,得到的H{F0,F1,,Fn},R,作为触摸手信息,其包括F0,F1,...,Fn个手指,其中心为xh,yh,所覆盖的区域为R。Step S4: Take each class as a touching hand in the current frame, and obtain H{F 0 ,F 1 ,,F n },R, as the touching hand information, which includes F 0 ,F 1 ,...,F n fingers, whose centers are x h , y h , and the area covered by them is R.
初始聚类之后,每个触点都进行唯一标示,在连续跟踪过程中,根据前后两帧点的最近距离对标示点进行连续跟踪,当有新手指出现或者原有手指消失时,并采用上述算法重新计算。After the initial clustering, each contact point is uniquely marked. During the continuous tracking process, the marked points are continuously tracked according to the closest distance between the two frame points before and after. When a new finger appears or the original finger disappears, the above-mentioned Algorithm recalculation.
本发明的有益效果是:The beneficial effects of the present invention are:
本发明提供了在多点触摸交互系统中识别触摸手信息的方法。只需要得到触摸手指的区域信息,快速拟合椭圆,便可得到算手指的方向,对手指聚类,识别触摸手信息。通过拟合椭圆,手指聚类,识别到触摸手信息精确度高,鲁棒性好。本发明使得触摸屏幕的多点触摸交互系统中识别触摸手更加精确,使得触摸屏更加实用。The invention provides a method for identifying touch hand information in a multi-point touch interaction system. You only need to get the area information of the touching finger, and quickly fit the ellipse to get the direction of the finger, cluster the fingers, and identify the touching hand information. By fitting ellipses and finger clustering, the touch hand information is recognized with high accuracy and good robustness. The invention enables more accurate identification of touching hands in a multi-point touch interactive system of a touch screen, and makes the touch screen more practical.
附图说明Description of drawings
图1为系统布局示意图;Figure 1 is a schematic diagram of the system layout;
1、桌面,2、红外灯,3、摄像机,4、投影仪,5、主机;1. Desktop, 2. Infrared lamp, 3. Camera, 4. Projector, 5. Host;
图2为手指拟合椭圆,聚类效果图;Figure 2 is a finger fitting ellipse, clustering effect diagram;
图3为本发明的流程图。Fig. 3 is a flowchart of the present invention.
具体实施方式Detailed ways
下面结合附图详细说明本发明技术方案中所涉及的各个细节问题。应指出的是,所描述的实施例仅旨在便于对本发明的理解,而对其不起任何限定作用。Various details involved in the technical solution of the present invention will be described in detail below in conjunction with the accompanying drawings. It should be pointed out that the described embodiments are only intended to facilitate the understanding of the present invention, rather than limiting it in any way.
为了实现本发明的方法,实施时采用一台CPU是1.6G,内存是512M,硬盘320G的计算机或其他类型的计算机,多点触摸桌面的长度为1.5米,宽度为1.15米。系统布局示意图如图1所示。图2给出了我们实施例的图示,从图2中可以看出,我们正确的进行了三个手的聚类,矩形包围盒表示识别到的结果。在计算机上采用Matlab编制相关程序,本发明方法的流程图请参见图3,本发明方法的具体实施步骤如下:In order to realize the method of the present invention, it is 1.6G to adopt a CPU during implementation, and internal memory is 512M, the computer of hard disk 320G or other types of computers, and the length of the multi-touch desktop is 1.5 meters, and the width is 1.15 meters. The schematic diagram of the system layout is shown in Figure 1. Figure 2 shows an illustration of our embodiment. It can be seen from Figure 2 that we have correctly clustered the three hands, and the rectangular bounding box represents the recognized result. Adopt Matlab to compile relevant program on computer, the flow chart of the inventive method is referring to Fig. 3, and the concrete implementation steps of the inventive method are as follows:
步骤S1:设在某一帧检测到的手指为F0,F1,…F15,一共15个触摸手指区域,其中每个手指包含Fj={f0,f1,…fi,…fm},fi是手指内像素点。对每个手指Fj拟合一个椭圆Ej(xc,yc,a,b,θ)Step S1: Let the fingers detected in a certain frame be F 0 , F 1 ,...F 15 , a total of 15 touching finger areas, where each finger contains F j ={f 0 ,f 1 ,...f i ,... f m }, f i is the pixel in the finger. Fit an ellipse E j (x c ,y c ,a,b,θ) to each finger F j
拟合算法如下:The fitting algorithm is as follows:
设fi坐标为(xi,yi),计算(xc,yc):Let the coordinates of f i be (x i , y i ), and calculate (x c , y c ):
将fi归一化:Normalize f i :
xi=xi-xc x i = x i - x c
yi=yi-yc y i =y i -y c
计算xi,yi的协方差矩阵:Calculate the covariance matrix of x i , y i :
对这个矩阵求特征值得到λ0,λ1,(λ0>λ1),λ0对应特征向量(v0,v1),则Calculate the eigenvalues of this matrix to get λ 0 , λ 1 , (λ 0 >λ 1 ), and λ 0 corresponds to the eigenvector (v 0 , v 1 ), then
θ=atan(v1/v0)θ=atan(v 1 /v 0 )
步骤S2:选定最大的手指内距离T=30像素距离,也是就是说超过30像素距离,则认为不属于一个类;对F0,F1,…F15聚类,将其聚类为H0,H1,H2,总共3个类。Step S2: Select the largest distance within the finger T=30 pixels, that is to say, if the distance exceeds 30 pixels, it is considered not to belong to a class; cluster F 0 , F 1 ,...F 15 , and cluster them into H 0 , H 1 , H 2 , a total of 3 classes.
聚类算法:Clustering Algorithm:
1.初始每个手指为一个类Hi。1. Initially each finger is a class H i .
2.对于每个类Hi,寻找其最近的一个类为Hj,对于任意的Fm∈Hi,Fn∈Hj,若|Fm-Fn|<T(|Fm-Fn|表示手指距离,指触摸区域拟合的椭圆中心点的距离),则将Hi,Hj并为一个类。2. For each class H i , find its nearest class H j , for any F m ∈ H i , F n ∈ H j , if |F m -F n |<T(|F m -F n | represents the finger distance, which refers to the distance between the center point of the ellipse fitted to the touch area), then combine H i and H j into one class.
3.重复第2步,直到没有类可以合并为止。3. Repeat step 2 until there are no more classes to merge.
步骤S3:对于每个类H(即H0,H1,H2)的每个手指的拟合椭圆E(xc,yc,a,b,θ)中的θ以Step S3: For each finger of each class H (ie, H 0 , H 1 , H 2 ), the θ in the fitted ellipse E(x c ,y c ,a,b,θ) is given by
逆时针的方式排序。计算每个椭圆的长轴的交点,即为H的中心xh,yh,计算H的中心Sort in a counterclockwise manner. Calculate the intersection of the major axes of each ellipse, which is the center x h , y h of H, and calculate the center of H
和类H内每个手指中心组成的点集的凸包区域R,代表触摸手的区域。and the convex hull region R of the point set formed by the center of each finger in the class H, representing the area of the touching hand.
步骤S4:将每个类作为当前帧的一个触摸手,得到的H{F0,F1,,Fn},R,作为触摸手信息,其包括F0,F1,,Fn个手指,其中心为xh,yh,所覆盖的区域为R。Step S4: Take each class as a touching hand in the current frame, and obtain H{F 0 ,F 1 ,,F n },R, as the touching hand information, which includes F 0 ,F 1 ,,F n fingers , whose center is x h , y h , and the covered area is R.
对图2中的触摸手指,拟合椭圆,如图2中所示每个手指区域包含一个椭圆,对15个手指区域聚类,结果聚为三类,在图2中采用矩形框画出。For the touching finger in Figure 2, fit an ellipse, as shown in Figure 2, each finger area contains an ellipse, cluster the 15 finger areas, and the results are clustered into three categories, which are drawn in a rectangular frame in Figure 2.
以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可理解想到的变换或替换,都应涵盖在本发明的包含范围之内,因此,本发明的保护范围应该以权利要求书的保护范围为准。The above is only a specific implementation mode in the present invention, but the scope of protection of the present invention is not limited thereto. Anyone familiar with the technology can understand the conceivable transformation or replacement within the technical scope disclosed in the present invention. All should be covered within the scope of the present invention, therefore, the protection scope of the present invention should be based on the protection scope of the claims.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110068062.2A CN102693025B (en) | 2011-03-21 | 2011-03-21 | Touch finger identification method for multi-touch interaction system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110068062.2A CN102693025B (en) | 2011-03-21 | 2011-03-21 | Touch finger identification method for multi-touch interaction system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102693025A CN102693025A (en) | 2012-09-26 |
CN102693025B true CN102693025B (en) | 2015-07-08 |
Family
ID=46858540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110068062.2A Expired - Fee Related CN102693025B (en) | 2011-03-21 | 2011-03-21 | Touch finger identification method for multi-touch interaction system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102693025B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103186241B (en) * | 2013-04-03 | 2016-07-06 | 中国科学院软件研究所 | A kind of interactive desktop contact right-hand man's recognition methods |
CN106095201B (en) * | 2016-05-30 | 2018-10-09 | 安徽慧视金瞳科技有限公司 | A kind of double-click detection method of projection interactive system |
CN106527917B (en) * | 2016-09-23 | 2020-09-29 | 北京仁光科技有限公司 | Multi-finger touch operation identification method for screen interaction system |
CN106569630B (en) * | 2016-09-30 | 2019-01-22 | 南京仁光电子科技有限公司 | A method of detection touch-control system screen number of contacts |
CN106778141B (en) * | 2017-01-13 | 2019-09-20 | 北京元心科技有限公司 | Unlocking method and device based on gesture recognition and mobile terminal |
CN107633551B (en) * | 2017-08-18 | 2018-07-06 | 中山叶浪智能科技有限责任公司 | Virtual keyboard display method and device |
CN109656393A (en) * | 2017-10-10 | 2019-04-19 | 北京仁光科技有限公司 | Refer to tracking, device, equipment and the computer readable storage medium of contact more |
CN108829248B (en) * | 2018-06-01 | 2020-11-20 | 中国科学院软件研究所 | A moving target selection method and system based on user performance model correction |
CN114185477A (en) * | 2021-12-14 | 2022-03-15 | 深圳市闪联信息技术有限公司 | Method and device for recognizing gestures and distinguishing operations under electronic whiteboard writing function |
CN115908573B (en) * | 2023-02-20 | 2023-06-02 | 季华实验室 | A rubber glove opening positioning method, system, electronic equipment and storage medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101140624A (en) * | 2007-10-18 | 2008-03-12 | 清华大学 | image matching method |
CN101198925A (en) * | 2004-07-30 | 2008-06-11 | 苹果公司 | Gestures for touch sensitive input devices |
CN101410781A (en) * | 2006-01-30 | 2009-04-15 | 苹果公司 | Gesturing with a multipoint sensing device |
CN101984396A (en) * | 2010-10-19 | 2011-03-09 | 中兴通讯股份有限公司 | Method for automatically identifying rotation gesture and mobile terminal thereof |
-
2011
- 2011-03-21 CN CN201110068062.2A patent/CN102693025B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101198925A (en) * | 2004-07-30 | 2008-06-11 | 苹果公司 | Gestures for touch sensitive input devices |
CN101410781A (en) * | 2006-01-30 | 2009-04-15 | 苹果公司 | Gesturing with a multipoint sensing device |
CN101140624A (en) * | 2007-10-18 | 2008-03-12 | 清华大学 | image matching method |
CN101984396A (en) * | 2010-10-19 | 2011-03-09 | 中兴通讯股份有限公司 | Method for automatically identifying rotation gesture and mobile terminal thereof |
Non-Patent Citations (1)
Title |
---|
"一种面向实时交互的变形手势跟踪方法";王西颖 等;《软件学报》;20071031;第18卷(第10期);第2423-2433页 * |
Also Published As
Publication number | Publication date |
---|---|
CN102693025A (en) | 2012-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102693025B (en) | Touch finger identification method for multi-touch interaction system | |
CN103093196B (en) | Character interactive input and recognition method based on gestures | |
CA2954516C (en) | Touch classification | |
CN104063059B (en) | A kind of real-time gesture recognition method based on finger segmentation | |
CN107710111B (en) | Determining the pitch angle for proximity sensitive interactions | |
JP5784141B2 (en) | Handwriting input method by superimposed writing | |
Le et al. | Investigating the feasibility of finger identification on capacitive touchscreens using deep learning | |
CN107391014B (en) | Intelligent touch screen keyboard with finger identification function | |
TW554293B (en) | Method for extracting and matching hand gesture features of image | |
CN102768595B (en) | A kind of method and device identifying touch control operation instruction on touch-screen | |
CN102272774B (en) | Method, apparatus and computer program product for providing face pose estimation | |
EP3783474B1 (en) | Method, apparatus and device for erasing handwriting on electronic whiteboard | |
CN104992192A (en) | Visual motion tracking telekinetic handwriting system | |
CN103426000B (en) | A kind of static gesture Fingertip Detection | |
CN103150114B (en) | A kind of convenient input method for touch screen | |
CN103186241B (en) | A kind of interactive desktop contact right-hand man's recognition methods | |
CN106529480A (en) | Finger tip detection and gesture identification method and system based on depth information | |
WO2021227295A1 (en) | Cnn-based cancer cell multi-scale scaling positioning detection method | |
CN102722309B (en) | A touch gesture touch information recognition method for a multi-touch interactive system | |
CN103605460B (en) | Gesture recognition method and related terminal | |
US20120299837A1 (en) | Identifying contacts and contact attributes in touch sensor data using spatial and temporal features | |
Li et al. | Sketch recognition with continuous feedback based on incremental intention extraction | |
CN113296616A (en) | Pen point selection method and device and intelligent terminal | |
Guo et al. | Gesture recognition based on pixel classification and contour extraction | |
CN114706515A (en) | Graphic three-finger rotation method and device based on electronic whiteboard |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150708 |
|
CF01 | Termination of patent right due to non-payment of annual fee |