CN102692625A - A Feature Joint Modeling Method of Bottom Target Echo and Reverberation in Rn Space - Google Patents
A Feature Joint Modeling Method of Bottom Target Echo and Reverberation in Rn Space Download PDFInfo
- Publication number
- CN102692625A CN102692625A CN2012101500725A CN201210150072A CN102692625A CN 102692625 A CN102692625 A CN 102692625A CN 2012101500725 A CN2012101500725 A CN 2012101500725A CN 201210150072 A CN201210150072 A CN 201210150072A CN 102692625 A CN102692625 A CN 102692625A
- Authority
- CN
- China
- Prior art keywords
- signal
- reverberation
- feature
- space
- target echo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000004927 fusion Effects 0.000 claims abstract description 20
- 238000012549 training Methods 0.000 claims abstract description 16
- 238000003672 processing method Methods 0.000 claims abstract description 8
- 230000009467 reduction Effects 0.000 claims description 4
- 238000010219 correlation analysis Methods 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 3
- 238000004458 analytical method Methods 0.000 claims description 2
- 238000012545 processing Methods 0.000 abstract description 2
- 238000001514 detection method Methods 0.000 description 11
- 239000013598 vector Substances 0.000 description 6
- 230000002776 aggregation Effects 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 238000012567 pattern recognition method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
Images
Landscapes
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
本发明提供的是一种Rn空间中的水底目标回波和混响的特征联合建模方法,其步骤是:1.建立包含目标回波与混响的训练样本库,根据两种信号物理性质的差异,采用不同的信号处理方法将训练样本映射到多个信号特征空间中;2.根据训练样本在信号特征空间中的分布信息,对信号特征空间降维,并对不同的信号特征空间融合,建立融合信号特征空间;3.建立训练样本中的目标回波与混响在融合信号特征空间中的联合分布模型;4.对于未知的信号样本,通过步骤1,2所述的信号处理方法映射到融合特征空间中,并与步骤3建立的联合分布模型进行比较,判断未知信号样本的种类。本发明所提出的建立的特征空间可以使目标回波与混响具有更加稳定与普适的分离性。
What the present invention provides is a feature joint modeling method of underwater target echo and reverberation in a kind of R n space, and its steps are: 1. Establish the training sample storehouse that comprises target echo and reverberation, according to two kinds of signal physics Due to the difference in nature, different signal processing methods are used to map the training samples to multiple signal feature spaces; 2. According to the distribution information of the training samples in the signal feature space, the signal feature space is reduced in dimension, and different signal feature spaces Fusion, establish the fusion signal feature space; 3. Establish the joint distribution model of the target echo and reverberation in the training sample in the fusion signal feature space; 4. For unknown signal samples, pass the signal processing described in steps 1 and 2 The method is mapped to the fusion feature space, and compared with the joint distribution model established in step 3, to determine the type of unknown signal samples. The established feature space proposed by the present invention can make the target echo and reverberation more stable and universally separable.
Description
技术领域 technical field
本发明涉及水声技术应用领域,具体地说是一种Rn空间中的水底目标回波和混响的特征联合建模方法。The invention relates to the application field of underwater acoustic technology, in particular to a characteristic joint modeling method of underwater target echo and reverberation in Rn space.
背景技术 Background technique
水下沉底或掩埋目标探测在水下考古、沉船打捞等水下工作任务中具有重要的作用。根据探测距离,水底目标探测可以分为近距离探测与远距离探测两种情况。近距离探测时,可以采用成像声纳等设备,获得目标及其附近的声学图像,直观的对目标进行识别与判断。而远距离探测时,目标不具备成像条件,无法得到目标的形状信息,只能根据调制在回波信号中的目标震动信息对目标存在与否进行判断。The detection of underwater sunken or buried targets plays an important role in underwater tasks such as underwater archaeology and shipwreck salvage. According to the detection distance, underwater target detection can be divided into short-distance detection and long-distance detection. In short-distance detection, imaging sonar and other equipment can be used to obtain acoustic images of the target and its vicinity, and intuitively identify and judge the target. In the case of long-distance detection, the target does not have the imaging conditions, and the shape information of the target cannot be obtained. The existence of the target can only be judged according to the vibration information of the target modulated in the echo signal.
目前进行远距离水底目标探测时,通常采用的做法是使用主动声纳发射一个宽带脉冲,并采用声纳阵列接收回波信号。根据目标回波与混响在物理机理上的不同,确定二者在信号性质上的差异,并选择相应的数学变换方法提取出回波信号的信号特征,采用模式识别方法对回波信号的信号特征进行判断识别。在这一信号处理流程中,目前的研究与成果主要集中在对目标回波与混响的性质进行分析,并研究相应的信号特征提取方法。在此方向上,国内学者提出了适用于工程应用的目标回波亮点模型,明确了目标回波中几何回波与弹性回波的基本形式,并据此采用了多种基于时域、频域以及时频域的信号处理方法来提取信号特征。但是目前已研究的方法都是在提取信号特征时将混响作为一种干扰信号进行抑制,针对混响的信号性质及其特征的研究未见相关文献报道。At present, when detecting long-distance underwater targets, the usual method is to use active sonar to transmit a broadband pulse, and use a sonar array to receive the echo signal. According to the difference in physical mechanism between target echo and reverberation, determine the difference in signal properties between the two, and select the corresponding mathematical transformation method to extract the signal characteristics of the echo signal, and use the pattern recognition method to analyze the signal of the echo signal. Features are judged and identified. In this signal processing flow, the current research and achievements are mainly focused on analyzing the properties of the target echo and reverberation, and studying the corresponding signal feature extraction methods. In this direction, domestic scholars have proposed a target echo bright spot model suitable for engineering applications, defined the basic forms of geometric echo and elastic echo in target echo, and adopted a variety of methods based on time domain and frequency domain. And signal processing methods in the time-frequency domain to extract signal features. However, the methods that have been studied so far are to suppress reverberation as an interference signal when extracting signal features, and there are no relevant literature reports on the signal properties and characteristics of reverberation.
发明内容 Contents of the invention
本发明的目的在于提出一种在欧氏距离意义下具有最优的可分离性,能提高主动声纳的探测性能,实现远程安全探测的Rn空间中的水底目标回波和混响的特征联合建模方法。The purpose of the present invention is to propose a feature of underwater target echo and reverberation in R n space that has optimal separability in the sense of Euclidean distance, can improve the detection performance of active sonar, and realize remote safe detection. joint modeling approach.
本发明的目的是这样实现的:The purpose of the present invention is achieved like this:
一种Rn空间中的水底目标回波和混响的特征联合建模方法包括以下步骤:A feature joint modeling method of underwater target echo and reverberation in R n space comprises the following steps:
步骤1:将混响作为一类具有稳定信号性质的信号源,建立包含目标回波与混响的训练样本库,根据两种信号物理性质的差异,采用不同信号处理方法将训练样本映射到多个信号特征空间中;Step 1: Taking reverberation as a signal source with stable signal properties, establish a training sample library containing target echo and reverberation, and use different signal processing methods to map the training samples to multiple in a signal feature space;
步骤2:根据训练样本在信号特征空间中的分布信息,对信号特征空间降维,并对不同的信号特征空间融合,建立融合信号特征空间;Step 2: According to the distribution information of the training samples in the signal feature space, reduce the dimensionality of the signal feature space, and fuse different signal feature spaces to establish a fusion signal feature space;
步骤3:建立训练样本中的目标回波与混响在融合信号特征空间中的联合分布模型;Step 3: Establish the joint distribution model of target echo and reverberation in the fusion signal feature space in the training samples;
步骤4:对于未知的信号样本,通过步骤1与步骤2所述的信号处理方法映射到融合特征空间中,并与步骤3建立的联合分布模型进行比较,判断未知信号样本的种类。Step 4: For unknown signal samples, map them into the fusion feature space through the signal processing methods described in
所述的采用不同信号处理方法,是指采用分数阶傅里叶变换将训练样本映射到能量聚集性特征空间和采用Hilbert-Huang变换将训练样本映射到多分量特征空间。The use of different signal processing methods refers to the use of fractional Fourier transform to map the training samples to the energy-aggregating feature space and the use of Hilbert-Huang transform to map the training samples to the multi-component feature space.
所述的信号特征空间降维,采用的是在欧氏距离意义下,基于Fisher准则函数的线性鉴别分析进行的。The dimensionality reduction of the signal feature space is performed by linear discriminant analysis based on the Fisher criterion function in the sense of Euclidean distance.
所述的信号特征空间融合,采用的是典型相关分析结合串联特征融合的方法进行的。The signal feature space fusion is carried out by using the method of canonical correlation analysis combined with serial feature fusion.
所述的特征空间联合分布建模,采用的是判别函数方法对目标回波与混响在融合特征空间中的分类面建立数学方程。The joint distribution modeling of the feature space adopts a discriminant function method to establish a mathematical equation on the classification surface of the target echo and reverberation in the fusion feature space.
本发明的方法的主要特点:Main features of the method of the present invention:
本发明将混响视为一类具有稳定信号性质的信号源,根据目标回波与混响在信号性质上的差异,结合特征空间压缩与融合方法,建立了一个融合特征空间Rn。与已有的信号特征空间建立方法相比,本发明方法建立的特征空间可以使目标回波与混响具有更加稳定与普适的分离性。本发明的成果不局限于水底目标识别的应用上,还可以广泛的应用于前视声纳、水下无人潜器、蛙人声纳等主动声纳目标识别领域,提高主动声纳的探测性能,实现远程安全探测,为近海防御声纳提供新的实现方案。The present invention regards the reverberation as a signal source with stable signal properties, and establishes a fusion feature space R n according to the difference in signal properties between the target echo and the reverberation, combined with a feature space compression and fusion method. Compared with the existing method for establishing signal feature space, the feature space established by the method of the present invention can make the target echo and reverberation more stable and universally separable. The achievements of the present invention are not limited to the application of underwater target recognition, but can also be widely used in active sonar target recognition fields such as forward-looking sonar, underwater unmanned submersible, frogman sonar, etc., to improve the detection of active sonar performance, to achieve long-range security detection, and to provide a new solution for offshore defense sonar.
附图说明 Description of drawings
图1是本发明的联合建模与识别方法实现步骤示意图。Fig. 1 is a schematic diagram of implementation steps of the joint modeling and identification method of the present invention.
具体实施方式 Detailed ways
下面结合附图举例对本发明做更详细的描述:The present invention is described in more detail below in conjunction with accompanying drawing example:
结合图1。以分数阶傅里叶变换和Hilbert-Huang变换为例,此处所述内容对本发明内容不起限定作用。本发明包括以下步骤:Combined with Figure 1. Taking Fractional Fourier Transform and Hilbert-Huang Transform as examples, the content described here does not limit the content of the present invention. The present invention comprises the following steps:
步骤1:step 1:
根据目标回波信号的亮点模型,当主动声纳发射信号为线性调频信号时,目标回波也为线性调频信号,具有能量聚集特性与多分量特性。根据这一特点,可以采用分数阶傅里叶变换与Hilbert-Huang变换对回波信号进行特征提取,分别提取回波信号的能量聚集性特征与多分量特征。According to the bright spot model of the target echo signal, when the active sonar emission signal is a chirp signal, the target echo is also a chirp signal, which has the characteristics of energy aggregation and multi-component. According to this feature, the fractional Fourier transform and Hilbert-Huang transform can be used to extract the features of the echo signal, and the energy aggregation feature and multi-component feature of the echo signal can be extracted respectively.
对于回波信号x(t),对其进行如式(1)所示的分数阶傅里叶变换。For the echo signal x(t), the fractional Fourier transform shown in formula (1) is performed on it.
其中,核函数Kp(u,t)为一个与时间t、分数阶域坐标轴u以及分数阶幂p有关的函数。通过改变p的值,使fp(u)的峰值达到最大,此时fp(u)即为回波信号的能量聚集性特征。Among them, the kernel function K p (u, t) is a function related to time t, the coordinate axis u of the fractional-order domain, and the fractional-order power p. By changing the value of p, the peak value of f p (u) is maximized, at this time f p (u) is the energy aggregation characteristic of the echo signal.
回波信号x(t)的Hilbert-Huang变换是对x(t)进行EMD分解,对信号的包络进行拟合,设立IMF分量的成立条件,采用从信号中减去上下包络线平均值的方式逐级得到各阶IMF分量,最后将信号分解为若干个IMF分量与一个余项的和。舍弃余项,对其余IMF分量做Hilbert变换,即可得到回波信号的Hilbert谱。The Hilbert-Huang transformation of the echo signal x(t) is to perform EMD decomposition on x(t), fit the envelope of the signal, establish the establishment condition of the IMF component, and subtract the average value of the upper and lower envelopes from the signal The IMF components of each order are obtained step by step in the same way, and finally the signal is decomposed into the sum of several IMF components and a remainder. Abandoning the remaining items and performing Hilbert transformation on the remaining IMF components can obtain the Hilbert spectrum of the echo signal.
通过以上两种信号特征提取方法,即建立了图1中步骤1中的两个特征空间。Through the above two signal feature extraction methods, the two feature spaces in
步骤2:包含了信号特征空间的降维与融合两个步骤。Step 2: Contains two steps of dimensionality reduction and fusion of signal feature space.
通过步骤1,回波信号x(t)从时域上映射到了某一特定的信号特征空间中。对这个信号特征空间进行压缩,应该遵循的一条原则是在压缩后的信号特征空间中,目标回波与混响的类间可分性更高。因此,在欧氏距离意义下,采用如式(2)所示的Fisher准则函数作为信号特征空间的压缩准则,目的是在压缩后的信号特征空间中,两类信号样本具有更小的类内散布距离,与更大的类间散布距离。Through
其中,JF是反映两类信号类间可分性的目标函数,w是用来对信号特征空间进行投影降维的投影方向矢量,Sw为特征空间中信号样本的类内散布矩阵,Sb为特征空间中信号样本的类间散布矩阵。采用拉格朗日乘子法对式(2)求解,求得一组满足正交条件的投影方向矢量。Among them, JF is the objective function reflecting the separability between two types of signal classes, w is the projection direction vector used to project the signal feature space to reduce the dimensionality, S w is the intra-class scatter matrix of signal samples in the feature space, S b is the inter-class scatter matrix of signal samples in feature space. Formula (2) is solved by Lagrange multiplier method, and a set of projection direction vectors satisfying the orthogonal condition are obtained.
将步骤1中建立的信号特征空间在这组矢量上进行投影,就得到了新的特征空间,定义为R′i,如附图中步骤2所示。R′i的空间维度要低于原信号特征空间这样就实现了信号特征空间的降维。The signal feature space established in
对于通过步骤1得到的两个信号特征空间和分别采用上述的特征压缩方法得到两个低维特征空间R′1和R′2。为了将这两个信号特征空间的信息进行融合,采用典型相关分析提取两个信号特征空间中代表同一个信号样本的特征矢量之间的典型相关变量。将两个信号特征空间中代表同一个信号样本的特征矢量的典型相关变量进行首尾相连的拼接,就得到一个新的融合特征空间,定义为Rn。在本例中,n=2d。For the two signal feature spaces obtained through
步骤3:Step 3:
在融合特征空间Rn中,根据目标回波与混响在特征空间中的分布,可以在两类信号样本之间建立一个用数学方程描述的分类面g(z),基于此分类面的决策规则规定为,In the fusion feature space R n , according to the distribution of the target echo and reverberation in the feature space, a classification surface g(z) described by a mathematical equation can be established between the two types of signal samples, and the decision based on this classification surface The rules state that,
g(z)的形式为特征空间各维度的线性加权组合,各权值可以根据已知样本,通过最优化方法求出。令g(z)为零,得到的就是特征空间中两类信号之间分类面的数学方程。根据此方程,即可以建立目标回波与混响在特征空间Rn中的分布模型。The form of g(z) is a linear weighted combination of each dimension of the feature space, and each weight value can be obtained by an optimization method based on known samples. Let g(z) be zero, and what is obtained is the mathematical equation of the classification surface between the two types of signals in the feature space. According to this equation, the distribution model of the target echo and reverberation in the feature space Rn can be established.
步骤4:Step 4:
对于新获得的回波信号样本,采用步骤1与步骤2所述方法对其进行信号特征提取,并得到其在融合特征空间中的特征矢量z,将其代入判决规则,根据判决规则,就可以判断z的所属类别。For the newly obtained echo signal sample, use the method described in
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101500725A CN102692625A (en) | 2012-05-15 | 2012-05-15 | A Feature Joint Modeling Method of Bottom Target Echo and Reverberation in Rn Space |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101500725A CN102692625A (en) | 2012-05-15 | 2012-05-15 | A Feature Joint Modeling Method of Bottom Target Echo and Reverberation in Rn Space |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102692625A true CN102692625A (en) | 2012-09-26 |
Family
ID=46858208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012101500725A Pending CN102692625A (en) | 2012-05-15 | 2012-05-15 | A Feature Joint Modeling Method of Bottom Target Echo and Reverberation in Rn Space |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102692625A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015172622A1 (en) * | 2014-05-14 | 2015-11-19 | 武汉大学 | Method for radio-frequency interference suppression of high-frequency ground wave radar |
CN110070031A (en) * | 2019-04-18 | 2019-07-30 | 哈尔滨工程大学 | A kind of sediment extracting echo characteristics of active sonar fusion method based on EMD and random forest |
CN110850421A (en) * | 2019-11-21 | 2020-02-28 | 中国科学院声学研究所 | Underwater target detection method based on space-time adaptive processing of reverberation symmetric spectrum |
CN111931803A (en) * | 2020-06-17 | 2020-11-13 | 中国船舶重工集团公司第七一五研究所 | Evaluation criterion method for fine features of underwater acoustic signals |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080175434A1 (en) * | 2007-01-18 | 2008-07-24 | Northrop Grumman Systems Corporation | Automatic target recognition system for detection and classification of objects in water |
CN101470194A (en) * | 2007-12-26 | 2009-07-01 | 中国科学院声学研究所 | Torpedo target recognition method |
CN101900810A (en) * | 2010-07-15 | 2010-12-01 | 哈尔滨工程大学 | Fusion method of sonar information at detection end of multi-submersible vehicle |
CN102142136A (en) * | 2011-03-05 | 2011-08-03 | 河海大学常州校区 | Neural network based sonar image super-resolution reconstruction method |
-
2012
- 2012-05-15 CN CN2012101500725A patent/CN102692625A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080175434A1 (en) * | 2007-01-18 | 2008-07-24 | Northrop Grumman Systems Corporation | Automatic target recognition system for detection and classification of objects in water |
CN101470194A (en) * | 2007-12-26 | 2009-07-01 | 中国科学院声学研究所 | Torpedo target recognition method |
CN101900810A (en) * | 2010-07-15 | 2010-12-01 | 哈尔滨工程大学 | Fusion method of sonar information at detection end of multi-submersible vehicle |
CN102142136A (en) * | 2011-03-05 | 2011-08-03 | 河海大学常州校区 | Neural network based sonar image super-resolution reconstruction method |
Non-Patent Citations (3)
Title |
---|
LI TINGTING等: "Classification of Underwater Mines by Means of the FRFT and SVM", 《PROCEEDINGS OF THE 2010 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION》 * |
李秀坤等: "水下目标特性特征提取及其融合", 《哈尔滨工程大学学报》 * |
谢磊等: "水雷目标的亮点信息提取及融合研究", 《声学技术》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015172622A1 (en) * | 2014-05-14 | 2015-11-19 | 武汉大学 | Method for radio-frequency interference suppression of high-frequency ground wave radar |
CN110070031A (en) * | 2019-04-18 | 2019-07-30 | 哈尔滨工程大学 | A kind of sediment extracting echo characteristics of active sonar fusion method based on EMD and random forest |
CN110850421A (en) * | 2019-11-21 | 2020-02-28 | 中国科学院声学研究所 | Underwater target detection method based on space-time adaptive processing of reverberation symmetric spectrum |
CN111931803A (en) * | 2020-06-17 | 2020-11-13 | 中国船舶重工集团公司第七一五研究所 | Evaluation criterion method for fine features of underwater acoustic signals |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection | |
CN103593669B (en) | A kind of method that polarimetric synthetic aperture radar image four component decomposes | |
CN106599808B (en) | A Hidden Target Extraction Method Based on Full Waveform Lidar Data | |
CN101470194B (en) | Torpedo target recognition method | |
CN107132512B (en) | UWB radar human motion micro-Doppler feature extracting method based on multichannel HHT | |
CN103064063B (en) | Poly-phase code radar signal waveform automatic identification method based on continuous wave Doppler (CWD) feature | |
CN106250854A (en) | Body gait recognition methods based on micro-Doppler feature and support vector machine | |
CN103093244B (en) | A kind of Radar Signal Recognition method based on Its Sparse Decomposition | |
CN102692625A (en) | A Feature Joint Modeling Method of Bottom Target Echo and Reverberation in Rn Space | |
CN113534065A (en) | Radar target micro-motion feature extraction and intelligent classification method and system | |
CN104680184A (en) | Polarization SAR terrain classification method based on deep RPCA | |
CN104751183B (en) | Classification of Polarimetric SAR Image method based on tensor MPCA | |
CN109034087A (en) | A kind of hybrid machine learning signal classification method based on PCA dimensionality reduction | |
CN106951822A (en) | A Fusion Recognition Method Based on Multi-scale Sparse Preserving Projection One-dimensional Range Image | |
Xu et al. | Impact feature recognition method for non-stationary signals based on variational modal decomposition noise reduction and support vector machine optimized by whale optimization algorithm | |
CN103105603B (en) | X-waveband wave observation radar ocean current inversion preprocessing method | |
CN103268491A (en) | A Feature Extraction Method for Welding Defect Ultrasonic Phased Array Sector Scanning Image | |
Yang et al. | Compressive feature and kernel sparse coding‐based radar target recognition | |
CN101441716A (en) | Integral and local characteristic fuse recognition system facing to identification | |
CN106709428A (en) | One-dimensional distance image stable identification method based on Euler kernel principle component analysis (KPCA) | |
CN104134073B (en) | A single-class classification method for remote sensing images based on one-class normalization | |
CN104077610A (en) | Method for recognizing SAR target image with two-dimensional nonlinear projection characteristic | |
CN106291585A (en) | Terahertz high-resolution imaging method under low sampling number | |
CN117216954A (en) | Sea surface scattering coefficient rapid prediction method, system, equipment and medium | |
Wang et al. | Rammar: RAM assisted mask R-CNN for FMCW sensor based HGD system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120926 |