CN102692544A - Electrostatic voltage measurement device and method - Google Patents

Electrostatic voltage measurement device and method Download PDF

Info

Publication number
CN102692544A
CN102692544A CN2012101891517A CN201210189151A CN102692544A CN 102692544 A CN102692544 A CN 102692544A CN 2012101891517 A CN2012101891517 A CN 2012101891517A CN 201210189151 A CN201210189151 A CN 201210189151A CN 102692544 A CN102692544 A CN 102692544A
Authority
CN
China
Prior art keywords
msub
mrow
voltage
omega
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012101891517A
Other languages
Chinese (zh)
Other versions
CN102692544B (en
Inventor
彭磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pinghu Sitong Power Supply Factory
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201210189151.7A priority Critical patent/CN102692544B/en
Publication of CN102692544A publication Critical patent/CN102692544A/en
Application granted granted Critical
Publication of CN102692544B publication Critical patent/CN102692544B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

The invention provides an electrostatic voltage measurement device, which comprises an electrode, a vibrator, a voltage source, a current sampling device and a processor, wherein the voltage source outputs alternating current-direct current superposed voltage to a measured electrostatic body; the processor controls the vibrator to vibrate and drive the electrode to vibrate; the electrode is close to the measured electrostatic body; coupling capacitance between the electrode and the measured electrostatic body is alternated due to the vibration of the electrode; the current sampling device samples a current signal of the measured electrostatic body which is coupled by the electrode, and transmits the sampled current signal to the processor; and the processor extracts a current component from the sampled current signal, and acquires an electrostatic voltage parameter of the measured electrostatic body according to the extracted current component. According to the electrostatic voltage measurement device, the area of the electrode, area amplitude, a distance between the electrode and the measured electrostatic body and distance amplitude are not required to be corrected, comparison voltage with amplitude the same as that of measured electrostatic voltage is also not required to be generated, and the influence of the shape, mounting position and angle of the electrode on a measurement result is avoided.

Description

Electrostatic voltage measuring device and method
Technical Field
The invention relates to the technical field of electronic measurement, in particular to an electrostatic voltage measuring device and method.
Background
The electrostatic measurement is widely applied to the fields of scientific research, petrochemical industry, national defense and military, ferrous metallurgy, environmental protection, semiconductor manufacturing and the like. At present, a common electrostatic measurement technique is vibration capacitance non-contact measurement. The vibration capacitance non-contact measurement adopts an electrode close to a measured electrostatic body, and measures the alternating current flowing through the electrode by periodically alternating the distance between the electrode and the measured electrostatic body or periodically alternating the induction area of the electrode, namely changing the coupling capacitance between the electrode and the measured electrostatic body, thereby indirectly measuring the voltage of the measured electrostatic body. The vibration capacitance non-contact measurement is divided into: a corrective vibrating capacitance non-contact measurement and a balanced vibrating capacitance non-contact measurement.
The correction type vibration capacitance non-contact measurement needs to correct the electrode area and the average distance and the distance amplitude between the electrode and the measured electrostatic body, or needs to correct the electrode area amplitude and the distance between the electrode and the measured electrostatic body, and meanwhile, the correction type vibration capacitance electrostatic measurement has higher requirements on the electrode installation position and the installation angle. The balance type vibration capacitance electrostatic measurement is characterized in that a vibration capacitor, an auxiliary program control voltage source and a measured electrostatic body are connected in series equivalently, and the current flowing through the vibration capacitor is zero by changing the polarity of the auxiliary program control voltage source and adjusting the voltage of the auxiliary program control voltage source, so that the voltage of the measured electrostatic body is measured. The non-contact measurement of the balanced vibration capacitor needs to generate voltage with the same amplitude as the voltage of the measured electrostatic body, and the realization of the situation of high-voltage electrostatic measurement is difficult.
Disclosure of Invention
In view of the above, the present invention provides an electrostatic voltage measurement apparatus and method, for solving the problems that the area and the area amplitude of an electrode, the distance between the electrode and a measured electrostatic body, and the distance amplitude need to be corrected, a comparison voltage with the same amplitude as the voltage of the measured electrostatic body needs to be generated, and the shape, the installation position, and the installation angle of the electrode affect the measurement result in the existing vibration capacitance non-contact measurement, and the technical scheme is as follows:
an electrostatic voltage measurement apparatus comprising: the device comprises electrodes, a vibrator, a voltage source, a current sampling device and a processor;
the voltage source outputs alternating current and direct current superposed voltage to the tested static body;
the processor controls the vibrator to vibrate so as to drive the electrode connected with the vibrator to vibrate, wherein the electrode is arranged close to the tested electrostatic body, and the coupling capacitance between the electrode and the tested electrostatic body alternates due to the vibration of the electrode;
the voltage source, the measured electrostatic body, the electrode and the current sampling device form a series loop, the current sampling device samples the current of the measured electrostatic body coupled through the electrode to obtain a sampling current, and a sampling current signal containing the sampling current is sent to the processor;
the processor extracts a current component from the sampled current signal and obtains an electrostatic voltage parameter of the measured electrostatic body according to the extracted current component.
The sampling current is specifically as follows: the voltage source, the measured electrostatic body, the electrode and the current sampling device form a series loop.
The processor extracts a current component from the sampling current signal and acquires an electrostatic voltage parameter of the measured electrostatic body according to the extracted current component, specifically:
the processor extracts j times of current component amplitude values from the sampling current signals, extracts j + i, j-i or i-j times of current component amplitude values, and acquires the electrostatic voltage amplitude value and the electrostatic voltage polarity of the tested electrostatic body according to the extracted current component amplitude values, wherein j is a positive integer greater than or equal to 1, i is a positive integer greater than or equal to 1, and j is not equal to i.
The current of a series loop formed by the voltage source, the measured electrostatic body, the electrode and the current sampling device is as follows:
i c = C c dU c dt + U c dC c dt
wherein, CcIs the coupling capacitance, U, between the electrode and the measured electrostatic bodycAnd t is the total voltage between the electrode and the measured electrostatic body, and t is the time.
The coupling capacitance between the electrode and the measured electrostatic body is as follows:
<math> <mrow> <msub> <mi>C</mi> <mi>c</mi> </msub> <mo>=</mo> <msub> <mi>C</mi> <mn>0</mn> </msub> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>C</mi> <mi>j</mi> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mi>t</mi> <mo>+</mo> <msub> <mi>&alpha;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
wherein, C0Is the average value of the coupling capacitance between the electrode and the measured electrostatic body, N is a positive integer greater than or equal to 1, j is a positive integer greater than or equal to 1 and less than or equal to N, CjAmplitude of change of capacitance, ω, for the jth harmonic componentjAs electricity of the j-th harmonic componentVolume-varying angular frequency, alphajIs the phase of the capacitance variation of the jth harmonic component, and t is time.
The voltage output by the voltage source is as follows:
<math> <mrow> <msub> <mi>U</mi> <mi>r</mi> </msub> <mo>=</mo> <msub> <mi>U</mi> <mi>dc</mi> </msub> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <msub> <mi>U</mi> <mi>i</mi> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mi>t</mi> <mo>+</mo> <msub> <mi>&beta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
total voltage U between the electrode and the measured electrostatic bodycThe electrostatic voltage U charged by the detected electrostatic bodysAnd the voltage U output by the voltage sourcerSumming;
wherein, UdcDirect current voltage, M is a positive integer greater than or equal to 1, i is a positive integer greater than or equal to 1 and less than or equal to M, UiAmplitude of voltage variation, ω, for the ith harmonic componentiAngular frequency of voltage change, beta, of the ith harmonic componentiIs the voltage phase of the ith harmonic component, and t is time.
The amplitude of the j times current component is angular frequency omegajThe amplitude of the current component of (1) is an angular frequency of ωjiThe amplitude of the current component of (a) j-i times is an angular frequency of omegajiThe amplitude of the current component of (a) is ω for i-j timesijThe magnitude of the current component of (a).
The j times of current component amplitude is as follows:
I0=Cjωj(Us+Udc);
the amplitude of the j + i times current component is as follows:
<math> <mrow> <msub> <mi>I</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>C</mi> <mi>j</mi> </msub> <msub> <mi>U</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
the amplitude of the current component of j-i or i-j times is as follows:
<math> <mrow> <msub> <mi>I</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>C</mi> <mi>j</mi> </msub> <msub> <mi>U</mi> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>.</mo> </mrow> </math>
the method comprises the following steps of obtaining the electrostatic voltage amplitude and the electrostatic voltage polarity of the measured electrostatic body according to the amplitude of the extracted current component, specifically:
when U is turneddcWhen the current component amplitude is greater than or equal to 0, if the current component amplitude I is measured j times0Following UdcIs increased, the static electricity charged in the tested static electricity body is increasedThe voltage is positive, and the electrostatic voltage amplitude is:
<math> <mrow> <msub> <mi>U</mi> <mi>sam</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mn>0</mn> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <msub> <mi>I</mi> <mn>1</mn> </msub> </mrow> </mfrac> <msub> <mi>U</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>U</mi> <mi>dc</mi> </msub> <mo>,</mo> </mrow> </math>
or,
<math> <mrow> <msub> <mi>U</mi> <mi>sam</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>I</mi> <mn>0</mn> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <msub> <mi>I</mi> <mn>2</mn> </msub> </mrow> </mfrac> <msub> <mi>U</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>U</mi> <mi>dc</mi> </msub> <mo>;</mo> </mrow> </math>
when U is turneddcWhen the current component amplitude is greater than or equal to 0, if the current component amplitude I is measured j times0Following UdcThe voltage of the electrostatic voltage charged on the detected electrostatic body is negative, and the amplitude of the electrostatic voltage is as follows:
<math> <mrow> <msub> <mi>U</mi> <mi>sam</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mn>0</mn> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <msub> <mi>I</mi> <mn>1</mn> </msub> </mrow> </mfrac> <msub> <mi>U</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>U</mi> <mi>dc</mi> </msub> <mo>,</mo> </mrow> </math>
or,
<math> <mrow> <msub> <mi>U</mi> <mi>sam</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>I</mi> <mn>0</mn> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <msub> <mi>I</mi> <mn>2</mn> </msub> </mrow> </mfrac> <msub> <mi>U</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>U</mi> <mi>dc</mi> </msub> <mo>;</mo> </mrow> </math>
when U is turneddcIf the current component amplitude I is less than 0 times j0Following UdcIf the voltage is decreased and increased, the electrostatic voltage charged by the measured electrostatic body is negative, and the amplitude of the electrostatic voltage is:
<math> <mrow> <msub> <mi>U</mi> <mi>sam</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mn>0</mn> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <msub> <mi>I</mi> <mn>1</mn> </msub> </mrow> </mfrac> <msub> <mi>U</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>|</mo> <msub> <mi>U</mi> <mi>dc</mi> </msub> <mo>|</mo> <mo>,</mo> </mrow> </math>
or,
<math> <mrow> <msub> <mi>U</mi> <mi>sam</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>I</mi> <mn>0</mn> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <msub> <mi>I</mi> <mn>2</mn> </msub> </mrow> </mfrac> <msub> <mi>U</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>|</mo> <msub> <mi>U</mi> <mi>dc</mi> </msub> <mo>|</mo> <mo>;</mo> </mrow> </math>
when U is turneddcIf the current component amplitude I is less than 0 times j0Following UdcIf the voltage is decreased, the electrostatic voltage charged by the measured electrostatic body is positive, and the amplitude of the electrostatic voltage is:
<math> <mrow> <msub> <mi>U</mi> <mi>sam</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mn>0</mn> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <msub> <mi>I</mi> <mn>1</mn> </msub> </mrow> </mfrac> <msub> <mi>U</mi> <mi>i</mi> </msub> <mo>+</mo> <mo>|</mo> <msub> <mi>U</mi> <mi>dc</mi> </msub> <mo>|</mo> <mo>,</mo> </mrow> </math>
or,
<math> <mrow> <msub> <mi>U</mi> <mi>sam</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>I</mi> <mn>0</mn> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <msub> <mi>I</mi> <mn>2</mn> </msub> </mrow> </mfrac> <msub> <mi>U</mi> <mi>i</mi> </msub> <mo>+</mo> <mo>|</mo> <msub> <mi>U</mi> <mi>dc</mi> </msub> <mo>|</mo> <mo>.</mo> </mrow> </math>
an electrostatic voltage measuring method applied to an electrostatic voltage measuring apparatus including an electrode, a vibrator, a voltage source, a current sampling device, and a processor, comprising:
the voltage source outputs alternating current and direct current superposed voltage to the tested static body;
the processor controls the vibrator to vibrate so as to drive the electrode to vibrate, wherein the electrode is arranged close to the tested electrostatic body, and the coupling capacitance between the electrode and the tested electrostatic body alternates due to the vibration of the electrode;
the current sampling device samples the current of the tested electrostatic body coupled through the electrode to obtain a sampling current, and sends a sampling current signal containing the sampling current to the processor;
the processor extracts a current component from the sampled current signal and obtains an electrostatic voltage parameter of the measured electrostatic body according to the extracted current component.
In the electrostatic voltage measuring device provided by the invention, a voltage source outputs alternating current and direct current superposed voltage to a measured electrostatic body, a processor controls a vibrator to vibrate so as to drive an electrode to vibrate, the electrode is arranged close to the measured electrostatic body, a coupling capacitor between the electrode and the measured electrostatic body is alternated due to the vibration of the electrode, the voltage source, the measured electrostatic body, the electrode and a current sampling device form a series loop, the current sampling device samples a current signal coupled by the electrode of the measured electrostatic body, and the processor extracts a current component from the sampled current signal and obtains an electrostatic voltage parameter of the measured electrostatic body according to the extracted current component. Compared with the measuring device in the prior art, the electrostatic voltage measuring device and the method provided by the invention do not need to correct the area and the area amplitude of the electrode and the distance amplitude between the electrode and the measured electrostatic body, do not need to generate a comparison voltage with the same amplitude as the measured electrostatic voltage, and simultaneously have no influence on the measuring result by the shape, the installation position and the angle of the electrode, so long as the electrode is close to the measured electrostatic body.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the description of the embodiments or the prior art will be briefly described below, it is obvious that the drawings in the following description are only embodiments of the present invention, and for those skilled in the art, other drawings can be obtained according to the provided drawings without creative efforts.
Fig. 1 is a schematic structural diagram of an electrostatic voltage measurement apparatus according to an embodiment of the present invention.
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
An embodiment of the present invention provides an electrostatic voltage measurement apparatus, and fig. 1 is a schematic structural diagram of the apparatus, where the apparatus includes: processor 101, vibrator 102, electrodes 103, voltage source 104, and current sampling device 105.
The voltage source 104 outputs alternating current and direct current superposed voltage to the tested electrostatic body 100, the processor 101 controls the vibrator 102 to vibrate so as to drive the electrode 103 connected with the vibrator 102 to vibrate, wherein the electrode 103 is arranged close to the tested electrostatic body 100, the coupling capacitance between the electrode 103 and the tested electrostatic body 100 is alternated due to the vibration of the electrode 103, the voltage source 104, the tested electrostatic body 100, the electrode 103 and the current sampling device 105 form a series loop, the voltage of the current sampling device 105 is reduced to zero or the voltage between the tested electrostatic body 100 and the electrode 103 is ignored, the current sampling device 105 samples the current coupled by the electrode 103 of the tested electrostatic body 100, so as to obtain sampling current, and a sampling current signal containing the sampling current is sent to the processor 101; the processor 101 extracts a current component from the sampled current signal and obtains an electrostatic voltage parameter of the measured electrostatic body 100 according to the extracted current component.
The voltage source 104 in this embodiment outputs the ac/dc superimposed voltage to the measured electrostatic object 100 under the control of the processor 101, but the embodiment does not limit the voltage source 104 to be controlled by the processor 101, and it is within the protection scope of the present invention as long as the voltage source 104 outputs the ac/dc superimposed voltage required by the embodiment of the present invention to the measured electrostatic object.
In this embodiment, the current sampling device 105 may be a resistor, a current sensor, or a transconductance amplifier, where the current sensor may be an ac current transformer or a hall current sensor. The current sampling device 105 samples a current signal coupled to the electrostatic body 100 through the electrode 103, and the obtained sampling current is a current in which the voltage source 104, the electrostatic body 100, the electrode 103, and the current sampling device 105 form a series circuit.
Let the electrostatic voltage of the measured electrostatic body 100 be UsThe coupling capacitance between the electrode 103 and the electrostatic body 100 to be measured is CcAnd the voltage drop of the current sampling device 105 is ignored.
In the present embodiment, the vibration of the vibrator 102 causes the coupling capacitance between the electrode 103 and the electrostatic body 100 to be:
<math> <mrow> <msub> <mi>C</mi> <mi>c</mi> </msub> <mo>=</mo> <msub> <mi>C</mi> <mn>0</mn> </msub> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>C</mi> <mi>j</mi> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mi>t</mi> <mo>+</mo> <msub> <mi>&alpha;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, C0Is the average value of the coupling capacitance between the electrode 103 and the measured electrostatic body 100, N is a positive integer of 1 or more, j is a positive integer of 1 or more and N or less, CjAmplitude of change of capacitance, ω, for the jth harmonic componentjAngular frequency of change of capacitance, alpha, of the jth harmonic componentjIs the phase of the capacitance variation of the jth harmonic component, and t is time.
The ac/dc superimposed voltage output by the voltage source 104 is set as:
<math> <mrow> <msub> <mi>U</mi> <mi>r</mi> </msub> <mo>=</mo> <msub> <mi>U</mi> <mi>dc</mi> </msub> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <msub> <mi>U</mi> <mi>i</mi> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mi>t</mi> <mo>+</mo> <msub> <mi>&beta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, UdcDirect current voltage, M is a positive integer greater than or equal to 1, i is a positive integer greater than or equal to 1 and less than or equal to M, UiAmplitude of voltage variation, ω, for the ith harmonic componentiAngular frequency of voltage change, beta, of the ith harmonic componentiIs the voltage phase of the ith harmonic component, and t is time.
The total voltage between the measured electrostatic body 100 and the electrode 103 is:
<math> <mrow> <msub> <mi>U</mi> <mi>c</mi> </msub> <mo>=</mo> <msub> <mi>U</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>U</mi> <mi>r</mi> </msub> <mo>=</mo> <msub> <mi>U</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>U</mi> <mi>dc</mi> </msub> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <msub> <mi>U</mi> <mi>i</mi> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mi>t</mi> <mo>+</mo> <msub> <mi>&beta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>.</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
the current of the series loop formed by the voltage source 104, the measured electrostatic body 100, the electrode 103 and the current sampling device 105, i.e. the sampling current, is:
i c = C c dU c dt + U c dC c dt - - - ( 4 )
<math> <mrow> <mo>=</mo> <mo>[</mo> <msub> <mi>C</mi> <mn>0</mn> </msub> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>C</mi> <mi>j</mi> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mi>t</mi> <mo>+</mo> <msub> <mi>&alpha;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>]</mo> <mo>&times;</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <msub> <mi>U</mi> <mi>i</mi> </msub> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mi>t</mi> <mo>+</mo> <msub> <mi>&beta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>C</mi> <mi>j</mi> </msub> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mi>t</mi> <mo>+</mo> <msub> <mi>&alpha;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>&times;</mo> <mo>[</mo> <msub> <mi>U</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>U</mi> <mi>dc</mi> </msub> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <msub> <mi>U</mi> <mi>i</mi> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mi>t</mi> <mo>+</mo> <msub> <mi>&beta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>]</mo> </mrow> </math>
<math> <mrow> <mo>=</mo> <msub> <mi>C</mi> <mn>0</mn> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <msub> <mi>U</mi> <mi>i</mi> </msub> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mi>cis</mi> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mi>t</mi> <mo>+</mo> <msub> <mi>&beta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <msub> <mi>C</mi> <mi>j</mi> </msub> <msub> <mi>U</mi> <mi>i</mi> </msub> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>{</mo> <mi>sin</mi> <mo>[</mo> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mi>t</mi> <mo>+</mo> <msub> <mi>&alpha;</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>&beta;</mi> <mi>i</mi> </msub> <mo>]</mo> </mrow> </math>
<math> <mrow> <mo>+</mo> <mi>sin</mi> <mo>[</mo> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mi>t</mi> <mo>+</mo> <msub> <mi>&alpha;</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>&beta;</mi> <mi>i</mi> </msub> <mo>]</mo> <mo>}</mo> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>U</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>U</mi> <mi>dc</mi> </msub> <mo>)</mo> </mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>C</mi> <mi>j</mi> </msub> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mi>t</mi> <mo>+</mo> <msub> <mi>&alpha;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> </mrow> </math>
<math> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <msub> <mi>C</mi> <mi>j</mi> </msub> <msub> <mi>U</mi> <mi>i</mi> </msub> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>{</mo> <mi>sin</mi> <mo>[</mo> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mi>t</mi> <mo>+</mo> <msub> <mi>&alpha;</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>&beta;</mi> <mi>i</mi> </msub> <mo>]</mo> <mo>-</mo> <mi>sin</mi> <mo>[</mo> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mi>t</mi> <mo>+</mo> <msub> <mi>&alpha;</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>&beta;</mi> <mi>i</mi> </msub> <mo>]</mo> <mo>}</mo> </mrow> </math>
in this example, the processor 101 extracts a current component from the sampled current signal and obtains an electrostatic voltage parameter of the measured electrostatic body 100 according to the extracted current component, specifically: the processor 101 obtains a sampling current i from the sampling current signalcThen from the sampled current icExtracting j times of current component amplitude, extracting j + i, j-i or i-j times of current component amplitude, and then obtaining the electrostatic voltage parameter of the tested electrostatic body 100 according to the extracted current component amplitude, wherein j is a positive integer greater than or equal to 1, i is a positive integer greater than or equal to 1, and j is not equal to i. The electrostatic voltage parameters of the measured electrostatic body 100 include: electrostatic voltage magnitude and electrostatic voltage polarity.
Processor 101 samples current i fromcExtracting j times of current component amplitude, i.e. from sampled current icMiddle extraction angular frequency of omegajThe amplitude of the current component (c) is given by the equation (4) that the angular frequency is ωjThe current component amplitudes of (a) are:
I0=Cjωj(Us+Udc) (5)
processor 101 samples current i fromcExtracting the amplitude of the current component of j + i times, i.e. from the sampled current icMiddle extraction angular frequency of omegajiThe amplitude of the current component (c) is given by the equation (4) that the angular frequency is ωjiThe current component amplitudes of (a) are:
<math> <mrow> <msub> <mi>I</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>C</mi> <mi>j</mi> </msub> <msub> <mi>U</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
processor 101 samples current i fromcExtracting the amplitude of the current component j-i or i-j times, i.e. from the sampled current icMiddle extraction angular frequency of omegajiOr ωijThe amplitude of the current component (c) is given by the equation (4) that the angular frequency is ωjiOr ωijThe current component amplitudes of (a) are:
<math> <mrow> <msub> <mi>I</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>C</mi> <mi>j</mi> </msub> <msub> <mi>U</mi> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
in this embodiment, the obtaining, by the processor 101, the electrostatic voltage parameter of the detected electrostatic body 100 according to the extracted current component amplitude specifically includes:
when U is turneddcWhen it is greater than or equal to 0, if the sampling current icJ times the current component amplitude I0Following UdcIs increased, the electrostatic voltage U charged on the electrostatic object 100 is increasedsPositive, the electrostatic voltage amplitude obtained according to equations (5) and (6) is:
<math> <mrow> <msub> <mi>U</mi> <mi>sam</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mn>0</mn> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <msub> <mi>I</mi> <mn>1</mn> </msub> </mrow> </mfrac> <msub> <mi>U</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>U</mi> <mi>dc</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
alternatively, the electrostatic voltage amplitude can be found according to equations (5) and (7) as:
<math> <mrow> <msub> <mi>U</mi> <mi>sam</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>I</mi> <mn>0</mn> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <msub> <mi>I</mi> <mn>2</mn> </msub> </mrow> </mfrac> <msub> <mi>U</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>U</mi> <mi>dc</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
when U is turneddcWhen it is greater than or equal to 0, if the sampling current icJ times the current component amplitude I0Following UdcIs increased or decreased, the electrostatic voltage U of the measured electrostatic body 100 is increased or decreasedsNegative, the electrostatic voltage amplitude is obtained according to equations (5) and (6):
<math> <mrow> <msub> <mi>U</mi> <mi>sam</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mn>0</mn> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <msub> <mi>I</mi> <mn>1</mn> </msub> </mrow> </mfrac> <msub> <mi>U</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>U</mi> <mi>dc</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
alternatively, the electrostatic voltage amplitude can be found according to equations (5) and (7) as:
<math> <mrow> <msub> <mi>U</mi> <mi>sam</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>I</mi> <mn>0</mn> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <msub> <mi>I</mi> <mn>2</mn> </msub> </mrow> </mfrac> <msub> <mi>U</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>U</mi> <mi>dc</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
when U is turneddcWhen less than 0, if the sampling current icJ times the current component amplitude I0Following UdcIs decreased and increased, the electrostatic voltage U charged on the electrostatic object 100 to be measuredsNegative, the electrostatic voltage amplitude is obtained according to equations (5) and (6):
<math> <mrow> <msub> <mi>U</mi> <mi>sam</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mn>0</mn> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <msub> <mi>I</mi> <mn>1</mn> </msub> </mrow> </mfrac> <msub> <mi>U</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>|</mo> <msub> <mi>U</mi> <mi>dc</mi> </msub> <mo>|</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
alternatively, the electrostatic voltage amplitude can be found according to equations (5) and (7) as:
<math> <mrow> <msub> <mi>U</mi> <mi>sam</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>I</mi> <mn>0</mn> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <msub> <mi>I</mi> <mn>2</mn> </msub> </mrow> </mfrac> <msub> <mi>U</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>|</mo> <msub> <mi>U</mi> <mi>dc</mi> </msub> <mo>|</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
when U is turneddcWhen less than 0, if the sampling current icJ times the current component amplitude I0Following UdcIs decreased, the electrostatic voltage U of the measured electrostatic body 100 is decreasedsPositive, the electrostatic voltage amplitude obtained according to equations (5) and (6) is:
<math> <mrow> <msub> <mi>U</mi> <mi>sam</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mn>0</mn> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <msub> <mi>I</mi> <mn>1</mn> </msub> </mrow> </mfrac> <msub> <mi>U</mi> <mi>i</mi> </msub> <mo>+</mo> <mo>|</mo> <msub> <mi>U</mi> <mi>dc</mi> </msub> <mo>|</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
alternatively, the electrostatic voltage amplitude can be found according to equations (5) and (7) as:
<math> <mrow> <msub> <mi>U</mi> <mi>sam</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>I</mi> <mn>0</mn> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <msub> <mi>I</mi> <mn>2</mn> </msub> </mrow> </mfrac> <msub> <mi>U</mi> <mi>i</mi> </msub> <mo>+</mo> <mo>|</mo> <msub> <mi>U</mi> <mi>dc</mi> </msub> <mo>|</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> </math>
the embodiment of the invention also provides an electrostatic voltage measuring method, which is applied to an electrostatic voltage measuring device comprising an electrode, a vibrator, a voltage source, a current sampling device and a processor, and comprises the following steps:
s11: the voltage source outputs the voltage of alternating current and direct current superposition to the tested static body.
S12: the processor controls the vibrator to vibrate so as to drive the electrode to vibrate, wherein the electrode is arranged close to the tested electrostatic body, and the coupling capacitance between the electrode and the tested electrostatic body alternates due to the vibration of the electrode.
S13: the current sampling device samples a current signal of the tested electrostatic body coupled through the electrode to obtain a sampling current, and sends the sampling current signal containing the sampling current to the processor.
S14: the processor extracts a current component from the sampled current signal and obtains an electrostatic voltage parameter of the measured electrostatic body according to the extracted current component.
In this embodiment, the processor extracts a current component from the sampled current signal and obtains an electrostatic voltage parameter of the measured electrostatic body according to the extracted current component, specifically: the processor obtains sampling current from the sampling current signal, extracts j times of current component amplitude from the sampling current, extracts j + i, j-i or i-j times of current component amplitude, and obtains the electrostatic voltage parameter of the tested electrostatic body according to the extracted current component amplitude, wherein j is a positive integer larger than or equal to 1, i is a positive integer larger than or equal to 1, and j is not equal to i. The electrostatic voltage parameters of the measured electrostatic body 100 include: electrostatic voltage magnitude and electrostatic voltage polarity.
In the electrostatic voltage measuring device provided by the invention, a voltage source outputs alternating current and direct current superposed voltage to a measured electrostatic body, a processor controls a vibrator to vibrate so as to drive an electrode to vibrate, the electrode is arranged close to the measured electrostatic body, a coupling capacitor between the electrode and the measured electrostatic body is alternated due to the vibration of the electrode, the voltage source, the measured electrostatic body, the electrode and a current sampling device form a series loop, the voltage of the current sampling device is reduced to zero or the voltage between the electrodes of the measured electrostatic body is ignored, the current sampling device samples a current signal coupled by the electrode of the measured electrostatic body, and the processor extracts a current component from the sampled current signal and obtains an electrostatic voltage parameter of the measured electrostatic body according to the extracted current component. Compared with the measuring device in the prior art, the electrostatic voltage measuring device and the method provided by the invention do not need to correct the area and the area amplitude of the electrode and the distance amplitude between the electrode and the measured electrostatic body, and do not need to generate a comparison voltage with the same amplitude as the measured electrostatic voltage, meanwhile, the shape, the installation position and the angle of the electrode have no influence on the measuring result, and the electrode is only close to the measured electrostatic body, so that the consistency of the electrostatic voltage measuring product is ensured.
The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (10)

1. An electrostatic voltage measuring apparatus, comprising: the device comprises electrodes, a vibrator, a voltage source, a current sampling device and a processor;
the voltage source outputs alternating current and direct current superposed voltage to the tested static body;
the processor controls the vibrator to vibrate so as to drive the electrode connected with the vibrator to vibrate, wherein the electrode is arranged close to the tested electrostatic body, and the coupling capacitance between the electrode and the tested electrostatic body alternates due to the vibration of the electrode;
the voltage source, the measured electrostatic body, the electrode and the current sampling device form a series loop, the current sampling device samples current of the measured electrostatic body coupled through the electrode to obtain sampling current, and a sampling current signal containing the sampling current is sent to the processor;
the processor extracts a current component from the sampled current signal and obtains an electrostatic voltage parameter of the measured electrostatic body according to the extracted current component.
2. The device according to claim 1, characterized in that the sampling current is in particular:
the voltage source, the measured electrostatic body, the electrode and the current sampling device form a series loop.
3. The apparatus of claim 2, wherein the processor extracts a current component from the sampled current signal and obtains an electrostatic voltage parameter of the measured electrostatic body from the extracted current component, specifically:
the processor extracts j times of current component amplitude values from the sampling current signals, extracts j + i, j-i or i-j times of current component amplitude values, and then obtains the electrostatic voltage amplitude value and the electrostatic voltage polarity of the tested electrostatic body according to the extracted current component amplitude values, wherein j is a positive integer larger than or equal to 1, i is a positive integer larger than or equal to 1, and j is not equal to i.
4. The device according to claim 2 or 3, wherein the current of the series circuit formed by the voltage source, the measured electrostatic body, the electrode and the current sampling device is:
i c = C c dU c dt + U c dC c dt
wherein, CcThe U is a coupling capacitance between the electrode and the measured electrostatic bodycAnd t is the total voltage between the electrode and the measured electrostatic body, and t is the time.
5. The apparatus of claim 4, wherein the coupling capacitance between the electrode and the measured electrostatic body is:
<math> <mrow> <msub> <mi>C</mi> <mi>c</mi> </msub> <mo>=</mo> <msub> <mi>C</mi> <mn>0</mn> </msub> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>C</mi> <mi>j</mi> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mi>t</mi> <mo>+</mo> <msub> <mi>&alpha;</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
wherein, C0Is the average value of the coupling capacitance between the electrode and the measured electrostatic body, N is a positive integer greater than or equal to 1, j is a positive integer greater than or equal to 1 and less than or equal to N, CjAmplitude of change of capacitance, ω, for the jth harmonic componentjAngular frequency of change of capacitance, alpha, of the jth harmonic componentjIs the phase of the capacitance variation of the jth harmonic component, and t is time.
6. The apparatus of claim 5, wherein the voltage output by the voltage source is:
<math> <mrow> <msub> <mi>U</mi> <mi>r</mi> </msub> <mo>=</mo> <msub> <mi>U</mi> <mi>dc</mi> </msub> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </munderover> <msub> <mi>U</mi> <mi>i</mi> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mi>t</mi> <mo>+</mo> <msub> <mi>&beta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
total voltage U between the electrode and the measured electrostatic bodycThe electrostatic voltage U charged by the detected electrostatic bodysAnd the voltage U output by the voltage sourcerSumming;
wherein, UdcDirect current voltage, M is a positive integer greater than or equal to 1, i is a positive integer greater than or equal to 1 and less than or equal to M, UiAmplitude of voltage variation, ω, for the ith harmonic componentiAngular frequency of voltage change, beta, of the ith harmonic componentiIs the voltage phase of the ith harmonic component, and t is time.
7. The apparatus of claim 6, wherein the j times current component amplitude is ω at an angular frequencyjThe amplitude of the current component of (1) is an angular frequency of ωjiThe amplitude of the current component of (a) j-i times is an angular frequency of omegajiThe amplitude of the current component of (a) is ω for i-j timesijThe magnitude of the current component of (a).
8. The apparatus of claim 7, wherein the j times current component magnitude is:
I0=Cjωj(Us+Udc);
the amplitude of the j + i times current component is as follows:
<math> <mrow> <msub> <mi>I</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>C</mi> <mi>j</mi> </msub> <msub> <mi>U</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
the amplitude of the current component of j-i or i-j times is as follows:
<math> <mrow> <msub> <mi>I</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>C</mi> <mi>j</mi> </msub> <msub> <mi>U</mi> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>.</mo> </mrow> </math>
9. the apparatus according to claim 8, wherein the obtaining of the electrostatic voltage amplitude and the electrostatic voltage polarity of the measured electrostatic body according to the amplitude of the extracted current component comprises:
when U is turneddcWhen the current component amplitude is greater than or equal to 0, if the current component amplitude I is measured j times0Following UdcThe voltage of the electrostatic voltage is positive, and the amplitude of the electrostatic voltage is:
<math> <mrow> <msub> <mi>U</mi> <mi>sam</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mn>0</mn> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <msub> <mi>I</mi> <mn>1</mn> </msub> </mrow> </mfrac> <msub> <mi>U</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>U</mi> <mi>dc</mi> </msub> <mo>,</mo> </mrow> </math>
Or,
<math> <mrow> <msub> <mi>U</mi> <mi>sam</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>I</mi> <mn>0</mn> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <msub> <mi>I</mi> <mn>2</mn> </msub> </mrow> </mfrac> <msub> <mi>U</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>U</mi> <mi>dc</mi> </msub> <mo>;</mo> </mrow> </math>
when U is turneddcWhen the current component amplitude is greater than or equal to 0, if the current component amplitude I is measured j times0Following UdcThe voltage of the electrostatic voltage charged on the detected electrostatic body is negative, and the amplitude of the electrostatic voltage is as follows:
<math> <mrow> <msub> <mi>U</mi> <mi>sam</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mn>0</mn> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <msub> <mi>I</mi> <mn>1</mn> </msub> </mrow> </mfrac> <msub> <mi>U</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>U</mi> <mi>dc</mi> </msub> <mo>,</mo> </mrow> </math>
or,
<math> <mrow> <msub> <mi>U</mi> <mi>sam</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>I</mi> <mn>0</mn> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <msub> <mi>I</mi> <mn>2</mn> </msub> </mrow> </mfrac> <msub> <mi>U</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>U</mi> <mi>dc</mi> </msub> <mo>;</mo> </mrow> </math>
when U is turneddcIf the current component amplitude I is less than 0 times j0Following UdcIf the voltage is decreased and increased, the electrostatic voltage charged by the measured electrostatic body is negative, and the amplitude of the electrostatic voltage is:
<math> <mrow> <msub> <mi>U</mi> <mi>sam</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mn>0</mn> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <msub> <mi>I</mi> <mn>1</mn> </msub> </mrow> </mfrac> <msub> <mi>U</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>|</mo> <msub> <mi>U</mi> <mi>dc</mi> </msub> <mo>|</mo> <mo>,</mo> </mrow> </math>
or,
<math> <mrow> <msub> <mi>U</mi> <mi>sam</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>I</mi> <mn>0</mn> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <msub> <mi>I</mi> <mn>2</mn> </msub> </mrow> </mfrac> <msub> <mi>U</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>|</mo> <msub> <mi>U</mi> <mi>dc</mi> </msub> <mo>|</mo> <mo>;</mo> </mrow> </math>
when U is turneddcIf the current component amplitude I is less than 0 times j0Following UdcIf the voltage is decreased, the electrostatic voltage charged by the measured electrostatic body is positive, and the amplitude of the electrostatic voltage is:
<math> <mrow> <msub> <mi>U</mi> <mi>sam</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mn>0</mn> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <msub> <mi>I</mi> <mn>1</mn> </msub> </mrow> </mfrac> <msub> <mi>U</mi> <mi>i</mi> </msub> <mo>+</mo> <mo>|</mo> <msub> <mi>U</mi> <mi>dc</mi> </msub> <mo>|</mo> <mo>,</mo> </mrow> </math>
or,
<math> <mrow> <msub> <mi>U</mi> <mi>sam</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>&omega;</mi> <mi>i</mi> </msub> <mo>|</mo> <msub> <mi>I</mi> <mn>0</mn> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>&omega;</mi> <mi>j</mi> </msub> <msub> <mi>I</mi> <mn>2</mn> </msub> </mrow> </mfrac> <msub> <mi>U</mi> <mi>i</mi> </msub> <mo>+</mo> <mo>|</mo> <msub> <mi>U</mi> <mi>dc</mi> </msub> <mo>|</mo> <mo>.</mo> </mrow> </math>
10. an electrostatic voltage measuring method applied to an electrostatic voltage measuring apparatus including an electrode, a vibrator, a voltage source, a current sampling device, and a processor, comprising:
the voltage source outputs alternating current and direct current superposed voltage to the tested static body;
the processor controls the vibrator to vibrate so as to drive the electrode to vibrate, wherein the electrode is arranged close to the tested electrostatic body, and the coupling capacitance between the electrode and the tested electrostatic body alternates due to the vibration of the electrode;
the current sampling device samples the current of the tested electrostatic body coupled through the electrode to obtain a sampling current, and sends a sampling current signal containing the sampling current to the processor;
the processor extracts a current component from the sampled current signal and obtains an electrostatic voltage parameter of the measured electrostatic body according to the extracted current component.
CN201210189151.7A 2012-06-08 2012-06-08 Electrostatic voltage measurement device and method Active CN102692544B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210189151.7A CN102692544B (en) 2012-06-08 2012-06-08 Electrostatic voltage measurement device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210189151.7A CN102692544B (en) 2012-06-08 2012-06-08 Electrostatic voltage measurement device and method

Publications (2)

Publication Number Publication Date
CN102692544A true CN102692544A (en) 2012-09-26
CN102692544B CN102692544B (en) 2015-07-08

Family

ID=46858135

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210189151.7A Active CN102692544B (en) 2012-06-08 2012-06-08 Electrostatic voltage measurement device and method

Country Status (1)

Country Link
CN (1) CN102692544B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106716149A (en) * 2014-09-26 2017-05-24 旭化成微电子株式会社 Hall electromotive force signal detection circuit and current sensor
CN115267345A (en) * 2021-04-29 2022-11-01 财团法人工业技术研究院 Micro-electromechanical sensing device with correction function

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339721A (en) * 1979-06-06 1982-07-13 Ando Electric Co., Ltd. Electrostatic voltmeter
EP0095521A1 (en) * 1982-06-02 1983-12-07 Kabushiki Kaisha Toshiba Electrostatic voltage detecting device
US4797620A (en) * 1986-08-20 1989-01-10 Williams Bruce T High voltage electrostatic surface potential monitoring system using low voltage A.C. feedback
CN1575419A (en) * 2001-08-24 2005-02-02 特瑞克股份有限公司 Sensor for non-contacting electrostatic detector
CN102353855A (en) * 2011-09-28 2012-02-15 上海安平静电科技有限公司 Portable electrostatic detection device and electrostatic detection method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339721A (en) * 1979-06-06 1982-07-13 Ando Electric Co., Ltd. Electrostatic voltmeter
EP0095521A1 (en) * 1982-06-02 1983-12-07 Kabushiki Kaisha Toshiba Electrostatic voltage detecting device
US4797620A (en) * 1986-08-20 1989-01-10 Williams Bruce T High voltage electrostatic surface potential monitoring system using low voltage A.C. feedback
CN1575419A (en) * 2001-08-24 2005-02-02 特瑞克股份有限公司 Sensor for non-contacting electrostatic detector
CN102353855A (en) * 2011-09-28 2012-02-15 上海安平静电科技有限公司 Portable electrostatic detection device and electrostatic detection method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
付巍等: "一种具有反馈回路的静电电位测量系统", 《仪器仪表学报》 *
刘志远等: "振动电容式静电传感器设计", 《传感器与微系统》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106716149A (en) * 2014-09-26 2017-05-24 旭化成微电子株式会社 Hall electromotive force signal detection circuit and current sensor
CN115267345A (en) * 2021-04-29 2022-11-01 财团法人工业技术研究院 Micro-electromechanical sensing device with correction function

Also Published As

Publication number Publication date
CN102692544B (en) 2015-07-08

Similar Documents

Publication Publication Date Title
EP3567380B1 (en) Non-contact dc voltage measurement device with oscillating sensor
EP3006947B1 (en) Leakage current calculation device and method for calculating leakage current
JP3761470B2 (en) Non-contact voltage measurement method and apparatus, and detection probe
CN104597328B (en) The capacitance measurement circuit and measuring method of a kind of anti-static electricity interference
CN103605008A (en) System and method for measuring high voltage cable space charges based on electroacoustic pulse method
JP2016003997A (en) Contactless voltage detection device
CN102012464B (en) Micro capacitance measurement method and special device
CN105378492A (en) Apparatus and method for measuring electrical properties of matter
CN101663589A (en) Measuring instrument for a resistive electric leakage current
JP2016027332A5 (en)
JP2016027332A (en) Non-contact electroscope and method for detecting electricity
CN102692544B (en) Electrostatic voltage measurement device and method
CN108181512B (en) Winding inlet capacitance testing method based on transformer self-oscillation
KR20050001898A (en) A variable frequency inverter-type high power ground resistance measuring device and measuring method based on PC
CN102981061A (en) Direct earth capacitance gauge in converting station power distribution system
KR101268942B1 (en) Measuring circuit for internal resistance of battery or cell
CN103091561A (en) Device obtaining direct current signals from alternative current and direct current superposition signals and method thereof
US20200271608A1 (en) Impedance measurement device
CN109839412B (en) Measuring device and method for synchronously acquiring capacitance and electrostatic signals in gas-solid two-phase flow
US9372217B2 (en) Cable detector
JP2016095227A (en) Physical quantity detection device and physical quantity detection method
JP7009025B2 (en) Voltage measuring device, voltage measuring method
CN203054092U (en) Apparatus for extracting DC (direct current) signal from AC-DC (alternating current-direct current) superposed signal
JP6171866B2 (en) Distance sensor
JP6845732B2 (en) Voltage measuring device, voltage measuring method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20181109

Address after: 210024 1 Xikang Road, Gulou District, Nanjing, Jiangsu

Patentee after: Gai Nannan

Address before: 201101 No. 402, No. 3333, No. 7, Qiju Road, Minhang District, Shanghai

Patentee before: Peng Lei

TR01 Transfer of patent right
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191210

Address after: 2111, jinpinghu Avenue, Caoqiao street, Pinghu City, Jiaxing City, Zhejiang Province

Patentee after: PINGHU SITONG POWER SUPPLY FACTORY

Address before: Xikang Road, Gulou District of Nanjing city of Jiangsu Province, No. 1 210024

Patentee before: Gai Nannan

PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Electrostatic voltage measuring device and method

Effective date of registration: 20211027

Granted publication date: 20150708

Pledgee: Danghu Branch of Zhejiang Pinghu Rural Commercial Bank Co.,Ltd.

Pledgor: PINGHU SITONG POWER SUPPLY FACTORY

Registration number: Y2021330002072

PC01 Cancellation of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Date of cancellation: 20230831

Granted publication date: 20150708

Pledgee: Danghu Branch of Zhejiang Pinghu Rural Commercial Bank Co.,Ltd.

Pledgor: PINGHU SITONG POWER SUPPLY FACTORY

Registration number: Y2021330002072