CN102687085A - 使用建筑物信息模型和热流模型的hvac系统中的故障检测 - Google Patents

使用建筑物信息模型和热流模型的hvac系统中的故障检测 Download PDF

Info

Publication number
CN102687085A
CN102687085A CN2010800469226A CN201080046922A CN102687085A CN 102687085 A CN102687085 A CN 102687085A CN 2010800469226 A CN2010800469226 A CN 2010800469226A CN 201080046922 A CN201080046922 A CN 201080046922A CN 102687085 A CN102687085 A CN 102687085A
Authority
CN
China
Prior art keywords
hfm
node
hvac
edge
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010800469226A
Other languages
English (en)
Other versions
CN102687085B (zh
Inventor
格哈德·齐默尔曼
陆艳
罗侨志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Siemens Corp
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN102687085A publication Critical patent/CN102687085A/zh
Application granted granted Critical
Publication of CN102687085B publication Critical patent/CN102687085B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2614HVAC, heating, ventillation, climate control

Abstract

提供热流模型(HFM)图建模方法的系统和方法。实施例自动地将正式HVAC系统描述从建筑物信息模型(BIM)翻译为HFM图,并且将这些图编译成可执行FDD系统。在工程阶段期间,使用用户接口输入BIM中未找到的参数、条件和开关。在运行阶段期间,来自HVAC控制系统的实时数据被输入到所生成的FDD系统(HFM图)用于故障检测和诊断。

Description

使用建筑物信息模型和热流模型的HVAC系统中的故障检测
相关申请的交叉引用
本申请要求于2009年10月19日提交的美国临时申请第61/252,862号的优先权,其整体公开内容通过引用合并于此。
背景技术
本发明总体上涉及过程控制。更具体地,本发明涉及一种用于HVAC系统故障检测和诊断的热流模型(HFM)方法。实施例使用图的模型性来实现HVAC结构和部件对HFM图的直接自动化映射,并且使用节点行为模型和软件库将HFM图翻译为可以集成在HVAC控制系统中的系统。
现代的加热、通风和空调(HVAC)控制系统常常过于复杂以致没有有效的故障检测和诊断(FDD)以及校正的适当手段。对于许多现有的FDD方法,将它们应用到各种HVAC系统并且适合各种HVAC系统的工程努力是大的。
建筑物HVAC机械和控制系统趋向于遇到许多造成失灵的故障。一些失灵导致警报,其他失灵降低系统的能量效率、寿命以及用户的舒适性而没有明显的通知。即使维护机构检测到失灵,但是故障的定位常常是极为困难的,因为在故障和报告的失灵之间不存在一对一的对应关系。
用于HVAC的FDD已变为具有来自高校和工业的许多贡献的重要的主题。然而,在将研究结果投入实践时仍存有一个问题:由于几乎所有建筑物是不同的,因此存在种类极多的HVAC系统。如果FDD系统不与特定的HVAC系统匹配,则未检测到足够的故障。并且如果针对特定系统定制,则相对于可能的收益,开发努力和成本可能过高。
使用专家系统诊断HVAC部件和系统中的故障已被尝试并且包括基于规则的方法、基于模糊模型的策略以及基于人工神经网络(ANN)的分离器。
通常递送基于温度或压力不等式的失灵规则集合以检测故障。在多数研究中,已针对每个特定的HVAC系统手动得到规则或者ANN必须离线训练,由于有限的训练数据,这不一定覆盖所有故障。
这些过程是耗时的并且是劳动密集型的。随着建筑物建模技术中新进的进展已显著地影响建筑物设计和构造工程过程,可以相信,基于建筑物信息模型开发FDD系统将增强建筑物故障诊断能力并且减少生成故障规则的工程过程。
多级流模型(MFM)已被应用于发电厂和相似的系统。流模型是表示质量、能量和信息流的图。一旦图被建立,由推理引擎提取基于质量和能量守恒定律的规则并且对其进行分析以实时地实现FDD。
MFM流模型是表示质量、能量和信息流的图,其中质量和能量守恒定律适用并且可用于故障检测和诊断。然而,为了使用MFM,必须测量流,而这对于HVAC系统而言常常是不可用的。
期望一种提供FDD以减少该努力的系统和方法。
发明内容
本发明人已发现,理想的是具有提供热流模型(HFM)方法的系统和方法。实施例自动地将正式HVAC系统描述从建筑物信息模型(BIM)翻译为HFM图,并且将这些图编译成可执行FDD系统。在工程阶段期间,使用图形用户接口(GUI)配置BIM中未找到的参数、条件和逻辑开关。在运行阶段期间,来自HVAC控制系统的实时数据被输入到所生成的FDD系统(HFM图)用于故障检测和诊断。
实施例创建了分级HFM图模型,其可用于根据诸如工业基础类(IFC)的适当的BIM自动地生成HVAC FDD。HFM具有与现有的或规划的HVAC系统的部件结构的一对一的对应关系。诸如线圈、管道或风扇的HFM节点按照可从BIM得到的精度对这些部件的气流和水流的动态物理行为(温度、流量、湿度和压力)建模。每个节点可以利用来自使用仪器传感器和控制值的HVAC控制系统的动态输出数据,来计算其上游和下游的所连接的HVAC部件的物理行为参数值。结果作为参数范围通过HFM图传播。
实施例将失灵规则应用于每个HFM节点。如果计算的估值和接收的值范围不匹配,则假定故障并且将其严重性在部件分级中向上传播用于诊断。诊断由中央引擎通过将来自HFM节点的规则违反映射到HVAC系统的失灵来执行,映射关系由联想网络表示。基于HFM的FDD由工程工具和运行时间系统组成。
实施例创建了基于HFM图的模型,用于建立HVAC系统FDD。实施例从例如IFC的BIM描述自动地提取关于目标系统的必要的结构和定量数据。基于第一原则定义用于检测与图的节点相关的故障的规则。
本发明的一个方面提供了一种在加热、通风和空调(HVAC)故障检测图中使用的热流模型(HFM)节点。根据HFM节点的方面包括FwdIn边缘,其被配置成从下游方向接收参数范围;FwdOut边缘,其被配置成在下游方向上输出参数范围;RevIn边缘,其被配置成从上游方向接收参数范围;RevOut边缘,其被配置成在上游方向上输出参数范围;以及节点特定配置数据,其定义节点的功能。
HFM节点的另一方面是一个或更多个RulesOut边缘,其被配置成输出失灵规则判决,其中节点特定数据进一步包括与每个RulesOut边缘对应的失灵规则,其中对于下游方向,失灵规则将估计的参数范围与FwdIn边缘参数范围比较,并且对于上游方向,失灵规则将估计的参数范围与RevIn边缘参数范围比较,并且如果估计的参数范围不在接收的参数范围内,则失灵被输出。
HFM节点的另一方面是,节点特定配置数据进一步包括FwdIn边缘参数范围公差和RevIn边缘参数范围公差。
HFM节点的另一方面是,对于下游方向,估计的参数范围是RevIn边缘参数范围和RevIn边缘参数范围公差的积,并且对于上游方向,估计的参数范围是FwdIn边缘参数范围和FwdIn边缘参数范围公差的积。
HFM节点的另一方面是一个或更多个DataIn边缘,其均被配置成接收动态HVAC控制系统变量,并且节点特定配置数据进一步包括DataIn边缘动态HVAC控制系统变量参数公差值。
HFM节点的另一方面是,对于下游和上游方向,估计的参数范围是DataIn边缘动态HVAC控制系统变量及其动态HVAC控制系统变量参数公差值的积。
本发明的另一方面是使用热流模型(HFM)图用于检测建筑物的HVAC系统故障的方法。根据该方法的方面包括将正式HVAC系统描述从关于建筑物的建筑物信息模型(BIM)翻译为HFM节点,从BIM取回关于每个HFM节点的HVAC部件属性,从HFM节点库取回预先定义的HFM节点,根据BIM连接性数据创建不同的HFM节点之间的连接性,将HFM节点编译成HFM图,将来自建筑物HVAC控制系统的实时数据输入到HFM图用于故障检测,使用基于与HFM节点相关的第一原则定义的规则检测建筑物HVAC系统故障,以及将规则违反从HFM节点映射到建筑物HVAC控制系统失灵。
本发明的另一方面是,其中HFM图中的每个节点利用动态输出仪器传感器和来自建筑物HVAC控制系统的控制数据,估计与它们的建筑物HVAC部件对应的上游和下游物理行为值,并且通过HFM图传播上游和下游物理行为值作为参数范围。
本发明的另一方面是一种建筑物加热、通风和空调(HVAC)故障检测系统。根据该方法的方法包括接口,其被配置成访问建筑物信息模型(BIM)文件库并且导入建筑物HVAC系统BIM文件;HFM节点库,其被配置成存储多个不同的预先定义的HFM节点类型,其中HFM节点对从BIM文件得到的预先定义的HVAC部件中的气流和水流的动态物理行为参数建模;图形用户接口(GUI),其被配置成在HFM图组装期间输入并编辑HFM节点和链接配置数据;编译器,耦接到接口和GUI,其被配置成将BIM文件数据与另外的配置数据组合在一起;以及故障检测和诊断(FDD)生成器,耦接到编译器和HFM节点库,其被配置成将关于建筑物HVAC系统的BIM文件类型与预先定义的HFM节点类型比较并且选择对应的HFM节点并且生成HFM图,其中HFM图依据与建筑物HVAC系统部件和行为对应的质量气流路径。
该系统的另一方面是FDD引擎,其被配置成将HFM图例示为关于建筑物HVAC控制系统的运行时间系统;以及接口,其被配置成访问建筑物HVAC控制系统,其中FDD引擎利用HVAC控制系统过程和控制变量数据来执行HFM图并且应用用于检测HVAC系统故障的规则。
在附图和下面的描述中阐述了本发明的一个或更多个实施例的细节。根据描述和附图并且根据权利要求,本发明的其他特征、目的和优点将是明显的。
附图说明
图1是示例性HVAC故障检测和诊断(FDD)集成。
图2是示例性空气调节单元(AHU)管道和仪器装设系统图。
图3是示例性热流模型(HFM)图。
图4是关于图2中所示的AHU的示例性HFM图。
图5是关于图4中所示的AHU HFM图的示例性下游温度范围传播。
图6是示出五个不同的计算的估值公差范围的示例性失灵规则情形。
图7A是示例性HFM传感器管道节点。
图7B是示例性HFM温度传感器管道节点。
图7C是示例性HFM流量受控风扇节点。
图7D是示例性HFM压力受控风扇节点。
图7E是示例性HFM线圈节点。
图7F是示例性HFM温度调节器节点。
图7G是示例性HFM混合箱节点。
图7H是示例性HFM双向支路节点。
图7I是示例性HFM再加热变风量(VAV)节点。
图8是使用HFM节点分析的示例性FDD系统。
图9是示出与HFM节点对应的工业基础类(IFC)类型的示例性表格。
具体实施方式
将参照附图描述本发明的实施例,其中相同的附图标记通篇表示相同的元件。在详细说明本发明的实施例之前,将理解,本发明不限于其对以下描述中阐述的或者附图中图示的示例的细节的应用。本发明能够具有其他实施例并且能够在多种应用中并且通过各种方式实践或实施。再者,将理解,这里使用的措辞和术语出于描述的目的并且不应被视为限制。这里的“包括(including)”、“包括(comprising)”或“具有”及其变体的使用意味着涵盖随后列出的事项及其等同物以及另外的事项。
术语“连接”和“耦接”被广泛地使用并且涵盖直接和间接连接和耦接。此外,“连接的”和“耦接的”不限于物理或机械连接或耦接。
应当注意,本发明不限于所描述的或者在图中暗指的任何特定的软件语言。本领域普通技术人员将理解,多种软件语言可用于实施本发明。还应当理解,一些部件和事项被图示和描述为如同它们是硬件元件,如同本领域中通常实践的。然而,本领域普通技术人员基于对该详细描述的阅读将理解,在至少一个实施例中,方法和系统中的部件可以以软件或硬件实施。
本发明的实施例提供了方法、系统框架和存储计算机可读指令的计算机可用介质,其将正式HVAC系统描述从BIM翻译成关于HVAC FDD的热流模型(HFM)图,其具有与建筑物HVAC系统的部件结构的一对一的对应关系,这些计算机可读指令被编译成可执行FDD系统。来自建筑物HVAC控制系统的实时数据被输入到FDD系统用于故障检测和诊断。本发明可以作为软件被部署为在程序存储装置上有形地实施的应用程序。用于执行的应用代码可以驻留在本领域技术人员已知的多个不同类型的计算机可读介质上。
HFM是包括与真实HVAC系统部件对应的HFM节点的图。HFM节点对应于诸如管道或导管或电能的质量流连接。HFM节点按所提供的BIM参数具有的并且动态控制系统数据允许的精度模拟真实HVAC部件的动态功能(行为)。HFM图可以被概括为部件分级。这允许不同级别的细化和抽象。
BIM是机构的物理和功能特性的数字表示并且用作关于机构的信息的共享知识资源。一个BIM是工业基础类(IFC)。IFC建模语言功能强大并且能够扩展为描述HVAC系统的每个细节。然而,不存在对特定系统建模的唯一方式。实施例使用现有的或规划的建筑物的IFC模型以自动地创建FDD系统。
IFC是最常用于互操作性的格式之一。IFC模型提供底层对象、它们的性质和关系的标准表示,其包括HVAC、电气、管道工程、消防、建筑物控制等。
基于HFM的FDD系统可以集成到建筑物的现有的HVAC监督控制系统结构中。FDD系统可以直接与顶级控制通信。然而,HFM图表示允许大的程度的FDD系统的模块化以及作为分布式系统的系统的任何级别的集成。
图1示出了示例性HVAC控制系统101。系统101包括具有单个管道空气调节单元(AHU)103的一个区域,AHU 103用于为两个再加热变风量(VAV)系统1051、1052(共同标为105)提供热空气或冷空气。每个AVA 105利用温度调节反馈控制经由出口向空间分送热空气或冷空气。返回空气被收集并且返回到AHU 130。
图2示出了AHU 103的结构和控制。AHU 103包括返回空气风扇Rfan、供给空气风扇Sfan、混合箱Mixer、具有调制控制阀Hcv的加热线圈Hcoil、具有调制控制阀Ccv的冷却线圈Ccoil、四个温度传感器Tra、Toa、Tma、Tsa以及一个压力传感器Psa。供给风扇Sfan可以是压控的。返回风扇Rfan由返回空气压力控制以保持气流平滑。压控风扇可以包括差分压力传感器以测量气流,其由AHU控制器(未示出)监控。VAV 105典型地包括风门(damper),用于控制进入空间、加热线圈、分布温度传感器和空气流率传感器(未示出)的气流。
HFM包括两种类型的数据:1)包括空气和水的质量,以及2)电能,并且由具有节点的图表示,这些节点具有平行指向和反平行指向的边缘。HFM节点对HVAC部件和每个节点的边缘输入或输出状态变量以及信息流建模。
图3示出了HFM节点1和2的平行和不平行的边缘互连。平行FwdIn边缘将来自下游方向的物理参数数据输入节点并且FwdOut边缘在质量流的下游方向上输出可以相同或不同的物理参数数据。RevIn边缘将来自上游方向的物理参数数据输入节点并且RevOut边缘在上游方向上输出可以相同或不同的物理参数数据。例如,如果对空气和水建模,则加热线圈节点可以具有用于空气和加热水物理数据互连的分离的FwdIn/FwdOut边缘和RevIn/RevOut边缘。
反平行DataIn边缘和RulesOut边缘的数目根据节点中考虑的质量或能量流的数目而变化。DataIn边缘均输入动态HVAC控制系统传感器(过程变量)和控制(控制变量)数据。RulesOut边缘均向FDD引擎输出HFM节点特定失灵规则值。
对于每个HFM节点,真实物理数据被表示为向量。对于FDD,所关注的气流数据参数是温度、质量流率、湿度和压力。
为了概括HFM节点互连,在下游Aj和上游Bj方向上在HFM节点之间传播具有四个气流数据参数范围的向量,
A j = T max T min Q max Q min H max H min p max p min , 以及    (1)
B j = T max T min Q max Q min H max H min p max p min . - - - ( 2 )
每个下游Aj和上游Bj向量包括如下参数范围:1)Tmin、Tmax,它们是最小和最大干球温度计空气温度,2)Qmin、Qmax,它们是最小和最大质量空气流率,3)Hmin、Hmax,它们是最小和最大水蒸汽压力,以及4)pmin、pmax,它们是最小和最大空气压力。
加热或冷却水向量状态变量数据包括温度、流量和压力值。
图4示出了包括八个HFM节点的关于AHU 103的HFM节点图401,这八个HFM节点包括五种HFM节点类型:两个风扇节点(Rfan、Sfan)、两个传感器管道节点(Rduct、Mduct)、一个混合器节点(Mixer)、两个线圈节点(Hcoil、Ccoil)和一个双传感器管道节点(Sduct)。HFM图401被示出为没有反平行DataIn/RulesOut边缘。
下游流开始于返回供给风扇Rfan节点。Rfan耦接到管道区间Rduct节点,其包括关于温度传感器Tra数据的DataIn边缘。Rduct耦接到混合箱Mixer节点,其包括关于室外温度传感器Toa数据的DataIn边缘。Mixer耦接到管道区间Mduct节点,其包括关于混合温度传感器Tma数据的DataIn边缘。Mduct耦接到用于加热和冷却的两个连续的线圈Hcoil和Ccoil节点。Ccoil耦接到管道区间Sduct节点,其包括关于用于指示AHU的输出温度的温度传感器Tsa数据的DataIn边缘和关于用于指示AHU的输出压力的压力传感器Psa数据的DataIn边缘。
如果对加热的水供给系统建模,则AHU 103可以被建模为具有关于空气和水的输入的分级的较高级别处的一个HFM节点。
每个HFM节点执行两个功能:1)基于从HVAC控制系统数据(DataIn)和节点配置得到的估值,计算其输出到相邻节点的下游FwdOut边缘向量Aj+1和上游RevOut边缘向量Bj+1状态变量,以及2)基于从控制系统数据(DataIn)和节点配置得到的估计参数范围,计算应用于下游FwdIn边缘向量Aj和上游RevIn边缘向量Bj状态变量参数范围的一个或更多个失灵规则(RulesOut)。
每个HFM节点接收下游向量Aj和上游向量Bj。根据特定节点的功能(行为),一个或更多个下游向量Aj和/或一个或更多个上游向量Bj状态变量可以改变。改变的状态变量反映在该节点输出的下游Aj+1向量和上游Bj+1向量状态变量中。下游Aj+1和上游Bj+1向量状态变量被传播到相邻的HFM节点(图4)。
每个HFM节点执行估计计算。估计不同于建筑物性能模拟器,因为它们缺乏关于监督系统的部件、控制系统的行为和精确的传感器数据的详细信息。由于缺乏详细信息,因此HFM节点不能执行完整的动态计算。然而,由于HVAC控制系统对环境微扰的反应缓慢,因此考虑稳定的状态行为。
不能被忽视的是由于控制系统中的振荡或者由于过多的控制动作能够减少部件的寿命而导致的频繁的规则激活。故障诊断的任务是区分不同类型的短期规则激活。
节点规则估计基于下游Aj和上游Bj向量状态变量,节点对一个或更多个向量状态变量的影响,以及在运行时间期间从HVAC控制系统输入的传感器/控制数据。
对于如下示例,仅考虑下游向量Aj温度参数范围Tmin和Tmax。节点Hcoil接收具有由温度传感器Tma测量的Mixer上游的两个HFM节点的温度的向量A5。Hcoil接收对其加热线圈入口控制阀Hcv进行调制的HVAC控制系统(DataIn)数据。来自BIM的最大加热功率被存储为Hcoil节点特定配置参数。
图2示出了估计的问题在于,存在许多不确定性,其开始于空气温度传感器Tma的公差以及跨越其中安装传感器的管道的未知的空气温度分布。加热的水温度是未知的,而且加热水流率也是未知的。可以假设如果加热水入口阀100%打开并且水压和温度处于最大设计值,则可以达到最大加热功率。因此,当阀关闭时可以最佳地估计Hcoil节点空气输出温度,或者必须假设大范围的可能值。
出于该原因,每个节点接收下游向量Aj和上游向量Bj。每个上游和下游向量参数被表述为估计的参数范围的最小值和最大值。如果使用正态高斯分布用于预期处于该范围中的值的概率密度函数,则平均值±标准偏差被用作范围极限。在多数情况下,分布的形状是未知的并且假设范围极限定义范围。
得到节点的失灵规则的第一步骤是列出可能的和大概的故障。例如,温度和压力传感器输出可能在一个值处漂移或失灵。阀和风门可能在它们最后的位置泄漏或者失灵。过滤器和导管可能阻塞。过程控制器可能异常。设计缺陷也是可能的。例如,冷却线圈可能不够大并且没有补偿预期的热负载。
任何这些故障能够引起可以在内部或外部检测的若干失灵。外部失灵可以由居住者直接测量或感知。例如,空间温度偏离控制器设定点。内部失灵指的是如下情形,其中控制系统补偿故障。例如,增加冷却的控制系统补偿泄漏的加热线圈阀。用户不受影响,但是能耗增加。由于失灵传播,内部失灵的检测也是重要的。越接近检测到失灵的故障,越容易定位故障。
失灵规则是有条件的不等式,
规则=(条件:expr1<expr2-threshold),    (3)
其中exprl是向量状态变量参数范围最小值,expr2是参数范围估值最大值并且threshold是公差。如果规则输出是真,则存在故障。条件是控制值的前提。
AHU 201具有混合空气温度Tma和供给空气温度Tsa控制系统传感器测量。节点Hcoil包括调制控制阀Hcv并且具有DataIn边缘控制输入μhc。节点Ccoil包括调制控制阀Ccv并且具有DataIn边缘控制输入μcc。建筑物HVAC控制系统输出范围0至1中的控制变量以调制控制阀。
规则1=(μhc=0并且μcc=0:Tsa<Tma-ε1)    (4)
规则1陈述了,如果既未提供加热也未提供冷却(μhc=0并且μcc=0),则供给温度Tsa应小于混合空气温度Tma,混合空气温度Tma传感器公差和供给风扇Sfan热负载的组合被表述为阈值ε1。如果规则1为真,则冷却线圈阀Ccv可能泄漏和/或温度传感器Tma和/或Tsa可能已体验故障。如果加热线圈阀Hcv泄漏,则规则1将为真。示例示出了,若干故障可以触发同一规则。反之亦成立:一个故障可以触发若干规则。
以上的下游方向温度规则示例示出了,除了用于调制控制阀Hcv和Ccv的控制系统输入μhc和μcc之外,需要来自Mduct和Sduct的Tma和Tsa传感器值。节点Mduct和Sduct被节点Hcoil、Ccoil和Sfan隔开。为了模块化,必须在五个节点之一评估规则1(4)。五个节点类型均不具有Tma和Tsa温度传感器值两者。
需要Tma和Tsa温度传感器值两者的解决方案是经由下游Aj和上游Bj向量状态变量参数范围的传感器数据的下游和上游传播。
不同于导致并行传播的若干值的直接传播,数据由节点根据它们的物理行为进行变换。
例如,节点Hcoil从上游节点Mduct接收温度测量结果Tma。节点Hcoil根据控制变量μhc增加Tma并且创建加热线圈温度Thc。节点Hcoil向下游的节点Ccoil传播Thc。节点Ccoil接收温度Thc并且根据控制变量μcc增加Thc并且创建冷却线圈温度Tcc。节点Ccoil向下游的节点Sfan传播Tcc。节点Sfan接收温度Tcc并且由于风扇电机的热负载使Tcc增加预定量并且创建供给风扇温度Tsf。节点Sfan向下游的节点Sduct传播Tsf。节点Sduct接收温度Tsf并且应用仅使用局部变量的修改形式的规则1,作为
规则1=(μhc=0并且μcc=0:Tsa<Tsf-ε2)。    (5)
由于在温度Tsf中考虑了节点Sfan的热负载,因此阈值ε2已改变。原则上,规则1(5)可以被概括,因为不等式以信号形式通知控制变量μhc和μcc的任何组合的故障。这导致了
规则2=(Tsa<Tsf-ε2)。    (6)
由于传播也在上游进行,因此可以在五个牵涉的节点中的每个中评估与(5)和(6)等效的规则。故障判决取决于若干一般原则。
一个原则是规则应在其中故障可以将该规则触发的节点中应用。由于该关系不是一对一的,因此可以在若干节点中评估同一规则。对于规则1(5),适用的节点将是节点Mduct、Ccoil和Sduct,因为任一个中的故障将触发所有三个节点中的同一规则。该冗余必须由在分级的顶部处的节点中执行的FDD解决。该概念的优点在于节点可以被容易地分型并且重新用于实施。
另一原则是在提供最精确的状态变量值,典型地传感器值的流中的节点中评估规则。在示例中,这是接收温度传感器数据Tsa的节点Sduct。
向量状态变量参数值的问题是固有的公差。例如,在(4)中,公差由阈值ε1观测。阈值ε1的值取决于若干节点的影响。这降低了节点模型的模块性和可再用性。
为了克服这些问题,实施例计算每个节点内的下游向量Aj和上游向量Bj状态变量参数范围,并且向相邻节点传播计算的下游向量Aj+1和上游向量Bj+1状态变量参数范围。节点规则公差是在运行时间期间接收的控制系统DataIn边缘值和从监督系统的设计数据获得的关于节点的状态变量配置参数的函数。公差也是估计不确定性的结果。
例如,来自节点Mduct的温度传感器Tma值可以具有±0.5°C的公差。在运行时间期间,测得21°C并且将其输入(DataIn)到Mduct。节点Mduct向节点Hcoil传播向量A4状态变量温度范围Tmin、Tmax,作为
Tma=21.0°C±0.5°C,    (7)
Mduct FwdOut = A 5 = T max 21.5 T min 20.5 Q max ( ) Q min ( ) H max ( ) H min ( ) p max ( ) p min ( ) - - - ( 8 )
并且向节点Mixer传播向量B5状态变量温度范围Tmin、Tmax,作为
Mduct RevOut = B 6 = T max 21.5 T min 20.5 Q max ( ) Q min ( ) H max ( ) H min ( ) p max ( ) p min ( ) . - - - ( 9 )
节点Hcoil具有关于最大质量空气流率处的最大空气温度增加和最大加热水温度的配置的、预先定义的值,每个参数具有公差。由于质量空气流率未被HVAC控制系统测量,因此可以假设最大空气温度增加TincrMax=20.0°C与空气流率无关。在运行时间期间,节点Hcoil控制阀Hcv可以接收控制变量μhc=0.5(DataIn)。如果加热线圈空气温度增加与加热水流率成比例,则控制变量指示考虑阀的非线性的40%和60%之间的加热水流。因此,节点Hcoil的最大空气温度增加TincrMax估值是
ThcMax=TmaMax+0.6(TincrMax)    (10)
ThcMax=21.5°+12.0°    (11)
ThcMax=33.5°。    (12)
使用(10),节点Hcoil的最小空气温度增加ThcMin估值被计算为28.5°C。这是在不了解其他节点的情况下在一个节点中的局部计算。节点Hcoil传播向量A6状态变量温度范围Tmin、Tmax,作为
Hcoil FwdOut = A 6 = T max 33.5 T min 28.5 Q max ( ) Q min ( ) H max ( ) H min ( ) p max ( ) p min ( ) . - - - ( 13 )
图5示出了开始于节点Mduct并且经过Hcoil、Ccoil和Sfan并且结束于Sduct的空气温度范围Tmin、Tmax的下游传播。
得到的大的公差使得状态变量无用。这允许使用更一般的规则2(6)而非规则1(5)。对于加热阀Hcv关闭μhc=0的情况,公差收缩到温度传感器Tma的公差,并且如果冷却阀Ccv关闭μcc=0,则(6)包括情况(4)。
使用向量状态变量参数范围表示,可以概括失灵规则。这是对节点可再用性的重要贡献。例如,节点Sduct接收具有温度范围Tmin、Tmax的向量A8和被变换到温度公差范围的DataIn边缘温度传感器值Tsa。
作为第一近似,可以假设如果向量状态变量温度范围和Tsa温度公差范围重叠,则可以推断没有故障,因为存在如下可能性,真实空气温度在这两个范围的合集内。如果向量状态变量温度范围和Tsa温度公差范围不重叠,则假定故障。
图6示出了关于节点Sduct接收具有温度范围Tmin、Tmax的向量A8并且将其与关于温度传感器Tsa的五个不同的计算的估计温度范围比较的五个情形。情况1和5关于两个不同的失灵规则激活,情况3在极限内并且因此没有故障,并且情况2和4具有呈现故障的可能性。
作为细化,除了结果是真或假之外可以计算连续的失灵值。在其最简单的形式中,参数范围之间的间隙及其相应的计算估计参数范围可以被取为结果为真时的失灵的大小的测度。图6示出了两个误差计算,其被示为关于情况1和5的双箭头。原因在于,如果规则评估为真,则仍存在未发生失灵的可能性,因为公差范围或阈值可能被选择得过小。规则值越大,则该可能性将越低,或者换言之,失灵的可能性越高。因此,除了取值真和假之外,该规则值可以用于失灵分析。
下式表示关于以上示例的解决方案。
规则3=max(0,TsaMin-FwdInTmax)并且    (14)
规则4=max(0,FwdInTmin-TsaMax),    (15)
其中TsaMin是估计的范围最小值,而TsaMax是估计的范围最大值。只要存在重叠,则规则3和规则4是零。对于情况1,规则3>0。对于情况5,规则4>0。情况1和5指示失灵。
更一般的解决方案是两个温度范围T1和T2之间的关系,
规则1=max(0,T2Min-T1Max),以及    (16)
规则2=max(0,T1Min-T2Max)。    (17)
扩展到(16)和(17)将是归一化(16)和(17)也可以应用于另一温度范围对
Figure BDA00001542370000151
Figure BDA00001542370000152
以检查温度控制是否适当地工作。温度被用于示例。任何状态变量参数可以用作用于失灵检查的规则。
上文表明,HFM图的节点可以执行估计和规则评估,除了了解其用于流向量通信的相邻节点之外无需了解图的剩余部分。这是具有信息隐藏的面向对象的情况。出于生成分布式系统的目的,还可以没有问题地应用多代理技术。
在已示出的粒度级处在节点中没有局部解决所有问题。由于图是分级的并且组成节点可能是图4中的AHU 401,因此这通常不是问题。AHU401是组成HFM节点。
还存在不作为流的一部分的节点,诸如控制器节点。控制器评估不同的规则类型。例如,如果加热和冷却线圈控制阀控制变量同时大于零,则一个或两个控制器确定故障。
面向对象的优点在于按照遗传使用类型以及子类型的衍生。一种类型也可以在运行时间产生许多实例。出于根据BIM自动生成可执行FDD系统的目的,必须提供HFM节点类型的库。应使该库保持为小的以减少软件设计和维护成本。
AHU 401示出了五个不同的节点类型。节点示例是单个气流输入和输出节点。Mixer节点不对针对室外环境的流接口建模。Hcoil和Ccoil节点不对它们相关联的加热和冷却水流建模。如果不了解省略的部分,则这些简化是适当的。然而,对整个系统建模改进了估计和规则评估。
图1示出了AHU 103服务于若干个VAV 105区域。这需要具有一个气流输入和若干个输出的支路节点以及具有若干个气流输入和一个输出的接合节点。VAV 105被建模为具有若干个封装部件的复杂节点。对于节点库,VAV类型的数目保持足够小。
图7A示出了包括DataIn边缘Xsens和XSet的传感器管道节点。XSet是控制器设定点并且Xsens是传感器变量。Xsens被外部控制在XSet的范围内。规则3(14)测试情况是否如此。估计器tol1和tol2将运行时间DataIn Xsens和XSet输入变换到Xsens和XSet公差配置范围。应用规则1(16)、规则2(17)和规则3(14)。
传感器管道节点是通用的并且可以应用于温度、流量、湿度和压力传感器情形。一个或更多个传感器可以在同一管道中建模,表示受控或不受控的变量。同一节点类型也可以针对水流节点进行修改。图7A并未示出关于未被感测的变量的从输入直接到输出的流连接。这些变量在短的管道区段中未改变并且被直接传播。
图7B示出了包括DataIn边缘Tsens的温度传感器管道节点。Tsens温度公差范围是
TsensMax=Tsens+公差,以及    (18)
TsensMin=Tsens-公差。    (19)
规则1(16)和规则2(17)将Tsens公差范围TsensMin、TsensMax与Aj和Bj向量温度范围Tmin、Tmax比较。
图7C示出了包括DataIn边缘Q(流量传感器测量)的流量受控风扇节点。风扇节点是估计功能。空气温度典型地因热负载而从FwdIn到FwdOut按1°C的量级增加。由于增加包括公差,因此FwdOut Aj+1温度范围Tmin、Tmax扩展并且比FwdIn Aj温度范围Tmin、Tmax宽。在上游方向上,温度范围Tmin、Tmax从RevIn Bj到RevOut Bj+1按同一数量减小。
如果风扇是恒定流率类型,则其可以向下游和上游传播流率。图7D示出了包括DataIn边缘P(压力传感器测量)的压力受控风扇节点。对于恒定压力类型的风扇,压力可以向下游传播,但是不向上游传播。压力受控风扇使空气流率变化。因此,空气温度增加(FwdOut Aj+1温度范围Tmin、Tmax)作为速率的函数而改变。现代风扇与空气流率成比例地减小电功率并且因此使温度增加保持恒定。
流量受控风扇节点(图7C)传播温度范围是:
FwdOutTmax=FwdInTmax+dTfmax    (20)
其中dTfmax=最大风扇热负载,
RevOutTmax=RevInTmax-dTfmin    (21)
其中dTfmin=最小风扇热负载,
FwdOutTmin=FwdInTmin+dTfmin,以及    (22)
RevOutTmin=RevInTmin–dTfmax。    (23)
传播流量范围是:
FwdOutQmax=Qmax,    (24)
RevOutQmax=Qmax,    (25)
FwdOutQmin=Qmin,以及    (26)
RevOutQmin=Qmin。    (27)
规则1(16)和规则2(17)将估计的温度和流量与传播值比较。压力受控风扇节点(图7D)传播温度范围是:
FwdOutTmax=FwdInTmax+dTfmax    (28)
其中dTfmax=最大风扇热负载,
RevOutTmax=RevInTmax-dTfmin    (29)
其中dTfmin=最小风扇热负载,
FwdOutTmin=FwdInTmin+dTfmin,以及    (30)
RevOutTmin=RevInTmin–dTfmax。    (31)
传播压力范围是:
FwdOutPmax=Pmax,    (32)
RevOutPmax=Pmax,    (33)
FwdOutPmin=Pmin,以及    (34)
RevOutPmin=Pmin。    (35)
图7E示出了包括DataIn边缘Ctrlin的线圈节点。用于加热或冷却的线圈节点具有复杂的物理模型。未知的参数和状态变量的数目是大的。因此,有必要在库中创建若干个典型的线圈节点类型或者具有不同的可选择的估计器的一个类型。
图7F示出了包括DataIn边缘Tsens和Tset的温度调节器节点。Tset是温度调节器设定点并且Tsens是温度测量过程变量。传播温度范围是
FwdOutTmax=Tsens+公差,以及    (36)
FwdOutTmin=Tsens-公差。    (37)
规则1(16)和规则2(17)将节点温度公差范围与传播(FwdIn、RevIn)温度范围比较。规则3(14)将设定点Tset估值与估计的温度测量结果比较。
图7G示出了包括DataIn边缘Toutdoor Tsens/Damper Ctrls的混合器箱节点。物理混合箱包括用于测量室外空气的温度传感器Toa,并且通过将室外空气与另一温度传感器Tra测量的返回空气混合,来改变由另一温度传感器Tma测量的供给空气温度。混合比由三个调制风门控制(图2)。如果不允许外部空气,则供给流率等于返回流率。但是不能假设混合比与来自AHU控制器的风门控制信号成比例。当室外空气风门完全关闭或者完全打开时,存在两种极端情况,混合比精确已知。非线性引起的最大偏差可以被假设为50%打开。当估计混合空气温度和湿度时,在混合功能中考虑该关系。
传播温度范围是
FwdOutTmax=Tsens+公差,以及    (38)
FwdOutTmin=Tsens-公差。    (39)
关于Tma的温度范围T的Est2估计使用风门打开百分比和Toa估计。
规则1(16)和规则2(17)是温度公差范围与传播温度范围的比较。规则3(14)是使用风门打开和热动力学的估计的Tma与估计的Tma的测量结果的比较。
图7H示出了双向支路节点。管道支路传播空气温度、流量、压力和湿度,并且允许空气流率的反向计算。在所有VAV中测量空气流率。所有测量值的和是支路的输入中的空气流率,作为RevOut值。
关于温度和流量的估计的范围:
FwdOut1Tmax=FwdInTmax+dTfmax    (40)
其中dTfmax=通过支路的改变,
RevOutTmax=Max(RevIn1Tmax-dTfmin,RevIn2Tmax-dTfmin)    (41)
其中dTfmin=通过支路的改变,
FwdOut1Tmin=FwdInTmin+dTfmin,    (42)
RevOutTmin=Min(RevIn1Tmin-dTfmax,RevIn2Tmin-dTfmax),
(43)
FwdOut2Tmax=FwdInTmax+dTfmax,以及    (44)
FwdOut2Tmin=FwdInTmin+dTfmin。    (45)
规则1(16)、规则2(17)和规则3(14)将温度公差范围与传播温度范围比较。
图7I示出了包括DataIn边缘Xsens和Xset的再加热VAV节点。Xset是控制器设定点,并且Xsens是传感器变量。再加热VAV是复杂节点。如果配备有用于空气流率和分布温度的传感器,则可以使用FwdIn边缘传播压力范围和风门控制值估计空气流率。使用输入空气温度,测量的流量以及例如,再加热线圈的电功率值,可以估计分布温度。在使用(16)和(17)的失灵规则中,这两个估计可以通过传感器值进行评估。此外,如果定义了设定点,则还可以评估符合度。
关于温度范围的估计是
FwdOutTmax=Tsens+公差,以及    (46)
FwdOutTmin=Tsens-公差。    (47)
规则1(16)和规则2(17)将估计的温度范围与传播温度范围比较。规则3(14)将估计的设定点Tset与估计的测量结果Tsens比较。
通过来自一个VAV的加热或冷却进行服务并且具有用于控制VAV的温度传感器的空间可以向下游和上游传播范围。作为最小值,可以评估空气温度是否在设定点。如果空间中的热负载和损失已知,特别是在封闭房间中,则可以将所需的加热或冷却功率的估计与VAV的分布空气参数比较,作为失灵规则。这可能需要室外温度作为数据输入。
来自空间的返回空气在接合管道中被收集。如果可以估计接合空气的温度,则可以应用失灵规则。每个空间中的空气温度是已知的,具有用于VAV的控制的传感器的位置处的公差。在空气入口处,空气温度将是不同的,添加到公差。如果每个空间的返回空气的空气流率将是已知的,则可以计算关于接合空气的温度范围。在开放制办公室中,各个流率是未知的。范围的上限不能高于最大测量传感器值,范围的下限不能小于最小测量传感器值。FwdOut边缘温度范围可用于检测例如返回空气传感器的大的故障。
HFM图说明了物理结构和故障检测功能。实施例说明了可以被解释为代理的自发通信过程的分级结构。HFM节点可以直接映射到例如规范和描述语言(SDL)过程。SDL模型的优点在于,可以将模型自动地翻译成C代码并且编译到可执行原型系统中。SDL原型实验表明,引入的故障导致在文件中收集的肯定的失灵规则输出。
实施例包括工程阶段和运行时间阶段。图8示出了HFM建筑物FDD系统801。HFM建筑物FDD系统801包括接口803,其被配置成访问并导入BIM/IFC文件;图形用户接口(GUI)805,其被配置成允许在图组装期间输入另外的数据,并且查看不同部件之间的链接信息,并且输入并配置在BIM中未找到的缺失的参数、条件和开关;以及编译器807,将文件数据与另外的过程信息组合在一起。
HFM的益处在于其带给基于HFM的FDD系统的工程效率。由于HFM的模块化,其可以通过BIM自动地组成并且图模型可以被有效地编译成可执行FDD系统。由于IFC是最常用的BIM格式之一,因此IFC可用于得到HFM模型。
IFC提供了关于在HVAC机械和控制系统中遇到的所有对象元素类型的定义集合以及用于将这些定义存储在数据文件中的基于文本的结构。其包括两个主要部分:IfcElement和IfcPort。元素可以是能够使用一个或许多个端口连接到相邻元素的任何部件。IFC元素包括流区间(管道)、流配件(管道接合点)、移动装置(风扇)、流控制器等。每个HFM节点可以从IFC元素映射。
IFC元素对象已定义用于HFM节点图的基本性质和属性。图9示出了IFC HVAC元素和HFM节点类型之间的列表映射关系。HVAC节点类型的遗传通过每个元素的相关联的IFC类型定义来实现。对于诸如Mixer(混合器)、Reheat VAV(再加热VAV)的节点类型,不存在直接映射,并且它们是基本IFC元素的复合。
通过IfcPort可以得到关于HFM的连接性模型。端口是网络中的点,元素在该点处彼此连接。IfcPort与IfcElement相关联,其通过对象化的关系IfcRelConnectsPortToElement属于IfcElement。因此,通过搜索IFC模型以寻找IFC元素对象、IFC端口对象和IfcRelConnectsPortToElement对象,可以获得关于HFM的链接信息。图9示出了IFC类型和HFM节点之间的对应关系。
HFM减少了针对不同HVAC系统配置FDD系统所需的工程努力。HFM是BIM和基于编译图模型的可执行FDD系统之间的桥梁。
编译器807耦接到HFM引擎809,HFM引擎809被配置为以可扩展标记语言(XML)格式生成HFM模型,HFM模型被输入到FDD生成器811,FDD生成器811被配置成通过来自HFM节点库813的功能HFM图节点构成识别的HFM节点类型。
离线得到的HFM图可以被加载到运行时间FDD系统以例示关于特定的建筑物HVAC控制系统的FDD引擎815,并且被配置成通过从输入接口817输入HVAC控制系统过程和控制变量来执行得到的HFM图。在运行时间期间,实时HVAC控制系统数据被输入到FDD引擎819,FDD引擎819被配置成分析HFM图中使用的规则。
HFM针对HVAC系统现实进行故障检测。为了节约用于针对每个特定建筑物配置基于HFM的FDD的工程努力,面向对象被用于建模并且还被用于实施。模型中的对象表示具有捕获正确的行为的功能和用于检测故障的规则的真实部件。对象模型设置在节点库中并且通过信号路径组装成图,如同真实部件被管道和导管连接。对象可以分级地组合和分解。
HFM可以具有不同的节点类型。使用遗传,较多的节点类型并不意味着扩展库的较多的努力。
不论FDD由建筑物管理系统集中地设置还是分布在数字过程控制器中,其都从各个HVAC控制系统接收运行时间控制信号和传感器数据。对于每个HFM节点,基于接收到的测量结果和来自上游和下游节点的流信息,HFM进行状态估计,向相邻节点传播得到的向量参数范围,并且据此检测故障。故障还在部件分级中向上传播并且进行诊断。
在工程阶段期间,GUI 805用于编辑来自BIM的图和HFM节点。其首先根据IFC识别所有HVAC节点对象并且取回有用的属性以创建节点估计模型。其还根据IFC连接性数据创建不同节点之间的连接性。对于那些BIM中未找到的缺失的参数、条件和开关,该工具提供用于用户输入数据的接口。此外,使用缺省设定。
一起编译807该信息并且以XML格式生成HFM模型。基于XML的HFM图被加载到HVAC FDD系统中,HVAC FDD系统基于其运行时间编译能力和关于HFM节点的现有对象库将该图模型编译成FDD引擎815。FDD引擎815可以嵌入在现有的建筑物管理系统(BMS)中以使用在每个节点中建模的规则和故障的传播来执行故障检测和诊断。
可以使用规范描述语言(SDL)建模工具来实施FDD引擎815。SDL说明了可以被解释为代理的自发通信过程的分级结构。流节点可以直接映射到SDL过程。SDL模型的优点在于,可以自动地将模型翻译成C代码并且编译成可执行原型系统。
已描述了本发明的一个或更多个实施例。然而,将理解,在不偏离本发明的精神和范围的情况下可以进行各种修改。因此,其他实施例在所附权利要求的范围内。

Claims (29)

1.一种在加热、通风和空调HVAC故障检测图中使用的热流模型HFM节点,包括:
FwdIn边缘,其被配置成从下游方向接收参数范围;
FwdOut边缘,其被配置成在下游方向上输出参数范围;
RevIn边缘,其被配置成从上游方向接收参数范围;
RevOut边缘,其被配置成在上游方向上输出参数范围;以及
节点特定配置数据,其定义节点的功能。
2.根据权利要求1所述的HFM节点,进一步包括一个或更多个RulesOut边缘,其被配置成输出失灵规则判决,其中节点特定数据进一步包括与每个RulesOut边缘对应的失灵规则,其中对于下游方向,失灵规则将估计的参数范围与FwdIn边缘参数范围比较,并且对于上游方向,失灵规则将估计的参数范围与RevIn边缘参数范围比较,并且如果估计的参数范围不在接收的参数范围内,则失灵被输出。
3.根据权利要求2所述的HFM节点,其中所述节点特定配置数据进一步包括FwdIn边缘参数范围公差和RevIn边缘参数范围公差。
4.根据权利要求3所述的HFM节点,其中对于下游方向,估计的参数范围是RevIn边缘参数范围和RevIn边缘参数范围公差的积,并且对于上游方向,估计的参数范围是FwdIn边缘参数范围和FwdIn边缘参数范围公差的积。
5.根据权利要求2所述的HFM节点,进一步包括一个或更多个DataIn边缘,每个DataIn边缘均被配置成接收动态HVAC控制系统变量,并且所述节点特定配置数据进一步包括DataIn边缘动态HVAC控制系统变量参数公差值。
6.根据权利要求5所述的HFM节点,其中对于下游方向和上游方向,估计的参数范围是DataIn边缘动态HVAC控制系统变量及其动态HVAC控制系统变量参数公差值的积。
7.根据权利要求1所述的HFM节点,其中FwdOut边缘参数范围和RevOut边缘参数范围表示与节点类型对应的物理HVAC部件的行为。
8.根据权利要求1所述的HFM节点,其中FwdIn边缘参数范围从相邻的上游HFM节点传播并且RevOut边缘参数范围被传播到相邻的上游HFM节点,以及FwdOut边缘参数范围被传播到相邻的下游HFM节点并且RevIn边缘参数范围从相邻的下游HFM节点传播。
9.根据权利要求1所述的HFM节点,其中FwdOut和RevOut边缘参数范围被表述为估计的参数范围的最小值和最大值。
10.根据权利要求9所述的HFM节点,其中FwdOut和RevOut边缘参数是温度、流量、湿度和压力。
11.根据权利要求10所述的HFM节点,其中温度参数范围由Tmin、Tmax的值定义,流量参数范围由Qmin、Qmax的值定义,湿度参数范围由Hmin、Hmax的值定义,并且压力参数范围由pmin、pmax的值定义。
12.根据权利要求2所述的HFM节点,其中失灵规则是有条件的不等式。
13.一种使用热流模型HFM图用于检测建筑物的加热、通风和空调HVAC系统故障的方法,包括:
将正式HVAC系统描述从关于建筑物的建筑物信息模型BIM翻译为HFM节点;
从所述BIM取回关于每个HFM节点的HVAC部件属性;
从HFM节点库取回预先定义的HFM节点;
根据BIM连接性数据创建不同的HFM节点之间的连接性;
将HFM节点编译成HFM图;
将来自建筑物HVAC控制系统的实时数据输入到所述HFM图用于故障检测;
使用基于与HFM节点相关的第一原则定义的规则检测建筑物HVAC系统故障;以及
将规则违反从HFM节点映射到建筑物HVAC控制系统失灵。
14.根据权利要求13所述的方法,进一步包括以可扩展标记语言XML格式生成所述HFM图。
15.根据权利要求13所述的方法,进一步包括针对所述BIM中未找到的缺失的参数、条件和开关,编辑所述HFM图。
16.根据权利要求13所述的方法,其中所述BIM是工业基础类IFC。
17.根据权利要求13所述的方法,其中所述HFM图是与物理建筑物HVAC系统的部件结构的一对一的对应关系,并且所述HFM图节点对从所述BIM得到的物理建筑物HVAC部件的温度、湿度、流率和压力参数的动态物理行为建模。
18.根据权利要求13所述的方法,其中所述HFM图中的每个节点利用动态输出仪器传感器和来自所述建筑物HVAC控制系统的控制数据,估计与它们的建筑物HVAC部件对应的上游和下游物理行为值,并且通过所述HFM图传播所述上游和下游物理行为值作为参数范围。
19.一种建筑物加热、通风和空调HVAC故障检测系统,包括:
接口,其被配置成访问建筑物信息模型BIM文件库并且导入建筑物HVAC系统BIM文件;
热流模型HFM节点库,其被配置成存储多个不同的预先定义的HFM节点类型,其中HFM节点对从BIM文件得到的预先定义的HVAC部件中的气流和水流的动态物理行为参数建模;
图形用户接口GUI,其被配置成在HFM图组装期间输入并编辑HFM节点和链接配置数据;
编译器,耦接到所述接口和GUI,其被配置成将BIM文件数据与另外的配置数据组合在一起;以及
故障检测和诊断FDD生成器,耦接到所述编译器和HFM节点库,其被配置成将关于所述建筑物HVAC系统的BIM文件类型与预先定义的HFM节点类型比较,并且选择对应的HFM节点并且生成HFM图,其中所述HFM图依据与建筑物HVAC系统部件和行为对应的质量气流路径。
20.根据权利要求19所述的系统,进一步包括:
FDD引擎,其被配置成将所述HFM图例示为关于建筑物HVAC控制系统的运行时间系统;以及
接口,其被配置成访问所述建筑物HVAC控制系统,其中所述FDD引擎利用HVAC控制系统过程和控制变量数据来执行所述HFM图并且应用用于检测HVAC系统故障的规则。
21.根据权利要求19所述的系统,其中所述动态物理行为参数是温度、湿度、流量和压力。
22.根据权利要求20所述的系统,其中HFM节点使用仪器过程和控制变量,利用来自HVAC控制系统的动态输出数据,估计所连接的HVAC部件的上游和下游物理行为参数,并且通过所述HFM图传播结果作为参数范围。
23.根据权利要求19所述的系统,其中所述BIM文件进一步包括工业基础类IFC文件。
24.根据权利要求23所述的系统,其中所述IFC文件提供关于在HVAC机械和控制系统中遇到的IFC对象元素类型的定义集合,以及用于将对象元素类型定义存储在数据文件中的基于文本的结构,其中所述IFC对象元素定义了HFM节点图中使用的基本性质和属性。
25.根据权利要求24所述的系统,其中IFC对象元素包括两个部分,即IFC元素和IFC端口,其中元素是能够使用一个或更多个端口耦接到相邻元素的部件,并且所述IFC元素包括流区间、流配件、移动装置和流控制器。
26.根据权利要求25所述的系统,其中所述编译器被进一步配置成识别来自所述IFC元素的所有HFM节点并且取回属性以创建节点估计模型并且根据IFC连接性数据创建不同节点之间的连接性。
27.根据权利要求19所述的系统,其中所述FDD生成器以可扩展标记语言XML格式生成HFM模型。
28.根据权利要求19所述的系统,其中所述HFM节点库包含HFM节点对象模型,其能够分级地组合和分解。
29.根据权利要求20所述的系统,其中对于每个HFM节点,基于接收到的来自上游和下游HFM节点的流信息以及测量结果,所述FDD引擎被进一步配置成执行状态估计并且向相邻节点传播得到的参数范围。
CN201080046922.6A 2009-10-19 2010-10-19 使用建筑物信息模型和热流模型的hvac系统中的故障检测 Active CN102687085B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US25286209P 2009-10-19 2009-10-19
US61/252,862 2009-10-19
US12/906,186 2010-10-18
US12/906,186 US8606554B2 (en) 2009-10-19 2010-10-18 Heat flow model for building fault detection and diagnosis
PCT/US2010/053101 WO2011049890A1 (en) 2009-10-19 2010-10-19 Fault detection in hvac- systems using building information models and heat flow models

Publications (2)

Publication Number Publication Date
CN102687085A true CN102687085A (zh) 2012-09-19
CN102687085B CN102687085B (zh) 2015-09-30

Family

ID=43880062

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080046922.6A Active CN102687085B (zh) 2009-10-19 2010-10-19 使用建筑物信息模型和热流模型的hvac系统中的故障检测

Country Status (8)

Country Link
US (1) US8606554B2 (zh)
EP (1) EP2491464B1 (zh)
KR (1) KR101401600B1 (zh)
CN (1) CN102687085B (zh)
BR (1) BR112012009211B1 (zh)
CA (1) CA2777985C (zh)
MX (1) MX2012004529A (zh)
WO (1) WO2011049890A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103246951A (zh) * 2012-12-11 2013-08-14 中建三局第一建设工程有限责任公司 基于bim的机电设备智能管理系统和方法
WO2014075280A1 (en) * 2012-11-16 2014-05-22 Honeywell International Inc. Fuse multiple drawings into an equipment (bim) model
CN104764173A (zh) * 2014-03-11 2015-07-08 北京博锐尚格节能技术股份有限公司 一种暖通空调系统的监控方法、装置及系统
CN104765354A (zh) * 2014-01-10 2015-07-08 北京博锐尚格节能技术股份有限公司 一种传感器及执行元件的故障诊断方法、装置及系统
CN104871097A (zh) * 2012-12-13 2015-08-26 Abb技术有限公司 用于监测和/或诊断工业工厂生产线操作的系统和方法
CN105026868A (zh) * 2012-12-28 2015-11-04 施耐德电气It公司 用于气流故障及成因识别的方法
CN105190190A (zh) * 2013-03-14 2015-12-23 西门子工业公司 用于远程监视和控制hvac单元的方法和系统
CN107111748A (zh) * 2014-10-01 2017-08-29 Abb瑞士股份有限公司 用于基于工程图形对象来配置控制系统的装置的方法和系统
CN107111286A (zh) * 2014-11-12 2017-08-29 开利公司 用于诊断和控制的自动化功能测试
CN107305353A (zh) * 2016-04-21 2017-10-31 霍尼韦尔国际公司 将建筑自动化算法与建筑自动化系统相匹配
CN108496062A (zh) * 2015-12-18 2018-09-04 力博特公司 用于根据基于大数据标准偏差的度量来推断或提示hvac动作的系统和方法
CN108700853A (zh) * 2016-01-19 2018-10-23 霍尼韦尔国际公司 根据控制器配置详情来自动推断装备详情的系统
CN109328285A (zh) * 2016-06-03 2019-02-12 贝利莫控股公司 用于监测hvac系统的方法和计算机系统
CN113204827A (zh) * 2021-05-31 2021-08-03 升维科技有限公司 一种基于bim的建筑节能设计方法及系统

Families Citing this family (198)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9456054B2 (en) 2008-05-16 2016-09-27 Palo Alto Research Center Incorporated Controlling the spread of interests and content in a content centric network
US8923293B2 (en) 2009-10-21 2014-12-30 Palo Alto Research Center Incorporated Adaptive multi-interface use for content networking
CN103403463B (zh) * 2011-03-02 2016-06-01 开利公司 故障检测和诊断算法
JP5093378B2 (ja) * 2011-05-12 2012-12-12 ダイキン工業株式会社 換気システム
WO2012162360A2 (en) * 2011-05-23 2012-11-29 Siemens Corporation Simulation based fault diagnosis using extended heat flow models
US9366448B2 (en) 2011-06-20 2016-06-14 Honeywell International Inc. Method and apparatus for configuring a filter change notification of an HVAC controller
US8892223B2 (en) 2011-09-07 2014-11-18 Honeywell International Inc. HVAC controller including user interaction log
KR101285023B1 (ko) * 2011-11-30 2013-07-10 엘지전자 주식회사 공기 조화기의 설치가이드 시스템 및 그 이용방법
US10747243B2 (en) 2011-12-14 2020-08-18 Ademco Inc. HVAC controller with HVAC system failure detection
US10533761B2 (en) 2011-12-14 2020-01-14 Ademco Inc. HVAC controller with fault sensitivity
US9002523B2 (en) 2011-12-14 2015-04-07 Honeywell International Inc. HVAC controller with diagnostic alerts
US9206993B2 (en) 2011-12-14 2015-12-08 Honeywell International Inc. HVAC controller with utility saver switch diagnostic feature
US8902071B2 (en) 2011-12-14 2014-12-02 Honeywell International Inc. HVAC controller with HVAC system fault detection
US20130158720A1 (en) 2011-12-15 2013-06-20 Honeywell International Inc. Hvac controller with performance log
JP5884125B2 (ja) * 2012-02-07 2016-03-15 ナガノサイエンス株式会社 異常検知装置及びそれを備えた環境試験装置
JP5576455B2 (ja) * 2012-02-20 2014-08-20 ソリデオ システムズ カンパニー リミテッド Bimデータファイルに含まれたデータを提供する方法、それを記録した記録媒体、およびそれを含むシステム
US9442500B2 (en) 2012-03-08 2016-09-13 Honeywell International Inc. Systems and methods for associating wireless devices of an HVAC system
US10452084B2 (en) 2012-03-14 2019-10-22 Ademco Inc. Operation of building control via remote device
US9488994B2 (en) 2012-03-29 2016-11-08 Honeywell International Inc. Method and system for configuring wireless sensors in an HVAC system
US10146891B2 (en) * 2012-03-30 2018-12-04 Honeywell International Inc. Extracting data from a 3D geometric model by geometry analysis
US9513643B2 (en) * 2012-04-23 2016-12-06 Emerson Climate Technologies Retail Solutions, Inc. Building device cluster data display with thumbnail graphical display interface
US8954479B2 (en) 2012-06-13 2015-02-10 International Business Machines Corporation End-to-end interoperability and workflows from building architecture design to one or more simulations
DE102012210041A1 (de) * 2012-06-14 2013-12-19 Robert Bosch Gmbh Drucksensor und System zum Regeln einer Lüftungsvorrichtung
US9594384B2 (en) 2012-07-26 2017-03-14 Honeywell International Inc. Method of associating an HVAC controller with an external web service
US9477239B2 (en) 2012-07-26 2016-10-25 Honeywell International Inc. HVAC controller with wireless network based occupancy detection and control
US9280546B2 (en) 2012-10-31 2016-03-08 Palo Alto Research Center Incorporated System and method for accessing digital content using a location-independent name
US9396293B2 (en) 2012-11-06 2016-07-19 Cenergistic Llc Adjustment simulation method for energy consumption
US9400800B2 (en) 2012-11-19 2016-07-26 Palo Alto Research Center Incorporated Data transport by named content synchronization
US10430839B2 (en) 2012-12-12 2019-10-01 Cisco Technology, Inc. Distributed advertisement insertion in content-centric networks
US10094585B2 (en) 2013-01-25 2018-10-09 Honeywell International Inc. Auto test for delta T diagnostics in an HVAC system
KR20140096717A (ko) * 2013-01-29 2014-08-06 한국전자통신연구원 Bim 기반 빌딩에너지 관리 장치 및 방법
US9978025B2 (en) 2013-03-20 2018-05-22 Cisco Technology, Inc. Ordered-element naming for name-based packet forwarding
WO2014178926A1 (en) * 2013-04-29 2014-11-06 Enernoc, Inc. Building management system false-positive fault indications reduction mechanism
US9935791B2 (en) 2013-05-20 2018-04-03 Cisco Technology, Inc. Method and system for name resolution across heterogeneous architectures
US9185120B2 (en) 2013-05-23 2015-11-10 Palo Alto Research Center Incorporated Method and system for mitigating interest flooding attacks in content-centric networks
JP6179196B2 (ja) * 2013-05-31 2017-08-16 富士通株式会社 データセンター
US9714771B1 (en) * 2013-07-30 2017-07-25 Alarm.Com Incorporated Dynamically programmable thermostat
US9444722B2 (en) 2013-08-01 2016-09-13 Palo Alto Research Center Incorporated Method and apparatus for configuring routing paths in a custodian-based routing architecture
CN104566762B (zh) * 2013-10-12 2018-03-20 珠海格力电器股份有限公司 除湿机的出风口异常监控方法及系统
KR101525680B1 (ko) * 2013-10-25 2015-06-03 단국대학교 산학협력단 설계 및 운영 단계 통합 건물 제어 시스템
US9407549B2 (en) 2013-10-29 2016-08-02 Palo Alto Research Center Incorporated System and method for hash-based forwarding of packets with hierarchically structured variable-length identifiers
US9276840B2 (en) 2013-10-30 2016-03-01 Palo Alto Research Center Incorporated Interest messages with a payload for a named data network
US9282050B2 (en) 2013-10-30 2016-03-08 Palo Alto Research Center Incorporated System and method for minimum path MTU discovery in content centric networks
US9401864B2 (en) 2013-10-31 2016-07-26 Palo Alto Research Center Incorporated Express header for packets with hierarchically structured variable-length identifiers
US9311377B2 (en) 2013-11-13 2016-04-12 Palo Alto Research Center Incorporated Method and apparatus for performing server handoff in a name-based content distribution system
US10129365B2 (en) 2013-11-13 2018-11-13 Cisco Technology, Inc. Method and apparatus for pre-fetching remote content based on static and dynamic recommendations
US10101801B2 (en) 2013-11-13 2018-10-16 Cisco Technology, Inc. Method and apparatus for prefetching content in a data stream
US10089655B2 (en) 2013-11-27 2018-10-02 Cisco Technology, Inc. Method and apparatus for scalable data broadcasting
US9503358B2 (en) 2013-12-05 2016-11-22 Palo Alto Research Center Incorporated Distance-based routing in an information-centric network
US10436977B2 (en) 2013-12-11 2019-10-08 Ademco Inc. Building automation system setup using a remote control device
US9558106B1 (en) * 2013-12-19 2017-01-31 Amazon Technologies, Inc. Testing service with control testing
US9379979B2 (en) 2014-01-14 2016-06-28 Palo Alto Research Center Incorporated Method and apparatus for establishing a virtual interface for a set of mutual-listener devices
US10172068B2 (en) 2014-01-22 2019-01-01 Cisco Technology, Inc. Service-oriented routing in software-defined MANETs
US10098051B2 (en) 2014-01-22 2018-10-09 Cisco Technology, Inc. Gateways and routing in software-defined manets
US9531679B2 (en) 2014-02-06 2016-12-27 Palo Alto Research Center Incorporated Content-based transport security for distributed producers
US9954678B2 (en) 2014-02-06 2018-04-24 Cisco Technology, Inc. Content-based transport security
US9678998B2 (en) 2014-02-28 2017-06-13 Cisco Technology, Inc. Content name resolution for information centric networking
US9817922B2 (en) 2014-03-01 2017-11-14 Anguleris Technologies, Llc Method and system for creating 3D models from 2D data for building information modeling (BIM)
US9782936B2 (en) 2014-03-01 2017-10-10 Anguleris Technologies, Llc Method and system for creating composite 3D models for building information modeling (BIM)
US10089651B2 (en) 2014-03-03 2018-10-02 Cisco Technology, Inc. Method and apparatus for streaming advertisements in a scalable data broadcasting system
US9836540B2 (en) 2014-03-04 2017-12-05 Cisco Technology, Inc. System and method for direct storage access in a content-centric network
US9473405B2 (en) 2014-03-10 2016-10-18 Palo Alto Research Center Incorporated Concurrent hashes and sub-hashes on data streams
US9626413B2 (en) 2014-03-10 2017-04-18 Cisco Systems, Inc. System and method for ranking content popularity in a content-centric network
US9391896B2 (en) 2014-03-10 2016-07-12 Palo Alto Research Center Incorporated System and method for packet forwarding using a conjunctive normal form strategy in a content-centric network
US9407432B2 (en) 2014-03-19 2016-08-02 Palo Alto Research Center Incorporated System and method for efficient and secure distribution of digital content
US9916601B2 (en) 2014-03-21 2018-03-13 Cisco Technology, Inc. Marketplace for presenting advertisements in a scalable data broadcasting system
US9363179B2 (en) 2014-03-26 2016-06-07 Palo Alto Research Center Incorporated Multi-publisher routing protocol for named data networks
US9363086B2 (en) 2014-03-31 2016-06-07 Palo Alto Research Center Incorporated Aggregate signing of data in content centric networking
US9716622B2 (en) 2014-04-01 2017-07-25 Cisco Technology, Inc. System and method for dynamic name configuration in content-centric networks
US9473576B2 (en) 2014-04-07 2016-10-18 Palo Alto Research Center Incorporated Service discovery using collection synchronization with exact names
US9390289B2 (en) 2014-04-07 2016-07-12 Palo Alto Research Center Incorporated Secure collection synchronization using matched network names
US10075521B2 (en) 2014-04-07 2018-09-11 Cisco Technology, Inc. Collection synchronization using equality matched network names
US9451032B2 (en) 2014-04-10 2016-09-20 Palo Alto Research Center Incorporated System and method for simple service discovery in content-centric networks
US9203885B2 (en) 2014-04-28 2015-12-01 Palo Alto Research Center Incorporated Method and apparatus for exchanging bidirectional streams over a content centric network
US9992281B2 (en) 2014-05-01 2018-06-05 Cisco Technology, Inc. Accountable content stores for information centric networks
US9609014B2 (en) 2014-05-22 2017-03-28 Cisco Systems, Inc. Method and apparatus for preventing insertion of malicious content at a named data network router
US9455835B2 (en) 2014-05-23 2016-09-27 Palo Alto Research Center Incorporated System and method for circular link resolution with hash-based names in content-centric networks
US9276751B2 (en) 2014-05-28 2016-03-01 Palo Alto Research Center Incorporated System and method for circular link resolution with computable hash-based names in content-centric networks
US10156378B2 (en) * 2014-05-29 2018-12-18 Emerson Climate Technologies, Inc. HVAC system remote monitoring and diagnosis of refrigerant line obstruction
US9467377B2 (en) 2014-06-19 2016-10-11 Palo Alto Research Center Incorporated Associating consumer states with interests in a content-centric network
US9516144B2 (en) 2014-06-19 2016-12-06 Palo Alto Research Center Incorporated Cut-through forwarding of CCNx message fragments with IP encapsulation
US9537719B2 (en) 2014-06-19 2017-01-03 Palo Alto Research Center Incorporated Method and apparatus for deploying a minimal-cost CCN topology
KR20160001023A (ko) 2014-06-26 2016-01-06 삼성전자주식회사 건물 정보 검출 방법 및 장치
US9426113B2 (en) 2014-06-30 2016-08-23 Palo Alto Research Center Incorporated System and method for managing devices over a content centric network
US9699198B2 (en) 2014-07-07 2017-07-04 Cisco Technology, Inc. System and method for parallel secure content bootstrapping in content-centric networks
US9959156B2 (en) 2014-07-17 2018-05-01 Cisco Technology, Inc. Interest return control message
US9621354B2 (en) 2014-07-17 2017-04-11 Cisco Systems, Inc. Reconstructable content objects
US9590887B2 (en) 2014-07-18 2017-03-07 Cisco Systems, Inc. Method and system for keeping interest alive in a content centric network
US9729616B2 (en) 2014-07-18 2017-08-08 Cisco Technology, Inc. Reputation-based strategy for forwarding and responding to interests over a content centric network
US9535968B2 (en) 2014-07-21 2017-01-03 Palo Alto Research Center Incorporated System for distributing nameless objects using self-certifying names
US9882964B2 (en) 2014-08-08 2018-01-30 Cisco Technology, Inc. Explicit strategy feedback in name-based forwarding
US9729662B2 (en) 2014-08-11 2017-08-08 Cisco Technology, Inc. Probabilistic lazy-forwarding technique without validation in a content centric network
US9503365B2 (en) 2014-08-11 2016-11-22 Palo Alto Research Center Incorporated Reputation-based instruction processing over an information centric network
US9391777B2 (en) 2014-08-15 2016-07-12 Palo Alto Research Center Incorporated System and method for performing key resolution over a content centric network
US9800637B2 (en) 2014-08-19 2017-10-24 Cisco Technology, Inc. System and method for all-in-one content stream in content-centric networks
US9467492B2 (en) 2014-08-19 2016-10-11 Palo Alto Research Center Incorporated System and method for reconstructable all-in-one content stream
US9497282B2 (en) 2014-08-27 2016-11-15 Palo Alto Research Center Incorporated Network coding for content-centric network
US10204013B2 (en) 2014-09-03 2019-02-12 Cisco Technology, Inc. System and method for maintaining a distributed and fault-tolerant state over an information centric network
US9553812B2 (en) 2014-09-09 2017-01-24 Palo Alto Research Center Incorporated Interest keep alives at intermediate routers in a CCN
US10274915B2 (en) 2014-10-22 2019-04-30 Carrier Corporation Scalable cyber-physical structure management
US10069933B2 (en) 2014-10-23 2018-09-04 Cisco Technology, Inc. System and method for creating virtual interfaces based on network characteristics
US9536059B2 (en) 2014-12-15 2017-01-03 Palo Alto Research Center Incorporated Method and system for verifying renamed content using manifests in a content centric network
US9590948B2 (en) 2014-12-15 2017-03-07 Cisco Systems, Inc. CCN routing using hardware-assisted hash tables
US10237189B2 (en) 2014-12-16 2019-03-19 Cisco Technology, Inc. System and method for distance-based interest forwarding
US9846881B2 (en) 2014-12-19 2017-12-19 Palo Alto Research Center Incorporated Frugal user engagement help systems
US10003520B2 (en) 2014-12-22 2018-06-19 Cisco Technology, Inc. System and method for efficient name-based content routing using link-state information in information-centric networks
US9473475B2 (en) 2014-12-22 2016-10-18 Palo Alto Research Center Incorporated Low-cost authenticated signing delegation in content centric networking
US9660825B2 (en) 2014-12-24 2017-05-23 Cisco Technology, Inc. System and method for multi-source multicasting in content-centric networks
US9832291B2 (en) 2015-01-12 2017-11-28 Cisco Technology, Inc. Auto-configurable transport stack
US9916457B2 (en) 2015-01-12 2018-03-13 Cisco Technology, Inc. Decoupled name security binding for CCN objects
US9946743B2 (en) 2015-01-12 2018-04-17 Cisco Technology, Inc. Order encoded manifests in a content centric network
US9954795B2 (en) 2015-01-12 2018-04-24 Cisco Technology, Inc. Resource allocation using CCN manifests
US9602596B2 (en) 2015-01-12 2017-03-21 Cisco Systems, Inc. Peer-to-peer sharing in a content centric network
US9462006B2 (en) 2015-01-21 2016-10-04 Palo Alto Research Center Incorporated Network-layer application-specific trust model
US9552493B2 (en) 2015-02-03 2017-01-24 Palo Alto Research Center Incorporated Access control framework for information centric networking
US10333840B2 (en) 2015-02-06 2019-06-25 Cisco Technology, Inc. System and method for on-demand content exchange with adaptive naming in information-centric networks
CN104614126A (zh) * 2015-02-13 2015-05-13 郑州能通网络技术有限公司 基于bim技术的钢架结构建筑漏水监测方法
US10075401B2 (en) 2015-03-18 2018-09-11 Cisco Technology, Inc. Pending interest table behavior
US10116605B2 (en) 2015-06-22 2018-10-30 Cisco Technology, Inc. Transport stack name scheme and identity management
US10075402B2 (en) 2015-06-24 2018-09-11 Cisco Technology, Inc. Flexible command and control in content centric networks
US10701038B2 (en) 2015-07-27 2020-06-30 Cisco Technology, Inc. Content negotiation in a content centric network
US9986034B2 (en) 2015-08-03 2018-05-29 Cisco Technology, Inc. Transferring state in content centric network stacks
US10610144B2 (en) 2015-08-19 2020-04-07 Palo Alto Research Center Incorporated Interactive remote patient monitoring and condition management intervention system
US9832123B2 (en) 2015-09-11 2017-11-28 Cisco Technology, Inc. Network named fragments in a content centric network
US10355999B2 (en) 2015-09-23 2019-07-16 Cisco Technology, Inc. Flow control with network named fragments
US9977809B2 (en) 2015-09-24 2018-05-22 Cisco Technology, Inc. Information and data framework in a content centric network
US10313227B2 (en) 2015-09-24 2019-06-04 Cisco Technology, Inc. System and method for eliminating undetected interest looping in information-centric networks
US10454820B2 (en) 2015-09-29 2019-10-22 Cisco Technology, Inc. System and method for stateless information-centric networking
US10263965B2 (en) 2015-10-16 2019-04-16 Cisco Technology, Inc. Encrypted CCNx
US9794238B2 (en) 2015-10-29 2017-10-17 Cisco Technology, Inc. System for key exchange in a content centric network
US10009446B2 (en) 2015-11-02 2018-06-26 Cisco Technology, Inc. Header compression for CCN messages using dictionary learning
US9807205B2 (en) 2015-11-02 2017-10-31 Cisco Technology, Inc. Header compression for CCN messages using dictionary
US10021222B2 (en) 2015-11-04 2018-07-10 Cisco Technology, Inc. Bit-aligned header compression for CCN messages using dictionary
US10949805B2 (en) 2015-11-06 2021-03-16 Anguleris Technologies, Llc Method and system for native object collaboration, revision and analytics for BIM and other design platforms
US10867282B2 (en) 2015-11-06 2020-12-15 Anguleris Technologies, Llc Method and system for GPS enabled model and site interaction and collaboration for BIM and other design platforms
JP6249009B2 (ja) * 2015-11-12 2017-12-20 株式会社デンソー 異常診断装置
US10097521B2 (en) 2015-11-20 2018-10-09 Cisco Technology, Inc. Transparent encryption in a content centric network
US9912776B2 (en) 2015-12-02 2018-03-06 Cisco Technology, Inc. Explicit content deletion commands in a content centric network
US10097346B2 (en) 2015-12-09 2018-10-09 Cisco Technology, Inc. Key catalogs in a content centric network
US10078062B2 (en) 2015-12-15 2018-09-18 Palo Alto Research Center Incorporated Device health estimation by combining contextual information with sensor data
US10257271B2 (en) 2016-01-11 2019-04-09 Cisco Technology, Inc. Chandra-Toueg consensus in a content centric network
US9949301B2 (en) 2016-01-20 2018-04-17 Palo Alto Research Center Incorporated Methods for fast, secure and privacy-friendly internet connection discovery in wireless networks
US10305864B2 (en) 2016-01-25 2019-05-28 Cisco Technology, Inc. Method and system for interest encryption in a content centric network
US10043016B2 (en) 2016-02-29 2018-08-07 Cisco Technology, Inc. Method and system for name encryption agreement in a content centric network
US10742596B2 (en) 2016-03-04 2020-08-11 Cisco Technology, Inc. Method and system for reducing a collision probability of hash-based names using a publisher identifier
US10051071B2 (en) 2016-03-04 2018-08-14 Cisco Technology, Inc. Method and system for collecting historical network information in a content centric network
US10038633B2 (en) 2016-03-04 2018-07-31 Cisco Technology, Inc. Protocol to query for historical network information in a content centric network
US10003507B2 (en) 2016-03-04 2018-06-19 Cisco Technology, Inc. Transport session state protocol
US9832116B2 (en) 2016-03-14 2017-11-28 Cisco Technology, Inc. Adjusting entries in a forwarding information base in a content centric network
US10212196B2 (en) 2016-03-16 2019-02-19 Cisco Technology, Inc. Interface discovery and authentication in a name-based network
US10067948B2 (en) 2016-03-18 2018-09-04 Cisco Technology, Inc. Data deduping in content centric networking manifests
US11436656B2 (en) 2016-03-18 2022-09-06 Palo Alto Research Center Incorporated System and method for a real-time egocentric collaborative filter on large datasets
US10091330B2 (en) 2016-03-23 2018-10-02 Cisco Technology, Inc. Interest scheduling by an information and data framework in a content centric network
US10033639B2 (en) 2016-03-25 2018-07-24 Cisco Technology, Inc. System and method for routing packets in a content centric network using anonymous datagrams
US10320760B2 (en) 2016-04-01 2019-06-11 Cisco Technology, Inc. Method and system for mutating and caching content in a content centric network
US9930146B2 (en) 2016-04-04 2018-03-27 Cisco Technology, Inc. System and method for compressing content centric networking messages
US10425503B2 (en) 2016-04-07 2019-09-24 Cisco Technology, Inc. Shared pending interest table in a content centric network
US10027578B2 (en) 2016-04-11 2018-07-17 Cisco Technology, Inc. Method and system for routable prefix queries in a content centric network
US10404450B2 (en) 2016-05-02 2019-09-03 Cisco Technology, Inc. Schematized access control in a content centric network
US10320675B2 (en) 2016-05-04 2019-06-11 Cisco Technology, Inc. System and method for routing packets in a stateless content centric network
US10547589B2 (en) 2016-05-09 2020-01-28 Cisco Technology, Inc. System for implementing a small computer systems interface protocol over a content centric network
US10063414B2 (en) 2016-05-13 2018-08-28 Cisco Technology, Inc. Updating a transport stack in a content centric network
US10084764B2 (en) 2016-05-13 2018-09-25 Cisco Technology, Inc. System for a secure encryption proxy in a content centric network
US10103989B2 (en) 2016-06-13 2018-10-16 Cisco Technology, Inc. Content object return messages in a content centric network
US10305865B2 (en) 2016-06-21 2019-05-28 Cisco Technology, Inc. Permutation-based content encryption with manifests in a content centric network
US10148572B2 (en) 2016-06-27 2018-12-04 Cisco Technology, Inc. Method and system for interest groups in a content centric network
US10009266B2 (en) 2016-07-05 2018-06-26 Cisco Technology, Inc. Method and system for reference counted pending interest tables in a content centric network
US9992097B2 (en) 2016-07-11 2018-06-05 Cisco Technology, Inc. System and method for piggybacking routing information in interests in a content centric network
US10488062B2 (en) 2016-07-22 2019-11-26 Ademco Inc. Geofence plus schedule for a building controller
US10122624B2 (en) 2016-07-25 2018-11-06 Cisco Technology, Inc. System and method for ephemeral entries in a forwarding information base in a content centric network
US10069729B2 (en) 2016-08-08 2018-09-04 Cisco Technology, Inc. System and method for throttling traffic based on a forwarding information base in a content centric network
US10956412B2 (en) 2016-08-09 2021-03-23 Cisco Technology, Inc. Method and system for conjunctive normal form attribute matching in a content centric network
US10033642B2 (en) 2016-09-19 2018-07-24 Cisco Technology, Inc. System and method for making optimal routing decisions based on device-specific parameters in a content centric network
US10212248B2 (en) 2016-10-03 2019-02-19 Cisco Technology, Inc. Cache management on high availability routers in a content centric network
US10447805B2 (en) 2016-10-10 2019-10-15 Cisco Technology, Inc. Distributed consensus in a content centric network
US10135948B2 (en) 2016-10-31 2018-11-20 Cisco Technology, Inc. System and method for process migration in a content centric network
US10243851B2 (en) 2016-11-21 2019-03-26 Cisco Technology, Inc. System and method for forwarder connection information in a content centric network
KR101876114B1 (ko) * 2017-01-11 2018-07-06 서울시립대학교 산학협력단 3d 모델링 구현을 위한 단말기, 서버, 이들을 포함하는 시스템 및 이를 이용하는 3d 모델링 방법
US10458671B2 (en) * 2017-04-11 2019-10-29 Ademco Inc. Building control device having probability distribution based sensing
US10755002B2 (en) * 2017-05-12 2020-08-25 Ge-Hitachi Nuclear Energy Americas Llc Method and apparatus for facilitating creation of simulation model
US10536294B2 (en) * 2017-07-17 2020-01-14 Midea America Corp. Computer-based platform for quality management of home devices
US10677485B2 (en) 2017-09-19 2020-06-09 Honeywell International Inc. Determining the cause of a fault in an HVAC system
WO2020075262A1 (ja) * 2018-10-11 2020-04-16 三菱電機株式会社 故障前兆検出装置
US11030709B2 (en) 2018-10-29 2021-06-08 DIGIBILT, Inc. Method and system for automatically creating and assigning assembly labor activities (ALAs) to a bill of materials (BOM)
US10997553B2 (en) 2018-10-29 2021-05-04 DIGIBILT, Inc. Method and system for automatically creating a bill of materials
CN111609526B (zh) 2019-02-25 2023-11-14 开利公司 Hvac系统不舒适指数和显示
US11475176B2 (en) 2019-05-31 2022-10-18 Anguleris Technologies, Llc Method and system for automatically ordering and fulfilling architecture, design and construction product sample requests
CN110309070A (zh) * 2019-06-24 2019-10-08 中建八局第一建设有限公司 基于计算机语言标准算法的bim模型检测与更新系统
US11639804B2 (en) 2019-12-13 2023-05-02 Trane International Inc. Automated testing of HVAC devices
US11777756B2 (en) 2019-12-31 2023-10-03 Johnson Controls Tyco IP Holdings LLP Building data platform with graph based communication actions
US20210200174A1 (en) * 2019-12-31 2021-07-01 Johnson Controls Technology Company Building information model management system with hierarchy generation
US11894944B2 (en) 2019-12-31 2024-02-06 Johnson Controls Tyco IP Holdings LLP Building data platform with an enrichment loop
US20230029568A1 (en) * 2020-01-16 2023-02-02 Honeywell International Inc. Root cause analytics of hvac faults
US11874009B2 (en) 2020-03-30 2024-01-16 Daniel J Dempsey HVAC performance tracking system and method thereof
CN111709453B (zh) * 2020-05-22 2022-05-10 成都飞机工业(集团)有限责任公司 一种航空发动机电气系统在线故障诊断方法
US11644212B2 (en) 2020-11-12 2023-05-09 International Business Machines Corporation Monitoring and optimizing HVAC system
CN114815763A (zh) * 2021-01-27 2022-07-29 西门子股份公司 一种动态控制系统的异常检测方法、装置和计算机可读介质
CN116204846B (zh) * 2023-05-06 2023-08-01 云南星晟电力技术有限公司 一种基于可见图的配电网传感器数据异常快速定位方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5209398A (en) * 1992-09-02 1993-05-11 Johnson Service Company Model-based thermobalance with feedback
CN1647005A (zh) * 2002-04-16 2005-07-27 美国标准国际公司 具有诊断能力的加热、通风及空调系统检修工具
CN1910572A (zh) * 2004-01-20 2007-02-07 开利公司 供暖、通风与空调系统的故障模式
CN1910415A (zh) * 2004-01-20 2007-02-07 开利公司 供暖、通风与空调系统中区域风门的故障检测
CN1938688A (zh) * 2004-01-20 2007-03-28 开利公司 供暖、通风和空调系统中全系统故障的有序记录
US20080033674A1 (en) * 2006-08-01 2008-02-07 Nikovski Daniel N Detecting and diagnosing faults in HVAC equipment
CN101230803A (zh) * 2007-01-26 2008-07-30 通用电气公司 使用卡尔曼滤波器来初始化动态模型状态的系统和方法
CN101443094A (zh) * 2005-01-04 2009-05-27 开利公司 用于检测hvac系统中故障的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6962435B2 (en) * 2000-12-15 2005-11-08 Abb Technology Ltd. Condition diagnosing
US7164972B2 (en) * 2004-06-28 2007-01-16 Siemens Building Technologies, Inc. Method and apparatus for representing a building system
WO2008040018A2 (en) * 2006-09-28 2008-04-03 Fisher-Rosemount Systems, Inc. Abnormal situation prevention in a heat exchanger
US9020647B2 (en) * 2009-03-27 2015-04-28 Siemens Industry, Inc. System and method for climate control set-point optimization based on individual comfort
EP2302470A3 (en) * 2009-09-29 2014-06-11 Honeywell International Inc. Systems and methods for configuring a building management system
US20120245968A1 (en) * 2011-03-21 2012-09-27 Honeywell International Inc. Building system control and equipment fault and degradation monetization and prioritization

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5209398A (en) * 1992-09-02 1993-05-11 Johnson Service Company Model-based thermobalance with feedback
CN1647005A (zh) * 2002-04-16 2005-07-27 美国标准国际公司 具有诊断能力的加热、通风及空调系统检修工具
CN1910572A (zh) * 2004-01-20 2007-02-07 开利公司 供暖、通风与空调系统的故障模式
CN1910415A (zh) * 2004-01-20 2007-02-07 开利公司 供暖、通风与空调系统中区域风门的故障检测
CN1938688A (zh) * 2004-01-20 2007-03-28 开利公司 供暖、通风和空调系统中全系统故障的有序记录
CN101443094A (zh) * 2005-01-04 2009-05-27 开利公司 用于检测hvac系统中故障的方法
US20080033674A1 (en) * 2006-08-01 2008-02-07 Nikovski Daniel N Detecting and diagnosing faults in HVAC equipment
CN101230803A (zh) * 2007-01-26 2008-07-30 通用电气公司 使用卡尔曼滤波器来初始化动态模型状态的系统和方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014075280A1 (en) * 2012-11-16 2014-05-22 Honeywell International Inc. Fuse multiple drawings into an equipment (bim) model
US10331845B2 (en) 2012-11-16 2019-06-25 Honeywell International Inc. Fuse multiple drawings into an equipment (BIM) model
CN103246951A (zh) * 2012-12-11 2013-08-14 中建三局第一建设工程有限责任公司 基于bim的机电设备智能管理系统和方法
CN104871097B (zh) * 2012-12-13 2018-05-18 Abb 技术有限公司 用于监测和/或诊断工业工厂生产线操作的系统和方法
CN104871097A (zh) * 2012-12-13 2015-08-26 Abb技术有限公司 用于监测和/或诊断工业工厂生产线操作的系统和方法
CN105026868A (zh) * 2012-12-28 2015-11-04 施耐德电气It公司 用于气流故障及成因识别的方法
CN105026868B (zh) * 2012-12-28 2018-02-06 施耐德电气It公司 用于气流故障及成因识别的方法
CN105190190B (zh) * 2013-03-14 2018-09-21 西门子工业公司 用于远程监视和控制hvac单元的方法和系统
CN105190190A (zh) * 2013-03-14 2015-12-23 西门子工业公司 用于远程监视和控制hvac单元的方法和系统
CN104765354B (zh) * 2014-01-10 2018-02-09 北京博锐尚格节能技术股份有限公司 一种传感器及执行元件的故障诊断方法、装置及系统
CN104765354A (zh) * 2014-01-10 2015-07-08 北京博锐尚格节能技术股份有限公司 一种传感器及执行元件的故障诊断方法、装置及系统
CN104764173A (zh) * 2014-03-11 2015-07-08 北京博锐尚格节能技术股份有限公司 一种暖通空调系统的监控方法、装置及系统
CN104764173B (zh) * 2014-03-11 2018-11-13 北京博锐尚格节能技术股份有限公司 一种暖通空调系统的监控方法、装置及系统
CN107111748B (zh) * 2014-10-01 2020-09-22 Abb瑞士股份有限公司 用于基于工程图形对象来配置控制系统的装置的方法和系统
CN107111748A (zh) * 2014-10-01 2017-08-29 Abb瑞士股份有限公司 用于基于工程图形对象来配置控制系统的装置的方法和系统
CN107111286A (zh) * 2014-11-12 2017-08-29 开利公司 用于诊断和控制的自动化功能测试
CN108496062A (zh) * 2015-12-18 2018-09-04 力博特公司 用于根据基于大数据标准偏差的度量来推断或提示hvac动作的系统和方法
CN108700853A (zh) * 2016-01-19 2018-10-23 霍尼韦尔国际公司 根据控制器配置详情来自动推断装备详情的系统
CN108700853B (zh) * 2016-01-19 2022-02-08 霍尼韦尔国际公司 根据控制器配置详情来自动推断装备详情的系统
CN107305353A (zh) * 2016-04-21 2017-10-31 霍尼韦尔国际公司 将建筑自动化算法与建筑自动化系统相匹配
CN107305353B (zh) * 2016-04-21 2023-03-07 霍尼韦尔国际公司 将建筑自动化算法与建筑自动化系统相匹配
CN109328285A (zh) * 2016-06-03 2019-02-12 贝利莫控股公司 用于监测hvac系统的方法和计算机系统
CN113204827A (zh) * 2021-05-31 2021-08-03 升维科技有限公司 一种基于bim的建筑节能设计方法及系统
CN113204827B (zh) * 2021-05-31 2023-09-05 山东华烨规划建筑设计有限公司 一种基于bim的建筑节能设计方法及系统

Also Published As

Publication number Publication date
CA2777985A1 (en) 2011-04-28
EP2491464B1 (en) 2016-09-14
KR101401600B1 (ko) 2014-06-03
US8606554B2 (en) 2013-12-10
CA2777985C (en) 2015-03-31
BR112012009211A2 (pt) 2016-08-16
MX2012004529A (es) 2012-06-12
WO2011049890A1 (en) 2011-04-28
KR20120069737A (ko) 2012-06-28
CN102687085B (zh) 2015-09-30
BR112012009211B1 (pt) 2020-11-03
EP2491464A1 (en) 2012-08-29
US20110093424A1 (en) 2011-04-21

Similar Documents

Publication Publication Date Title
CN102687085B (zh) 使用建筑物信息模型和热流模型的hvac系统中的故障检测
Zhao et al. Diagnostic Bayesian networks for diagnosing air handling units faults–Part II: Faults in coils and sensors
Liu et al. Fast leak detection and location of gas pipelines based on an adaptive particle filter
Wright et al. Adaptive water distribution networks with dynamically reconfigurable topology
Du et al. Data-driven based reliability evaluation for measurements of sensors in a vapor compression system
Sainz et al. Fault detection and isolation of the three-tank system using the modal interval analysis
Doshmanziari et al. Gas pipeline leakage detection based on sensor fusion under model-based fault detection framework
Hong et al. System-level virtual sensing method in building energy systems using autoencoder: Under the limited sensors and operational datasets
Bahlawan et al. Detection and identification of faults in a District Heating Network
Zhou et al. Estimation of the natural gas leakage source with different monitoring sensor networks in an underground utility Tunnel: From the perspectives of energy security
Idachaba et al. Current technologies and the applications of data analytics for crude oil leak detection in surface pipelines
Alexandersen et al. A stair-step probabilistic approach for automatic anomaly detection in building ventilation system operation
Darwazeh et al. Development of inverse greybox model-based virtual meters for air handling units
Chen et al. Using discrete Bayesian networks for diagnosing and isolating cross-level faults in HVAC systems
Guo et al. An agent-based dynamic reliability modeling method for multistate systems considering fault propagation: A case study on subsea Christmas trees
Bjørnskov et al. Component-level re-commissioning of a newly retrofitted Danish healthcare building
Mattera et al. Fault detection and diagnostics in ventilation units using linear regression virtual sensors
Martin Chapter 5: mathematical optimization for evaluating gas network capacities
Hu et al. Negative pressure wave-based method for abnormal signal location in energy transportation system
Stephens et al. Transient analysis to assess valve status and topology in pipe networks
Wen et al. AHU AFDD
Song et al. Building Automation System Embedded HVAC System Energy Performance Degradation Detector
Yoon et al. Journal of Industrial Information Integration
Costa da Silva Alves Leak Supervision in Water Distribution Networks based on model-based and data-driven approaches
Perfido et al. Exploiting hydraulic model to enhance water network operation, performance monitoring and control with FDD algorithms

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant