CN102683880A - 一种超材料及mri磁信号增强器件 - Google Patents

一种超材料及mri磁信号增强器件 Download PDF

Info

Publication number
CN102683880A
CN102683880A CN2012101330599A CN201210133059A CN102683880A CN 102683880 A CN102683880 A CN 102683880A CN 2012101330599 A CN2012101330599 A CN 2012101330599A CN 201210133059 A CN201210133059 A CN 201210133059A CN 102683880 A CN102683880 A CN 102683880A
Authority
CN
China
Prior art keywords
ultra material
mri
magnetic
magnetic signal
metamaterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012101330599A
Other languages
English (en)
Other versions
CN102683880B (zh
Inventor
刘若鹏
栾琳
郭洁
杨学龙
郭文鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuang Chi Institute of Advanced Technology
Original Assignee
Kuang Chi Innovative Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuang Chi Innovative Technology Ltd filed Critical Kuang Chi Innovative Technology Ltd
Priority to CN201210133059.9A priority Critical patent/CN102683880B/zh
Publication of CN102683880A publication Critical patent/CN102683880A/zh
Application granted granted Critical
Publication of CN102683880B publication Critical patent/CN102683880B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明提供一种超材料,包括多个阵列排布的超材料单元,超材料单元由基板和附着在基板上的人造微结构组成,人造微结构为两个开口互相正对的开口谐振环结构,开口谐振环结构包括单开口谐振环和从单开口谐振环的两末端点分别向环内部螺旋延伸出的两条螺旋线,两条螺旋线互不相交且均不与单开口谐振环相交,螺旋线为方形螺旋线或方形螺旋线的衍生结构。该超材料具有高负磁导率,基于该高负磁导率超材料,本发明还提供一种MRI磁信号增强器件,MRI磁信号增强器件利用负磁导率超材料的磁导率为负这一特性,达到磁信号增强的效果。

Description

一种超材料及MRI磁信号增强器件
技术领域
本发明涉及MRI成像技术领域,具体地涉及一种用于MRI成像的磁信号增强器件。
背景技术
目前,国际社会对磁导率方面已有大量的研究,其中对于正磁导率的研究已经趋于成熟,对于负磁导率超材料的研究是现在国内外研究的热点,负磁导率具有量子极化作用,可以对入射波产生极化作用,因此作用范围很大,如在医学成像领域中的磁共振成像技术,负磁导率材料能够加强电磁波的成像效果,另外负磁导率材料在透镜研究方面亦有重要作用,在工程领域,磁导率通常都是指相对磁导率,为物质的绝对磁导率μ与磁性常数μ0(又称真空磁导率)的比值,μr=μ/μ0,无量纲值。通常“相对”二字及符号下标r都被省去。磁导率是表示物质受到磁化场H作用时,内部的真磁场相对于H的增加(μ>1)或减少(μ<1)的程度。至今发现的自然界已存在的材料中,μ一般是大于0的。现有的磁性微结构的几何形状为“工”字形或者如图1所示的类似“凹”字形的开口环形,但这两种结构都不能实现磁导率μ明显小于0或使超材料谐振频率降低,只有通过设计具有特殊几何图形的磁性微结构,才能使该人工电磁材料在特定频段内达到磁导率μ值小于0,并具有较低的谐振频率。
核磁共振(MRI)成像系统的原理是利用线圈去检测原子核自旋吸收和发射的无线电波脉冲能量,该线圈作为接收线圈,在有些时候还同时作为发射线圈。在无线电波脉冲能量的帮助下,核磁共振成像扫描仪可以定位患者体内一个非常小的点,然后确定这是何种类型的组织。核磁共振成像机器采用特定于氢原子的无线电频率脉冲。系统引导脉冲对准所要检查的身体区域,并导致该区域的质子吸收使它们以不同方向旋转或旋进所需的能量。这是核磁共振成像装置的“共振”部分。无线电频率脉冲迫使它们(指每一百万质子中多余的一对或者两对不匹配的质子)在特定频率下按照特定方向旋转。引发共振的特定频率被称为拉摩尔频率,该值是根据要成像的特定组织以及主磁场的磁场强度计算得出的。无线电频率脉冲通常利用一个线圈来提供,该线圈称为发射线圈。现有核磁共振成像设备的接收线圈必须相当近地接近待测部位,以获取由待测部位释放出来的磁信号。
超材料是指一些具有天然材料所不具备的超常物理性质的人工复合结构或复合材料。通过在材料的关键物理尺度上的结构有序设计,可以突破某些表观自然规律的限制,从而获得超出自然界固有的普通性质的超常材料功能。超材料的性质和功能主要来自于其内部的结构而非构成它们的材料。目前,现有的金属人造微结构的几何形状为“工”字形或者如图1所示的类似“凹”字形的开口环形,但这结构都不能实现磁导率μ明显小于0或使超材料谐振频率降低,也不能实现各向同性,只有通过设计具有特殊几何图形的金属人造微结构,才能使得该人工电磁材料在特定频段内达到磁导率μ值小于0,并具有较低的谐振频率。
发明内容
本发明所要解决的技术问题在于,提供一种具有高负磁导率、低谐振频率的超材料,利用该高负磁导率超材料,为MRI成像设备提供一种磁信号增强器件。
本发明实现发明目的采用的技术方案是,提供一种超材料,包括多个阵列排布的超材料单元,超材料单元由基板和附着在基板上的人造微结构组成,人造微结构为双开口谐振环结构或双开口谐振环结构的衍生结构,双开口谐振环结构的衍生结构为从双开口谐振环的末端点分别向环内部螺旋延伸出的两条螺旋线,两条螺旋线互不相交且均不与双开口谐振环相交,螺旋线为方形螺旋线。
优选地,所述基板由陶瓷材料、环氧树脂、聚四氟乙烯、FR-4复合材料或F4B复合材料制得。
优选地,所述螺旋线为金属螺旋线。
优选地,所述螺旋线嵌套圈数大于1。
优选地,所述螺旋线的线宽为0.1-0.2mm。
优选地,所述螺旋线的线间距为0.1-0.2mm。
优选地,所述基板的厚度为0.1-0.5mm。
本发明还提供一种MRI磁信号增强器件,MRI磁信号增强器件设置在待测部位与MRI成像设备的磁信号接收线圈之间,MRI磁信号增强器件包括外壳以及设置在外壳内的至少一层超材料,该超材料为具有前述特征的超材料。
本发明的有益效果是:双开口谐振环结构增强了人造微结构对磁信号的响应,双开口谐振环结构的衍生结构通过其螺旋线的多重绕线,增加了人造微结构的长度,相当于增加了超材料的电感,在超材料电容不变的情况下,电感增加,超材料的谐振频率降低,因此,本发明获得一种新型高负磁导率超材料,基于该高负磁导率超材料,本发明还提供一种MRI磁信号增强器件,MRI磁信号增强器件利用负磁导率超材料的磁导率为负这一特性,达到信号增强的效果,使MRI成像设备成像效果更好。
附图说明
图1,现有技术磁性人造微结构示意图;
图2,本发明超材料结构示意图;
图3,本发明优选实施例人造微结构示意图;
图4,本发明又一实施例人造微结构示意图;
图5,本发明另一实施例人造微结构示意图;
图6,本发明优选实施例人造微结构极坐标示意图;
图7,本发明磁导率仿真效果示意图;
图8,MRI磁信号增强器件结构示意图;
1超材料,10超材料单元,01本发明优选实施例人造微结构示意图,02本发明又一实施例人造微结构示意图,03本发明另一实施例人造微结构示意图,11外壳。
具体实施方式
下面结合附图和实施例对本发明进行详细说明。
本发明提供一种超材料1,包括多个阵列排布的超材料单元10,超材料单元10由基板和附着在基板上的人造微结构01组成,人造微结构01为双开口谐振环结构或双开口谐振环结构的衍生结构,双开口谐振环结构参见图3、图4,双开口谐振环结构的衍生结构为从双开口谐振环的末端点分别向环内部螺旋延伸出的两条螺旋线,两条螺旋线互不相交且均不与双开口谐振环相交,螺旋线为方形螺旋线,参见图5。
应当理解,本发明另一实施例人造微结构03为螺绕环,螺绕环的嵌套圈数应大于1圈,本文的1圈,是指如图6所示,本发明优选实施例人造微结构03所围成的环形内部的一点为极坐标的极点Oe,两末端点中离极点Oe近的一个末端点到极点的连线为该极坐标的极轴,取逆时针为正方向,则沿环上的每一点依次用极坐标(ρe,θ)来表示,每到一个360度为一圈,直到达到环上离极点远的另一末端点。
应当理解,增加螺绕环的嵌套圈数,相当于增加了人造微结构的长度,也就是增加了人造微结构的电感,在电容不变的情况下,电感增加,超材料的谐振频率降低。在设计超材料时,通过改变超材料人造微结构的尺寸大小及结构等手段,可以得到具有不同电磁响应频率的超材料,以满足具体应用。
应当理解,本发明方形螺绕环及其衍生结构一般为金属线,例如铜线、银线,甚至是金线,有时也可以是导电塑料,方形螺绕环的线宽为0.1-0.2mm,方形螺绕环的线间距为0.1-0.2mm。
应当理解,本发明超材料基板由陶瓷材料、环氧树脂、聚四氟乙烯、FR-4复合材料或F4B复合材料制得,基板厚度为0.1-0.5mm。
应当理解,对于特定频率的电磁波而言,超材料人造微结构01的尺寸在电磁波长的十分之一到五分之一范围内时(优选十分之一),超材料才能对电磁波产生特定的响应,在电磁性质上表现为具有特殊的等效介电常数和等效磁导率,超材料呈负磁导率,正是通过设计特定的人造微结构,使材料本身在电磁性质上具有负的磁导率。
应当理解,用CST Studio Suite 2010对本发明另一实施例进行仿真,仿真时使用的技术参数为:人造微结构03铜线线宽0.15mm,线间距0.15mm,基板为陶瓷基板,其厚度为0.2mm,人造微结构03的尺寸为15mm×15mm,本发明磁导率仿真效果示意图参见图7,由图可知,该超材料在191MHz磁导率约等于-1,在157MHz至250MHz的频段内,实现超材料磁导率为负。
基于上述负磁导率超材料,本发明还提供一种MRI磁信号增强器件,参见图8,包括外壳11及设置在外壳11内的至少一层超材料1,将该磁信号增强器件置于MRI设备的接收线圈与用户之间,超材料1中的人造微结构经过特殊设计,在负磁导率条件下的频率与MRI工作频率相同时,与MRI接收线圈产生响应,增强了接收线圈的磁信号,从而增强MRI系统的成像质量,使接收线圈不必紧靠待测部位。
本发明中的上述实施例仅作了示范性描述,本领域技术人员在阅读本专利申请后可以在不脱离本发明的精神和范围的情况下对本发明进行各种修改。

Claims (8)

1.一种超材料,包括多个阵列排布的超材料单元,其特征在于,所述超材料单元由基板和附着在基板上的人造微结构组成,所述人造微结构为双开口谐振环结构或双开口谐振环结构的衍生结构,所述双开口谐振环结构的衍生结构为从所述双开口谐振环的末端点分别向环内部螺旋延伸出的两条螺旋线,所述两条螺旋线互不相交且均不与所述双开口谐振环相交,所述螺旋线为方形螺旋线。
2.根据权利要求1所述的超材料,其特征在于,所述基板由陶瓷材料、环氧树脂、聚四氟乙烯、FR-4复合材料或F4B复合材料制得。
3.根据权利要求1所述的超材料,其特征在于,所述螺旋线为金属螺旋线。
4.根据权利要求1所述的超材料,其特征在于,所述螺旋线嵌套圈数大于1。
5.根据权利要求1所述的超材料,其特征在于,所述螺旋线的线宽为0.1-0.2mm。
6.根据权利要求1所述的超材料,其特征在于,所述螺旋线的线间距为0.1-0.2mm。
7.根据权利要求1所述的超材料,其特征在于,所述基板的厚度为0.1-0.5mm。
8.一种MRI磁信号增强器件,其特征在于,所述MRI磁信号增强器件设置在待测部位与MRI成像设备的磁信号接收线圈之间,所述MRI磁信号增强器件包括外壳以及设置在外壳内的至少一层超材料,所述超材料为权利要求1-7任一项所述的超材料。
CN201210133059.9A 2012-04-28 2012-04-28 一种超材料及mri磁信号增强器件 Active CN102683880B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210133059.9A CN102683880B (zh) 2012-04-28 2012-04-28 一种超材料及mri磁信号增强器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210133059.9A CN102683880B (zh) 2012-04-28 2012-04-28 一种超材料及mri磁信号增强器件

Publications (2)

Publication Number Publication Date
CN102683880A true CN102683880A (zh) 2012-09-19
CN102683880B CN102683880B (zh) 2016-06-08

Family

ID=46815470

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210133059.9A Active CN102683880B (zh) 2012-04-28 2012-04-28 一种超材料及mri磁信号增强器件

Country Status (1)

Country Link
CN (1) CN102683880B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106711617A (zh) * 2017-02-24 2017-05-24 华南理工大学 一种利用磁环偶极子聚焦放大近磁场的平面透镜
CN108226834A (zh) * 2018-04-09 2018-06-29 安徽大学 一种用于低场核磁共振成像仪器的磁信号增强器件及其制作方法
RU2776600C1 (ru) * 2021-08-20 2022-07-22 федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» (Университет ИТМО) Способ функционирования магнитно-резонансного томографа на основе метаповерхности (варианты)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101027818A (zh) * 2004-08-30 2007-08-29 惠普开发有限公司 具有供以功率的谐振单元的复合材料
US20070215843A1 (en) * 2005-11-14 2007-09-20 Iowa State University Research Foundation Structures With Negative Index Of Refraction
US20100117000A1 (en) * 2005-12-21 2010-05-13 Searete Llc Variable multi-stage waveform detector
CN101740862A (zh) * 2008-11-20 2010-06-16 东莞市启汉电子科技有限公司 一种射频芯片小天线
US20100259345A1 (en) * 2007-12-14 2010-10-14 Electronics And Telecommunications Research Institute Metamaterial structure having negative permittivity, negative permeability, and negative refractivity
CN201611683U (zh) * 2008-11-20 2010-10-20 深圳大鹏光启科技有限公司 一种射频芯片小天线
US20110204891A1 (en) * 2009-06-25 2011-08-25 Lockheed Martin Corporation Direct magnetic imaging apparatus and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101027818A (zh) * 2004-08-30 2007-08-29 惠普开发有限公司 具有供以功率的谐振单元的复合材料
US20070215843A1 (en) * 2005-11-14 2007-09-20 Iowa State University Research Foundation Structures With Negative Index Of Refraction
US20100117000A1 (en) * 2005-12-21 2010-05-13 Searete Llc Variable multi-stage waveform detector
US20100259345A1 (en) * 2007-12-14 2010-10-14 Electronics And Telecommunications Research Institute Metamaterial structure having negative permittivity, negative permeability, and negative refractivity
CN101740862A (zh) * 2008-11-20 2010-06-16 东莞市启汉电子科技有限公司 一种射频芯片小天线
CN201611683U (zh) * 2008-11-20 2010-10-20 深圳大鹏光启科技有限公司 一种射频芯片小天线
US20110204891A1 (en) * 2009-06-25 2011-08-25 Lockheed Martin Corporation Direct magnetic imaging apparatus and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106711617A (zh) * 2017-02-24 2017-05-24 华南理工大学 一种利用磁环偶极子聚焦放大近磁场的平面透镜
CN106711617B (zh) * 2017-02-24 2023-08-22 华南理工大学 一种利用磁环偶极子聚焦放大近磁场的平面透镜
CN108226834A (zh) * 2018-04-09 2018-06-29 安徽大学 一种用于低场核磁共振成像仪器的磁信号增强器件及其制作方法
CN108226834B (zh) * 2018-04-09 2024-01-19 安徽大学 一种用于低场核磁共振成像仪器的磁信号增强器件及其制作方法
RU2776600C1 (ru) * 2021-08-20 2022-07-22 федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» (Университет ИТМО) Способ функционирования магнитно-резонансного томографа на основе метаповерхности (варианты)

Also Published As

Publication number Publication date
CN102683880B (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
CN103296466A (zh) 一种负磁导率超材料及mri磁信号增强器件
CN103367921A (zh) 一种超材料及mri磁信号增强器件
US11054491B2 (en) Dipole antenna assembly for capturing images by means of nuclear magnetic resonance methods
US10877116B2 (en) Birdcage magnetic resonance imaging (MRI) coil with open shield for single tune MRI coil and multi-tune MRI coil
CN102709704B (zh) 一种mri磁信号增强器件
CN102709705A (zh) 一种mri磁信号增强器件
CN102683880A (zh) 一种超材料及mri磁信号增强器件
CN204577606U (zh) 一种天线及通信设备
CN103367923A (zh) 一种超材料及mri磁信号增强器件
CN102593595A (zh) 一种负磁导率超材料
CN103296446B (zh) 一种超材料及mri成像增强器件
CN103296465B (zh) 一种负磁导率超材料及mri磁信号增强器件
ES2344391B1 (es) Dispositivo para mejorar la sensibilidad de las bobinas receptoras enimagenes medicas por resonancia magnetica.
CN106410420B (zh) 一种等效介电常数与等效磁导率均为负数的新型超材料
CN104409866A (zh) 一种磁信号增强器件
CN102683872B (zh) 一种负磁导率超材料及mri磁信号增强器件
CN103367924A (zh) 一种超材料及mri磁信号增强器件
CN103296464A (zh) 一种负磁导率超材料及mri磁信号增强器件
CN103367922A (zh) 一种超材料及mri磁信号增强器件
CN102683878B (zh) 一种mri磁信号增强器件
JP2010125050A (ja) 高周波コイルユニット
CN102680922B (zh) 一种新型mri体部相控阵线圈
CN102683883B (zh) 一种mri磁信号增强器件
CN102683879B (zh) 一种mri磁信号增强器件
Yoon et al. Design of an electrically small circularly polarised turnstile antenna and its application to near‐field wireless power transfer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210518

Address after: 2 / F, software building, No.9, Gaoxin Zhongyi Road, Nanshan District, Shenzhen City, Guangdong Province

Patentee after: KUANG-CHI INSTITUTE OF ADVANCED TECHNOLOGY

Address before: 18B, building a, CIC international business center, 1061 Xiangmei Road, Futian District, Shenzhen, Guangdong 518034

Patentee before: KUANG-CHI INNOVATIVE TECHNOLOGY Ltd.