CN102683813B - 一种动中通卫星天线 - Google Patents

一种动中通卫星天线 Download PDF

Info

Publication number
CN102683813B
CN102683813B CN201210132836.8A CN201210132836A CN102683813B CN 102683813 B CN102683813 B CN 102683813B CN 201210132836 A CN201210132836 A CN 201210132836A CN 102683813 B CN102683813 B CN 102683813B
Authority
CN
China
Prior art keywords
core layer
impedance matching
matching layer
metal
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210132836.8A
Other languages
English (en)
Other versions
CN102683813A (zh
Inventor
刘若鹏
季春霖
李星昆
岳玉涛
刘斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuang Chi Institute of Advanced Technology
Original Assignee
Kuang Chi Institute of Advanced Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuang Chi Institute of Advanced Technology filed Critical Kuang Chi Institute of Advanced Technology
Priority to CN201210132836.8A priority Critical patent/CN102683813B/zh
Publication of CN102683813A publication Critical patent/CN102683813A/zh
Application granted granted Critical
Publication of CN102683813B publication Critical patent/CN102683813B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种动中通卫星天线,包括设置在移动载体顶面且平行水平面的超材料平板及设置在移动载体内部空间中的馈源,所述超材料平板在伺服系统的控制下可在其自身所处的平面内转动,所述馈源在伺服系统的控制下进行最佳信号扫描,所述超材料平板包括核心层,所述核心层包括一个核心层片层或多个相同的核心层片层,每一个核心层片层包括片状的第一基材以及设置在第一基材上的多个第一人造微结构,通过精确设计超材料平板的折射率分布,使得特定角度的平面波经超材料平板后能够在馈源处汇聚。根据本发明的动中通卫星天线,由片状的超材料平板代替传统的抛物面天线,制造加工更加容易,成本更加低廉。

Description

一种动中通卫星天线
技术领域
本发明涉及通信领域,更具体地说,涉及一种动中通卫星天线。
背景技术
动中通是“移动中的卫星地面站通信系统”的简称。通过动中通系统,车辆、轮船、飞机等移动的载体在运动过程中可实时跟踪卫星等平台,不间断地传递语音、数据、图像等多媒体信息,可满足各种军民用应急通信和移动条件下的多媒体通信的需要。动中通系统很好地解决了各种车辆、轮船等移动载体在运动中通过地球同步卫星,实时不断地传递语音、数据、高清晰的动态视频图像、传真等多媒体信息的难关,是通信领域的一次重大的突破,是当前卫星通信领域需求旺盛、发展迅速的应用领域,在军民两个领域都有极为广泛的发展前景。
作为动中通系统的一个重要组成部分,动中通天线负责通信信号的接收和/或发送,传统的动中通天线一般采用抛物面天线。
但是由于抛物面天线的反射面的曲面加工难度大,精度要求也高,因此,制造麻烦,且成本较高。
发明内容
本发明所要解决的技术问题是,针对现有的动中通卫星天线加工不易、成本高的缺陷,提供一种加工简单、制造成本低的动中通卫星天线。
本发明解决其技术问题所采用的技术方案是:一种动中通卫星天线,所述动中通卫星天线包括设置在移动载体顶面且平行水平面的超材料平板及设置在移动载体内部空间中的馈源,所述超材料平板在伺服系统的控制下可在其自身所处的平面内转动,所述馈源在伺服系统的控制下进行最佳信号扫描,所述超材料平板包括核心层,所述核心层包括一个核心层片层或多个相同的核心层片层,每一个核心层片层包括片状的第一基材以及设置在第一基材上的多个第一人造微结构,在工作状态下,以任一核心层片层的下表面为XY平面,以馈源等效点在该核心层片层下表面所在平面上的投影为坐标原点O,建立XOY的二维坐标系,所述核心层片层任一点(x,y)的折射率满足如下公式:
n ( x , y ) = n max - x 2 + y 2 + z o 2 + ( y o - y ) × cos γ - ( s + kλ ) D ;
s=yo×cosγ+zo×sinγ;
k = floor { x 2 + y 2 + z o 2 + ( y o - y ) × cos γ - ( y o × cos γ + z o × sin γ ) λ } ;
D = λ n max - n min ;
其中,
n(x,y)表示该核心层片层任一点(x,y)的折射率值;
zo表示馈源等效点到超材料平板下表面的垂直距离;
yo表示该核心层片层的下表面边缘与y轴正方向的交点的y坐标值;
γ表示所要通信的卫星的仰角;
nmax表示核心层片层的折射率的最大值;
nmin表示核心层片层的折射率的最小值;
λ表示频率为天线中心频率的电磁波的波长;
D为超材料平板的厚度;
floor表示向下取整。
进一步地,所述核心层的厚度为Dh,Dh=D。
进一步地,所述第一基材包括片状的第一前基板及第一后基板,所述多个第一人造微结构夹设在第一前基板与第一后基板之间,所述核心层片层的厚度为0.21-2.5mm,其中,第一前基板的厚度为0.1-1mm,第一后基板的厚度为0.1-1mm,多个第一人造微结构的厚度为0.01-0.5mm。
进一步地,所述超材料平板还包括设置在核心层两侧表面的阻抗匹配层,所述阻抗匹配层包括一个阻抗匹配层片层或多个厚度相同的阻抗匹配层片层,所述阻抗匹配层片层包括片状的第二基材以及设置在第二基材上的多个第二人造微结构,所述一个或多个阻抗匹配层片层的折射率分布满足如下公式:
n i ( r ) = n min i m × n ( r ) m - i m ;
其中,ni(r)表示阻抗匹配层片层上半径为r处的折射率值,阻抗匹配层片层的折射率分布圆心即为馈源等效点在相应的阻抗匹配层片层外侧表面所在平面的投影;
其中,i表示阻抗匹配层片层的编号,靠近核心层的阻抗匹配层片层的编号为1,两边最外侧的阻抗匹配层片层的编号为m,由核心层向两侧方向,编号依次减小;
上述的nmax、nmin分别与核心层片层的折射率的最大值、最小值相同。
进一步地,所述超材料平板还包括设置在核心层两侧表面的阻抗匹配层,所述阻抗匹配层包括一个阻抗匹配层片层或多个厚度相同的阻抗匹配层片层,所述阻抗匹配层片层包括片状的第二基材以及设置在第二基材上的多个第二人造微结构,所述每一阻抗匹配层片层具有单一的折射率,所述一个或多个阻抗匹配层片层的折射率满足以下公式:
n ( i ) = ( ( n max + n min ) / 2 ) i m ;
其中,m表示阻抗匹配层的总层数,i表示阻抗匹配层片层的编号,其中,靠近核心层的阻抗匹配层片层的编号为m,由核心层向两侧方向,编号依次减小,两边最外侧的阻抗匹配层片层的编号为1。
进一步地,所述核心层的厚度为Dh,所述每一侧的阻抗匹配层的厚度均为Dz,Dz+2Dh=D。
进一步地,所述第二基材包括片状的第二前基板及第二后基板,所述多个第二人造微结构夹设在第二前基板与第二后基板之间,所述阻抗匹配层片层的厚度为0.21-2.5mm,其中,第二前基板的厚度为0.1-1mm,第二后基板的厚度为0.1-1mm,多个第二人造微结构的厚度为0.01-0.5mm。
进一步地,所述第一人造微结构及第二人造微结构均为由铜线或银线构成的金属微结构,所述金属微结构通过蚀刻、电镀、钻刻、光刻、电子刻或离子刻的方法分别附着在第一基材及第二基材上。
进一步地,所述金属微结构呈平面雪花状,所述金属微结构具有相互垂直平分的第一金属线及第二金属线,所述第一金属线与第二金属线的长度相同,所述第一金属线两端连接有相同长度的两个第一金属分支,所述第一金属线两端连接在两个第一金属分支的中点上,所述第二金属线两端连接有相同长度的两个第二金属分支,所述第二金属线两端连接在两个第二金属分支的中点上,所述第一金属分支与第二金属分支的长度相等。
进一步地,所述平面雪花状的金属微结构的每个第一金属分支及每个第二金属分支的两端还连接有完全相同的第三金属分支,相应的第三金属分支的中点分别与第一金属分支及第二金属分支的端点相连。
进一步地,所述平面雪花状的金属微结构的第一金属线与第二金属线均设置有两个弯折部,所述平面雪花状的金属微结构绕第一金属线与第二金属线的交点在金属微结构所处平面内向任意方向旋转90度的图形都与原图重合。
进一步地,所述移动载体的顶面上开设有透波孔,所述透波孔中装设有透波板,所述超材料平板设置在透波板上。
进一步地,所述透波孔为圆孔,且透波孔向内形成有环形凸缘,所述透波板呈圆饼状,所述透波板的外边缘与环形凸缘搭接,所述超材料平板呈圆饼状,所述超材料平板覆盖在透波板上。
根据本发明的动中通卫星天线,通过精确设计超材料平板的折射率分布,使得特定角度的平面波经超材料平板后能够在馈源处汇聚,由片状的超材料平板代替了传统的抛物面天线,制造加工更加容易,成本更加低廉,另外依此设计的超材料平板整体厚度在毫米级别,使得该动中通卫星天线整体较轻。
附图说明
图1是本发明一种实施例中超材料平板与其对应的馈源的相对位置示意图(工作状态);
图2是本发明的核心层片层其中一个超材料单元的透视示意图;
图3是本发明的核心层片层的结构示意图;
图4是本发明的阻抗匹配层片层的结构示意图;
图5是本发明的平面雪花状的金属微结构的示意图;
图6是图5所示的平面雪花状的金属微结构的一种衍生结构;
图7是图5所示的平面雪花状的金属微结构的一种变形结构。
图8是平面雪花状的金属微结构的拓扑形状的演变的第一阶段;
图9是平面雪花状的金属微结构的拓扑形状的演变的第二阶段;
图10是本发明另一种实施例中超材料平板与其对应的馈源的相对位置示意图(工作状态);
图11是本发明动中通卫星天线在车辆上的安装结构示意图(工作状态);
图12为本发明的方形的核心层片层的平面示意图;
图13为本发明的圆形的核心层片层的平面示意图;
图14为本发明动中通卫星天线在车辆上的安装结构示意图。
具体实施方式
如图1、图11及图14所示,本发明的所述动中通卫星天线DZT装载在移动载体YDT(例如车辆、船舶、飞机)的顶部位置,其包括设置在移动载体顶面TS上且平行水平面的超材料平板100及设置在移动载体内部空间中的馈源1,所述超材料平板100在伺服系统CF的控制下可在其自身所处的平面内转动(与水平面平行),所述馈源1在伺服系统CF的控制下进行最佳信号扫描(即寻找电磁波最佳汇聚位置)。本发明中,所述移动载体的顶面TS上开设有透波孔TBK,所述透波孔TBK中装设有透波板TBB,所述超材料平板100设置在透波板TBB上。优选地,所述透波孔TBK为圆孔,且透波孔TBK向内形成有环形凸缘TY,所述透波板TBB呈圆饼状,所述透波板TBB的外边缘与环形凸缘TY搭接,所述超材料平板100呈圆饼状,所述超材料平板100覆盖在透波板TBB上。透波板TBB可以采用透明的玻璃,透明的PS板等,只要满足电磁波的高透过率以及一般的机械性能即可。本发明中,所述的工作状态,是指本发明的动中通天线与选定的卫星进行通信时,所述馈源在伺服系统的控制下到达最佳信号位置(所选的通信卫星上发出的电磁波透过超材料平板后的最佳汇聚位置)的状态,如图11所示,为工作状态示意,此时馈源1通过伺服系统的控制定位在最佳信号位置。
另外,为了对动中通卫星天线DZT进行保护(防水、防晒等),动中通卫星天线的外部还可以罩一个天线罩,例如半球形的天线罩。
如图1至图4所示,本发明的一个实施例中,所述超材料平板100包括核心层10、设置在核心层两侧表面上的阻抗匹配层20,所述核心层10包括一个核心层片层11或多个厚度相同且折射率分布相同的核心层片层11,所述核心层片层包括片状的第一基材13以及设置在第一基材13上的多个第一人造微结构12,所述阻抗匹配层20包括一个阻抗匹配层片层21或厚度相同的多个阻抗匹配层片层21,所述阻抗匹配层片层21包括片状的第二基材23以及设置在第二基材上的多个第二人造微结构。本发明中,所述超材料平板100任一纵截面具有相同的形状与面积,此处的纵截面是指超材料平板中与超材料平板的中轴线垂直的剖面。所述超材料平板的纵截面可以是为方形,也可是是圆形或者椭圆形例如300X300mm或450X450mm的正方形,或者直径为250、300或450mm的圆形。阻抗匹配层的作用是实现从空气到核心层10的阻抗匹配,以减少空气与超材料相接处的电磁波反射,降低电磁波能量的损失,提高卫星电视信号强度。
如图1、图12及图13所示,在本发明的动中通卫星天线处于工作状态时,以任一核心层片层的下表面为XY平面,以馈源等效点X在该核心层片层的下表面所在平面上的投影(图1中的O点)为坐标原点O,建立XOY的二维坐标系,优选地,例如,核心层片层为方形时,y轴垂直平分其经过的超材料平板的两边缘;核心层片层为圆形时,y轴与其直径重合;核心层片层为椭圆形时,y轴与其长轴重合;所述核心层片层任一点(x,y)的折射率满足如下公式:
n ( x , y ) = n max - x 2 + y 2 + z o 2 + ( y o - y ) × cos γ - ( s + kλ ) D - - - ( 1 ) ;
s=yo×cosγ+zo×sinγ(2);
k = floor { x 2 + y 2 + z o 2 + ( y o - y ) × cos γ - ( y o × cos γ + z o × sin γ ) λ } - - - ( 3 ) ;
D = λ n max - n min - - - ( 4 ) ;
图1是馈源的中轴线Z1与所要通信的地球同步卫星(等效为一点)所构成的平面剖切本实施例的动中通卫星天线中的超材料平板及馈源两部分所得到的剖视图,也即y轴与馈源中轴线所构成的平面剖切本实施例的动中通卫星天线中的超材料平板及馈源两部分所得到的剖视图。
其中,n(x,y)表示该核心层片层任一点(x,y)的折射率值;
zo表示馈源等效点到超材料平板的垂直距离;此处馈源的等效点X实际上就是天线的馈点(电磁波在馈源中发生聚焦的点);馈源中轴线Z1与超材料平板下表面的夹角为θ,本实施例中,馈源的等效点X在馈源中轴线Z1上,假定馈源口径中点到馈源的等效点X的距离为ds,可以通过变动ds、θ这两个变参(即让馈源扫描最佳位置),使得汇聚效果最优;
yo表示该核心层片层的下表面边缘与y轴正方向的交点的y坐标值;如图12所示,核心层片层为方形,yo即为图中的O A线段的长度。如图13所示,核心层片层为圆形,yo即为图中的O A线段的长度。
γ表示所要通信的卫星的仰角,仰角γ与要通信的卫星以及移动载体所处的经纬度有关;
nmax表示核心层片层的折射率的最大值;
nmin表示核心层片层的折射率的最小值;
λ表示频率为天线中心频率的电磁波的波长;
在本实施例中,所述核心层的厚度为Dh,所述每一侧的阻抗匹配层的厚度均为Dz,Dz+2Dh=D。
floor表示向下取整;
例如,当 x 2 + y 2 + z o 2 + ( y o - y ) × cos γ - ( y o × cos γ + z o × sin γ ) λ 大于等于0小于1时,k取0;当 x 2 + y 2 + z o 2 + ( y o - y ) × cos γ - ( y o × cos γ + z o × sin γ ) λ (大于等于1小于2时,k取1,依此类推。
由公式(1)至公式(4)所确定的超材料平板,能够使得馈源发出的电磁波透过超材料平板后能够以与水平面呈γ角的平面波的形式出射;同样,如图1所示,由公式(1)至公式(4)所确定的超材料平板,能够使得所要通信的卫星发出的电磁波(到达地面时可认为是与水平面夹角为γ的平面波)透过超材料平板后能够在馈源的等效点X处发生汇聚。
移动载体YDT在运动时,通过伺服系统CF可以使得动中通卫星天线自动对准所要通信的卫星,即通过转动超材料平板,使得所述超材料平板在任何运动状态下,其核心层片层上表面的y轴方向始终指向卫星方位,即所要通信的同步卫星在该核心层片层上表面的投影刚好落在y轴上,另外,馈源在伺服系统的控制下进行最佳信号扫描,即使得馈源总是处于电磁波的最佳汇聚位置上(馈源接收信号最佳),伺服系统可以直接作用在馈源上(三维旋转馈源),也可以通过控制与馈源固定连接的支架ZJ的三维转动,如图11所示。
从上面可以看出,本发明的动中通卫星天线所要求的伺服系统其功能比较简单,相比于现有的动中通卫星天线,动中通卫星天线不需要整体的三维转动,本发明的动中通卫星天线其超材料平板二维转动即可,控制简单易行,另外,馈源在车内部,可以防止馈源干扰,同时对馈源有保护作用。
具有上述功能的伺服系统现有技术中已经存在很多,其不是本发明的核心,并且本领域的技术人员根据上述文字描述结合现有技术中关于动中通系统的伺服系统的原理设计可以很容易地制作出具有上述功能的伺服系统,本发明不再详述。
本实施例中,如图3所示,所述第一基材13包括片状的第一前基板131及第一后基板132,所述多个第一人造微结构12夹设在第一前基板131与第一后基板132之间。所述核心层片层的厚度为0.5-2mm,其中,第一前基板的厚度为0.5-1mm,第一后基板的厚度为0.5-1mm,多个第一人造微结构的厚度为0.01-0.5mm。优选地,所述核心层片层的厚度为0.543mm,其中,第一前基板及第一后基板的厚度均为0.254mm,多个第一人造微结构的厚度为0.035mm。
本实施例中,所述一个或多个阻抗匹配层片层的折射率分布满足如下公式:
n i ( r ) = n min i m × n ( r ) m - i m - - - ( 5 ) ;
其中,ni(r)表示阻抗匹配层片层上半径为r处的折射率值,阻抗匹配层片层的折射率分布圆心即为馈源等效点在相应的阻抗匹配层片层外侧表面所在平面的投影,优选地,阻抗匹配层片层的折射率分布圆心与核心层片层的折射率分布圆心的连线垂直超材料平板,即阻抗匹配层片层的折射率分布圆心与核心层片层的折射率分布圆心在超材料平板的外侧表面的投影重合;
其中,i表示阻抗匹配层片层的编号,靠近核心层的阻抗匹配层片层的编号为1,两边最外侧的阻抗匹配层片层的编号为m,由核心层向两侧方向,编号依次减小;
上述的nmax、nmin分别与核心层片层的折射率的最大值、最小值相同;
具体地,例如m=2,则由公式(5)所限定的阻抗匹配层,靠近核心层的阻抗匹配层片层的折射率分布为:
n 1 ( r ) = n min 1 2 × n ( r ) 1 2 ;
靠近馈源的阻抗匹配层其折射率分布为:
n2(r)=nmin
当然,阻抗匹配层并不限于此,所述每一阻抗匹配层片层也可以具有单一的折射率,一个或多个阻抗匹配层片层的折射率满足以下公式:
n ( i ) = ( ( n max + n min ) / 2 ) i m - - - ( 6 ) ;
其中,m表示阻抗匹配层的总层数,i表示阻抗匹配层片层的编号,其中,靠近核心层的阻抗匹配层片层的编号为m,由核心层向两侧方向,编号依次减小,两边最外侧的阻抗匹配层片层的编号为1,上述的nmax、nmin分别与核心层片层的折射率的最大值、最小值相同。
具体地,例如m=2,则由公式(6)所限定的阻抗匹配层,靠近核心层的阻抗匹配层片层的折射率分布为:
n(2)=(nmax+nmin)/2;
靠近馈源的阻抗匹配层其折射率分布为:
n ( 1 ) = ( ( n max + n min ) / 2 ) 1 2 .
本实施例中,所述第二基材23包括片状的第二前基板231及第二后基板232,所述多个第二人造微结构夹设在第二前基板231与第二后基板232之间。所述阻抗匹配层片层的厚度为0.21-2.5mm,其中,第一前基板的厚度为0.1-1mm,第一后基板的厚度为0.1-1mm,多个第一人造微结构的厚度为0.01-0.5mm。优选地,所述阻抗匹配层片层的厚度为0.543mm,其中,第二前基板及第二后基板的厚度均为0.254mm,多个第二人造微结构的厚度为0.035mm。
本实施例中,所述超材料平板任一纵截面具有相同的形状与面积,即核心层与匹配层具有相同的形状与面积的纵截面,此处的纵截面是指超材料平板中与超材料平板的中轴线垂直的剖面。优选地,所述超材料平板的纵截面为正方形,加工非常容易。
本实施例中,所述第一人造微结构、第二人造微结构均为由铜线或银线构成的金属微结构,所述金属微结构通过蚀刻、电镀、钻刻、光刻、电子刻或离子刻的方法分别附着在第一基材、第二基材。优选地,所述第一人造微结构、第二人造微结构均为图5所示的平面雪花状的金属微结构通过拓扑形状演变得到的多个不同的拓扑形状的金属微结构。
本实施例中,核心层片层可以通过如下方法得到,即在第一前基板与第一后基板的任意一个的表面上覆铜,再通过蚀刻的方法得到多个第一金属微结构(多个第一金属微结构的形状与排布事先通过计算机仿真获得),最后将第一前基板与第一后基板分别压合在一起,即得到本发明的核心层片层,压合的方法可以是直接热压,也可以是利用热熔胶连接,当然也可是其它机械式的连接,例如螺栓连接。
同理,阻抗匹配层片层也可以利用相同的方法得到。然后分别将多个核心层片层压合一体,即形成了本发明的核心层;同样,将多个阻抗匹配层片层压合一体,即形成了本发明的阻抗匹配层;将核心层、阻抗匹配层压合一体即得到本发明的超材料平板。
本实施例中,所述第一基材、第二基材由陶瓷材料、高分子材料、铁电材料、铁氧材料或铁磁材料等制得。高分子材料可选用的有F4B复合材料、FR-4复合材料等。
图5所示为平面雪花状的金属微结构的示意图,所述的雪花状的金属微结构具有相互垂直平分的第一金属线J1及第二金属线J2,所述第一金属线J1与第二金属线J2的长度相同,所述第一金属线J1两端连接有相同长度的两个第一金属分支F1,所述第一金属线J1两端连接在两个第一金属分支F1的中点上,所述第二金属线J2两端连接有相同长度的两个第二金属分支F2,所述第二金属线J2两端连接在两个第二金属分支F2的中点上,所述第一金属分支F1与第二金属分支F2的长度相等。
图6是图5所示的平面雪花状的金属微结构的一种衍生结构。其在每个第一金属分支F1及每个第二金属分支F2的两端均连接有完全相同的第三金属分支F3,并且相应的第三金属分支F3的中点分别与第一金属分支F1及第二金属分支F2的端点相连。依此类推,本发明还可以衍生出其它形式的金属微结构。
图7是图5所示的平面雪花状的金属微结构的一种变形结构,此种结构的金属微结构,第一金属线J1与第二金属线J2不是直线,而是弯折线,第一金属线J1与第二金属线J2均设置有两个弯折部WZ,但是第一金属线J1与第二金属线J2仍然是垂直平分,通过设置弯折部的朝向与弯折部在第一金属线与第二金属线上的相对位置,使得图7所示的金属微结构绕垂直于第一金属线与第二金属线交点的轴线向任意方向旋转90度的图形都与原图重合。另外,还可以有其它变形,例如,第一金属线J1与第二金属线J2均设置多个弯折部WZ。
本实施例中,所述核心层片层11可以划分为阵列排布的多个如图2所示的超材料单元D,每个超材料单元D包括前基板单元U、后基板单元V及设置在基板单元U、后基板单元V之间的第一人造微结构12,通常超材料单元D的长宽高均不大于五分之一波长,优选为十分之一波长,因此,根据天线的工作频率可以确定超材料单元D的尺寸。图2为透视的画法,以表示第一人造微结构的超材料单元D中的位置,如图2所示,所述第一人造微结构夹于基板单元U、后基板单元V之间,其所在表面用SR表示。
已知折射率其中μ为相对磁导率,ε为相对介电常数,μ与ε合称为电磁参数。实验证明,电磁波通过折射率非均匀的介质材料时,会向折射率大的方向偏折。在相对磁导率一定的情况下(通常接近1),折射率只与介电常数有关,在第一基材选定的情况下,利用只对电场响应的第一人造微结构可以实现超材料单元折射率的任意值(在一定范围内),在该天线中心频率下,利用仿真软件,如CST、MATLAB、COMSOL等,通过仿真获得某一特定形状的人造微结构(如图5所示的平面雪花状的金属微结构)的介电常数随着拓扑形状的变化折射率变化的情况,即可列出一一对应的数据,即可设计出我们需要的特定折射率分布的核心层片层11,同理可以得到阻抗匹配层片层的折射率分布。
本实施例中,核心层片层的结构设计可通过计算机仿真(CST仿真)得到,具体如下:
(1)确定第一金属微结构的附着基材(第一基材)。例如介电常数为2.25的介质基板,介质基板的材料可以是FR-4、F4b或PS。
(2)确定超材料单元的尺寸。超材料单元的尺寸的尺寸由天线的中心频率得到,利用频率得到其波长,再取小于波长的五分之一的一个数值做为超材料单元D的长度CD与宽度KD。例如对应于11.95G的天线中心频率,所述超材料单元D为如图2所示的长CD与宽KD均为2.8mm、厚度HD为0.543mm的方形小板。
(3)确定金属微结构的材料及拓扑结构。本发明中,金属微结构的材料为铜,金属微结构的拓扑结构为图5所示的平面雪花状的金属微结构,其线宽W各处一致;此处的拓扑结构,是指拓扑形状演变的基本形状。
(4)确定金属微结构的拓扑形状参数。如图5所示,本发明中,平面雪花状的金属微结构的拓扑形状参数包括金属微结构的线宽W,第一金属线J1的长度a,第一金属分支F1的长度b。
(5)确定金属微结构的拓扑形状的演变限制条件。本发明中,金属微结构的拓扑形状的演变限制条件有,金属微结构之间的最小间距WL(即如图5所示,金属微结构与超材料单元的长边或宽边的距离为WL/2),金属微结构的线宽W,超材料单元的尺寸;由于加工工艺限制,WL大于等于0.1mm,同样,线宽W也是要大于等于0.1mm。第一次仿真时,WL可以取0.1mm,W可以取0.3mm,超材料单元的尺寸为长与宽为2.8mm,厚度为0.543mm,此时金属微结构的拓扑形状参数只有a和b两个变量。金属微结构的拓扑形状通过如图7至图8所示的演变方式,对应于某一特定频率(例如11.95GHZ),可以得到一个连续的折射率变化范围。
具体地,所述金属微结构的拓扑形状的演变包括两个阶段(拓扑形状演变的基本形状为图5所示的金属微结构):
第一阶段:根据演变限制条件,在b值保持不变的情况下,将a值从最小值变化到最大值,此演变过程中的金属微结构均为“十”字形(a取最小值时除外)。本实施例中,a的最小值即为0.3mm(线宽W),a的最大值为(CD-WL)。因此,在第一阶段中,金属微结构的拓扑形状的演变如图8所示,即从边长为W的正方形JX1,逐渐演变成最大的“十”字形拓扑形状JD1。在第一阶段中,随着金属微结构的拓扑形状的演变,与其对应的超材料单元的折射率连续增大(对应天线一特定频率)。
第二阶段:根据演变限制条件,当a增加到最大值时,a保持不变;此时,将b从最小值连续增加到最大值,此演变过程中的金属微结构均为平面雪花状。本实施例中,b的最小值即为0.3mm,b的最大值为(CD-WL-2W)。因此,在第二阶段中,金属微结构的拓扑形状的演变如图9所示,即从最大的“十”字形拓扑形状JD1,逐渐演变成最大的平面雪花状的拓扑形状JD2,此处的最大的平面雪花状的拓扑形状JD2是指,第一金属分支J1与第二金属分支J2的长度b已经不能再伸长,否则第一金属分支与第二金属分支将发生相交。在第二阶段中,随着金属微结构的拓扑形状的演变,与其对应的超材料单元的折射率连续增大(对应天线一特定频率)。
通过上述演变得到超材料单元的折射率变化范围如果包含了nmin至nmax的连续变化范围,则满足设计需要。如果上述演变得到超材料单元的折射率变化范围不满足设计需要,例如最大值太小或最小值过大,则变动WL与W,重新仿真,直到得到我们需要的折射率变化范围。
根据公式(1)至(4),将仿真得到的一系列的超材料单元按照其对应的折射率排布以后(实际上就是不同拓扑形状的多个第一人造微结构在第一基材上的排布),即能得到本发明的核心层片层。
同理,根据公式(5)-(6)可以得到本发明的阻抗匹配层片层。
如图10所示,本发明的另一种实施例中,所述超材料平板100不具有阻抗匹配层,在该实施例中,所述核心层的厚度为Dh,Dh=D。其它的与上述的实施例相同。
同样,图10是馈源的中轴线与所要通信的地球同步卫星(等效为一点)所构成的平面剖切本实施例的动中通卫星天线中的超材料平板及馈源两部分所得到的剖视图,也即y轴与馈源中轴线所构成的平面剖切本实施例的动中通卫星天线中的超材料平板及馈源两部分所得到的剖视图。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (13)

1.一种动中通卫星天线,其特征在于,所述动中通卫星天线包括设置在移动载体顶面且平行水平面的超材料平板及设置在移动载体内部空间中的馈源,所述超材料平板在伺服系统的控制下可在其自身所处的平面内转动,所述馈源在伺服系统的控制下进行最佳信号扫描,所述超材料平板包括核心层,所述核心层包括一个核心层片层或多个相同的核心层片层,每一个核心层片层包括片状的第一基材以及设置在第一基材上的多个第一人造微结构,在工作状态下,以任一核心层片层的下表面为XY平面,以馈源等效点在该核心层片层下表面所在平面上的投影为坐标原点O,建立XOY的二维坐标系,所述核心层片层任一点的折射率满足如下公式,所述任一点在该核心层片层下表面所在平面上的投影记为(x,y): 
s=yo×cosγ+zo×sinγ; 
其中, 
n(x,y)表示该核心层片层任一点的折射率值; 
zo表示馈源等效点到超材料平板下表面的垂直距离,所述馈源等效点为电磁波在馈源中发生聚焦的点; 
yo表示该核心层片层的下表面边缘与y轴正方向的交点的y坐标值; 
γ表示所要通信的卫星的仰角; 
nmax表示核心层片层的折射率的最大值; 
nmin表示核心层片层的折射率的最小值; 
λ表示频率为天线中心频率的电磁波的波长; 
D为超材料平板的厚度; 
floor表示向下取整。 
2.根据权利要求1所述的动中通卫星天线,其特征在于,所述核心层的厚度为Dh,Dh=D。 
3.根据权利要求1所述的动中通卫星天线,其特征在于,所述第一基材包括片状的第一前基板及第一后基板,所述多个第一人造微结构夹设在第一前基板与第一后基板之间,所述核心层片层的厚度为0.21-2.5mm,其中,第一前基板的厚度为0.1-1mm,第一后基板的厚度为0.1-1mm,多个第一人造微结构的厚度为0.01-0.5mm。 
4.根据权利要求1所述的动中通卫星天线,其特征在于,所述超材料平板还包括设置在核心层两侧表面的阻抗匹配层,所述阻抗匹配层包括一个阻抗匹配层片层或多个厚度相同的阻抗匹配层片层,所述阻抗匹配层片层包括片状的第二基材以及设置在第二基材上的多个第二人造微结构。 
5.根据权利要求1所述的动中通卫星天线,其特征在于,所述超材料平板还包括设置在核心层两侧表面的阻抗匹配层,所述阻抗匹配层包括一个阻抗匹配层片层或多个厚度相同的阻抗匹配层片层,所述阻抗匹配层片层包括片状的第二基材以及设置在第二基材上的多个第二人造微结构,所述每一阻抗匹配层片层具有单一的折射率,所述一个或多个阻抗匹配层片层的折射率满足以下公式: 
其中,m表示阻抗匹配层的总层数,i表示阻抗匹配层片层的编号,其中,靠近核心层的阻抗匹配层片层的编号为m,由核心层向两侧方向,编号依次减小,两边最外侧的阻抗匹配层片层的编号为1。 
6.根据权利要求4或5所述的动中通卫星天线,其特征在于,所述核心层的厚度为Dh,所述每一侧的阻抗匹配层的厚度均为Dz,2Dz+Dh=D。 
7.根据权利要求4或5所述的动中通卫星天线,其特征在于,所述第二基材包括片状的第二前基板及第二后基板,所述多个第二人造微结构夹设在第二前基板与第二后基板之间,所述阻抗匹配层片层的厚度为0.21-2.5mm,其中,第二前基板的厚度为0.1-1mm,第二后基板的厚度为0.1-1mm,多个第二 人造微结构的厚度为0.01-0.5mm。 
8.根据权利要求1所述的动中通卫星天线,其特征在于,所述第一人造微结构及第二人造微结构均为由铜线或银线构成的金属微结构,所述金属微结构通过蚀刻、电镀、钻刻、光刻、电子刻或离子刻的方法分别附着在第一基材及第二基材上。 
9.根据权利要求8所述的动中通卫星天线,其特征在于,所述金属微结构呈平面雪花状,所述金属微结构具有相互垂直平分的第一金属线及第二金属线,所述第一金属线与第二金属线的长度相同,所述第一金属线两端连接有相同长度的两个第一金属分支,所述第一金属线两端连接在两个第一金属分支的中点上,所述第二金属线两端连接有相同长度的两个第二金属分支,所述第二金属线两端连接在两个第二金属分支的中点上,所述第一金属分支与第二金属分支的长度相等。 
10.根据权利要求9所述的动中通卫星天线,其特征在于,所述平面雪花状的金属微结构的每个第一金属分支及每个第二金属分支的两端还连接有完全相同的第三金属分支,相应的第三金属分支的中点分别与第一金属分支及第二金属分支的端点相连。 
11.根据权利要求9所述的动中通卫星天线,其特征在于,所述平面雪花状的金属微结构的第一金属线与第二金属线均设置有两个弯折部,所述平面雪花状的金属微结构绕第一金属线与第二金属线的交点在金属微结构所处平面内向任意方向旋转90度的图形都与原图重合。 
12.根据权利要求1所述的动中通卫星天线,其特征在于,所述移动载体的顶面上开设有透波孔,所述透波孔中装设有透波板,所述超材料平板设置在透波板上。 
13.根据权利要求12所述的动中通卫星天线,其特征在于,所述透波孔为圆孔,且透波孔向内形成有环形凸缘,所述透波板呈圆饼状,所述透波板的外边缘与环形凸缘搭接,所述超材料平板呈圆饼状,所述超材料平板覆盖在透波板上。 
CN201210132836.8A 2012-04-28 2012-04-28 一种动中通卫星天线 Active CN102683813B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210132836.8A CN102683813B (zh) 2012-04-28 2012-04-28 一种动中通卫星天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210132836.8A CN102683813B (zh) 2012-04-28 2012-04-28 一种动中通卫星天线

Publications (2)

Publication Number Publication Date
CN102683813A CN102683813A (zh) 2012-09-19
CN102683813B true CN102683813B (zh) 2015-03-11

Family

ID=46815409

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210132836.8A Active CN102683813B (zh) 2012-04-28 2012-04-28 一种动中通卫星天线

Country Status (1)

Country Link
CN (1) CN102683813B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2731739Y (zh) * 2004-10-10 2005-10-05 大同股份有限公司 叠层微带反射阵列天线的结构
CN1972015A (zh) * 2005-11-22 2007-05-30 大同股份有限公司 可变槽孔尺寸的反射板
EP2182582A1 (en) * 2008-09-30 2010-05-05 NTT DoCoMo, Inc. Reflect array

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2731739Y (zh) * 2004-10-10 2005-10-05 大同股份有限公司 叠层微带反射阵列天线的结构
CN1972015A (zh) * 2005-11-22 2007-05-30 大同股份有限公司 可变槽孔尺寸的反射板
EP2182582A1 (en) * 2008-09-30 2010-05-05 NTT DoCoMo, Inc. Reflect array

Also Published As

Publication number Publication date
CN102683813A (zh) 2012-09-19

Similar Documents

Publication Publication Date Title
CN102723578B (zh) 一种动中通卫星天线
CN102683818B (zh) 一种动中通卫星天线
CN102683813B (zh) 一种动中通卫星天线
CN102683857B (zh) 一种便携式卫星天线及卫星天线接收系统
CN102709675B (zh) 一种动中通天线
CN103367871A (zh) 一种动中通天线
CN103367930A (zh) 一种动中通天线
CN103367870A (zh) 一种静中通卫星天线
CN102683811B (zh) 一种超材料卫星天线及卫星接收系统
CN103367927A (zh) 一种静中通卫星天线
CN103367928B (zh) 一种静中通卫星天线
CN102760950B (zh) 一种便携式卫星天线及卫星天线接收系统
CN103296458A (zh) 一种动中通天线
CN103367873A (zh) 一种动中通天线
CN103367929A (zh) 一种动中通天线
CN102709693B (zh) 高增益天线罩和天线系统
CN102683817B (zh) 一种超材料卫星天线及卫星接收系统
CN102723580B (zh) 一种便携式超材料卫星天线及卫星接收系统
CN103367872A (zh) 一种动中通天线
CN102683815B (zh) 一种超材料卫星天线及卫星接收系统
CN103367925A (zh) 一种动中通天线
CN103296460A (zh) 一种动中通天线
CN103296457A (zh) 一种动中通天线
CN102709691B (zh) 高增益天线罩和天线系统
CN102709692B (zh) 高增益天线罩和天线系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: SHENZHEN KUANG-CHI INSTITUTE OF ADVANCED TECHNOLOG

Free format text: FORMER OWNER: SHENZHEN KUANG-CHI INNOVATION TECHNOLOGY CO., LTD.

Effective date: 20141027

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 518034 SHENZHEN, GUANGDONG PROVINCE TO: 518057 SHENZHEN, GUANGDONG PROVINCE

TA01 Transfer of patent application right

Effective date of registration: 20141027

Address after: 518057 Nanshan District City, Guangdong province high tech Zone in the middle of a high tech building, No. 9 software building

Applicant after: Shenzhen Kuang-Chi Institute of Advanced Technology

Address before: 518034 A international business center, No. 1061, Xiang Mei Road, Guangdong, Shenzhen, Futian District, China 18B

Applicant before: Shenzhen Kuang-Chi Innovation Technology Co., Ltd.

C14 Grant of patent or utility model
GR01 Patent grant