CN102682436B - A kind of image enchancing method theoretical improved multiple dimensioned Retinex - Google Patents

A kind of image enchancing method theoretical improved multiple dimensioned Retinex Download PDF

Info

Publication number
CN102682436B
CN102682436B CN201210148581.4A CN201210148581A CN102682436B CN 102682436 B CN102682436 B CN 102682436B CN 201210148581 A CN201210148581 A CN 201210148581A CN 102682436 B CN102682436 B CN 102682436B
Authority
CN
China
Prior art keywords
mrow
msub
image
mtd
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210148581.4A
Other languages
Chinese (zh)
Other versions
CN102682436A (en
Inventor
陈军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chery Automobile Co Ltd
Original Assignee
SAIC Chery Automobile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAIC Chery Automobile Co Ltd filed Critical SAIC Chery Automobile Co Ltd
Priority to CN201210148581.4A priority Critical patent/CN102682436B/en
Publication of CN102682436A publication Critical patent/CN102682436A/en
Application granted granted Critical
Publication of CN102682436B publication Critical patent/CN102682436B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Processing (AREA)

Abstract

The invention discloses the image enchancing method that a kind of improved multiple dimensioned Retinex is theoretical, this method uses global brightness adjustment function, and the brightness to dark space details and highlight regions carries out Nonlinear Adjustment.Strengthen image using specification gain compensation multi-Scale Retinex Algorithm.According to selection area luminance mean value, S curve parameter is calculated, adaptively adjusts S curve, carrying out the steps such as Nonlinear Mapping to enhanced image realizes image enhaucament.The present invention solves the problems, such as that multiple dimensioned Retinex theoretical methods produce halation phenomenon, insufficient to high-dynamics image enhancing overall brightness, contrast is relatively low.The present invention adaptively adjusts S curve according to picture centre region brightness, and Nonlinear Mapping is carried out to it, stretches gradation of image, improves contrast;Improve robustness of the algorithm to complicated night vision image.

Description

A kind of image enchancing method theoretical improved multiple dimensioned Retinex
Technical field
The invention belongs to night vision image to strengthen field, and in particular to image theoretical a kind of improved multiple dimensioned Retinex Enhancement Method.
Background technology
The information that people obtain from the external world there are about 75% and come from video image.But video camera shooting when due to night light According to severe weather conditions such as condition deficiency, dense fog, heavy rain, sand and dust, the image that video camera captures usually is set to receive serious move back Change, make the Quality Down of image, smudgy, contrast is relatively low.Using digital image processing techniques to bad weather Degenerate Graphs As the method handled has two major classes:Image enhaucament and image restoration.Image restoration refers to remove or minimize piece image In known or part oneself know the processing of degeneration.Image restoration is included to degraded image caused by the limitation due to sensor or environment Eliminate fuzzy, noise filtering, and geometric distortion or non-linear be corrected to caused by sensor.Image recovery method includes Wiener filtering, least square, least square with equality constraint, spline interpolation, Variation Model, partial differential equation, machine learning etc..
Image enhaucament refers to a kind of requirement according to application, and image is processed, to protrude some information in image, cut The weak or some unwanted information of removal, obtain more practical image for concrete application, or original image is converted into one kind It is more suitable for people or the image processing method of form that machine is analyzed and processed.At present researcher oneself through proposing that many images increase The image enchancing method of strong method, wherein comparative maturity has contrast enhancement process, histogram equalizing method, homomorphic filtering side Method, small wave converting method.Retinex image enchancing methods all have good in terms of dynamic range compression and color constancy Characteristic, thus can adaptively strengthen various types of image.But the image enchancing method based on Retinex exists Highlight regions produce halation phenomenon, and global brightness approaches to average, make local detail information contrast insufficient.
The content of the invention
The invention discloses the image enchancing method that a kind of improved multiple dimensioned Retinex is theoretical, which solve multiple dimensioned Retinex theoretical methods produce halation phenomenon, strengthen the problem of overall brightness is insufficient, contrast is relatively low to high-dynamics image.
In order to solve above-mentioned technical problem, present invention employs following scheme:
A kind of image enchancing method theoretical improved multiple dimensioned Retinex, it is characterised in that:Comprise the following steps:
(1)Input picture, using global brightness adjustment function, the brightness to dark space details and highlight regions carries out non-linear Regulation;
(2)Strengthen image using specification gain compensation multi-Scale Retinex Algorithm;
(3)Calculate selection area luminance mean value;
(4)According to selection area luminance mean value, S curve parameter is calculated;
(5)Adaptive adjustment S curve;
(6)Nonlinear Mapping is carried out to enhanced image.
According to given threshold by brightness of image region division it is clear zone and dark space in above-mentioned steps 1;Two regions are distinguished Mapped using different brightness regulation functions, stretched the dynamic range compared with dark space and highlight bar, only compressed middle Gray level;The brightness regulation function is:
Wherein
Wherein, D is the grayscale dynamic range of image, and for 8 bit image systems, its value is 256;wLAnd wHIt is dark respectively Area and the weight coefficient in clear zone;T is Intensity segmentation threshold value, wherein for 8bit images, the span of the T is 0-255.
Realized in above-mentioned steps 2 using specification gain compensation multi-Scale Retinex Algorithm enhancing image using MSR methods; The mathematical form of the MSR methods is the weighted average of the SSR results of multiple different scales:
Wherein, K is normalization factor so that
∫ ∫ F (x, y) dxdy=1(7)
It is the output component of i-th of color spectral coverage, n-th of yardstick;It is multiple dimensioned Retinex i-th The output of individual color spectral coverage;wnTo correspond to the weights of each yardstick.
There is negative value in image pixel after above-mentioned MSR methods processing, due to directly negating logarithm to its pixel value, it is impossible to The visual effect got well;Need to translate and be compressed in the range of display shows its codomain by gain/compensating operation, I.e.
G, b are respectively gain coefficient and penalty coefficient, and mathematic(al) representation is:
Rmax, RminThe respectively maximum and minimum value of input picture;dmaxFor the dynamic range of output equipment;Then it is right Gradation of image is intercepted, and determines overall gray level value scope, then is uniformly stretched to dynamic range corresponding to output equipment, interception rule It is then:
WhereinFor RiThe output of both ends gray value is intercepted,WithEach color to be intercepted most after respectively MSR processing Small value and maximum;Especially for night vision image, its histogram distribution approximation Normal Distribution;According to the confidence system of setting Number A, calculate the value of both ends intercept pointWithFor:
Wherein, μiAnd σiRespectively RiAverage and standard deviation.
By analyzing night vision image in above-mentioned steps 3, the information that can most characterize night vision image feature is drawn;And with The foundation that the luminance mean value of selection area adjusts as S curve.
Above-mentioned mean value computation expression formula is:
Wherein, NABCDFor the sum of all pixels in the ABCD of region.
The information of above-mentioned night vision image feature heart areas adjacent in the picture;State and vehicle institute including opposite car light Locate the overall brightness of environment.
Above-mentioned adaptive adjustment S curve step is that the image overall pixel intensity after MSR is handled is approached to average, in making Between the gray value of part do not come by significant difference;Wherein mapped using nonlinear S-shaped shape transmission function, by centre Partial gray value is stretched.
9th, theoretical improved multiple dimensioned Retinex image enchancing method according to claim 8, it is characterised in that: The S-shaped shape transmission function expression formula is:
Wherein, h is tonal gradation, for 8 gray level images, h=256;A, b is used for the shape of controlling curve;B is represented Position where curve, a represent the speed of curve growth rate;
The parameter a, b dynamic adjustment expression formula acquiring method be:
The two kinds of extreme cases to be handled image are chosen, by artificially adjusting a, b obtains preferable visual effect, obtains parameter Respectively a0,b0,a1,b1;It is respectively I wherein to correspond to averagem0, Im1;Then a, b expression formula is:
Above-mentioned image non-linear mapping step passes through formula(15)、(16)Calculating parameter a, b;Then a, b are brought into formula (14), can obtain output image expression formula is:
Wherein, IMSR(x, y) is through the enhanced images of MSR;Iout(x, y) is output display image.
The image enchancing method theoretical improved multiple dimensioned Retinex has the advantages that:
1st, by using global brightness adjustment function, the increasing of specification gain compensation multi-Scale Retinex Algorithm is efficiently solved Halation phenomenon in strong image.Overall brightness is set to get a promotion simultaneously.
2nd, S curve is adaptively adjusted according to picture centre region brightness, Nonlinear Mapping, stretching image ash is carried out to it Degree, improve contrast.Improve robustness of the algorithm to complicated night vision image.
Brief description of the drawings
Fig. 1 is the schematic flow sheet of the present invention;
Fig. 2 is picture centre region mean value computation area schematic of the present invention;
Fig. 3 is the design sketch of the remote input picture of the present invention;
Fig. 4 is the enhanced design sketch of medium and long distance algorithm of the present invention;
Fig. 5 is the design sketch of closely input picture of the invention;
Fig. 6 is the closely enhanced design sketch of algorithm in the present invention.
Embodiment
Below in conjunction with the accompanying drawings, the present invention will be further described:
The present invention implements one and proposes a kind of theoretical image enchancing methods of improved multiple dimensioned Retinex.It was performed Journey is as follows:
The first step:Global brightness adjustment.Understood according to Retinex is theoretical, it is slowly varying that Retinex algorithm is applied to illumination Environment.In actual environment, night vision image is particularly directed to, is a kind of high-dynamics image, local brightness variation is big.In order that Retinex algorithm obtains preferable image enhancement effects, and suppresses enhanced halation phenomenon, it is necessary first to carries out global brightness Regulation.By brightness of image region division it is clear zone and dark space herein according to given threshold.Two regions are respectively adopted different Brightness regulation function is mapped, and is stretched the dynamic range compared with dark space and highlight bar, only compresses middle gray level.It is bright Spend adjustment function and represent as follows:
Wherein
Wherein, D is the grayscale dynamic range of image, and for 8 bit image systems, its value is 256.wLAnd wHIt is dark respectively Area and the weight coefficient in clear zone.T is Intensity segmentation threshold value.Wherein for 8bit images, the span of the T is 0-255, pin To the road spectrogram of collection as test result, there can be preferable division for dark space and clear zone when T takes 70.
Second step:Retinex algorithm image enhaucament.
The mathematical form of MSR methods is the weighted average of the SSR results of multiple different scales:
F(x,y)=K exp[-(x2+y2)/c2] (6)
Wherein, K is normalization factor so that
∫ ∫ F (x, y) dxdy=1(7)
It is the output component of i-th of color spectral coverage, n-th of yardstick.It is multiple dimensioned Retinex i-th The output of individual color spectral coverage.wnTo correspond to the weights of each yardstick.
Negative value occurs in image pixel after the processing of MSR methods, directly negates logarithm to its pixel value, it is impossible to obtain Visual effect.Need to translate and be compressed in the range of display shows its codomain by gain/compensating operation, i.e.,
G, b are respectively gain coefficient and penalty coefficient, and mathematic(al) representation is:
Rmax, RminThe respectively maximum and minimum value of input picture.dmaxFor the dynamic range of output equipment.Then it is right Gradation of image is intercepted, and determines overall gray level value scope, then is uniformly stretched to dynamic range corresponding to output equipment, interception rule It is then:
WhereinFor RiThe output of both ends gray value is intercepted,WithEach color to be intercepted most after respectively MSR processing Small value and maximum.Especially for night vision image, its histogram distribution approximation Normal Distribution.According to the confidence system of setting Number A, calculate the value of both ends intercept pointWithFor
Wherein, μiAnd σiRespectively RiAverage and standard deviation.
3rd step:Selection area mean value computation.
By analyzing night vision image, it can be deduced that the information that can most characterize night vision image feature is general in the picture Heart areas adjacent.Including the state of opposite car light(Such as:Dipped beam, distance light)And the overall brightness of vehicle local environment.This The foundation that invention is adjusted using the luminance mean value of selection area as S curve.Regional choice is as shown in Figure 2.Wherein, rectangle ABCD Region is selected luminance mean value zoning herein.Mean value computation expression formula is:
Wherein, NABCDFor the sum of all pixels in the ABCD of region.The size of region ABCD ranges of choice and handled image Type and it is different, it is necessary to be manually set according to actual conditions.
4th step:S curve dynamic adjusts.
Image overall pixel intensity after MSR is handled is approached to average, makes the gray value of center section unobvious It is distinguished.The present invention is mapped using nonlinear S-shaped shape transmission function, and the gray value of center section is stretched. Function expression is:
Wherein, h is tonal gradation, for 8 gray level images, h=256.A, b is used for the shape of controlling curve.B is represented Position where curve, a represent the speed of curve growth rate.Parameter a, b dynamic adjustment expression formula acquiring method be:
The two kinds of extreme cases to be handled image are chosen, by artificially adjusting a, b obtains preferable visual effect, obtains parameter Respectively a0,b0,a1,b1.It is respectively I wherein to correspond to averagem0, Im1.Then a, b expression formula is:
5th step:Image non-linear maps.
Pass through formula(15)、(16)Calculating parameter a, b.Then a, b are brought into formula(14), output image expression formula can be obtained For:
Wherein, IMSR(x, y) is through the enhanced images of MSR.Iout(x, y) is output display image.The image of the algorithm Shown in treatment effect as accompanying drawing 3-6.
Exemplary description is carried out to the present invention above in conjunction with accompanying drawing, it is clear that realization of the invention is not by aforesaid way Limitation, it is or not improved by the present invention as long as employing the various improvement of inventive concept and technical scheme of the present invention progress Design and technical scheme directly apply to other occasions, within the scope of the present invention.

Claims (9)

  1. A kind of 1. image enchancing method theoretical improved multiple dimensioned Retinex, it is characterised in that:Comprise the following steps:
    (1) input picture, using global brightness adjustment function, the brightness to dark space details and highlight regions carries out non-linear tune Section;
    (2) specification gain compensation multi-Scale Retinex Algorithm enhancing image is utilized;
    (3) selection area luminance mean value is calculated;
    (4) according to selection area luminance mean value, S curve parameter is calculated;
    (5) S curve is adaptively adjusted;
    (6) Nonlinear Mapping is carried out to enhanced image;
    According to given threshold by brightness of image region division it is clear zone and dark space in the step (1);Two regions are adopted respectively Mapped with different brightness regulation functions, stretched the dynamic range compared with dark space and highlight bar, only among compression Gray level;The brightness regulation function is:
    <mrow> <mi>m</mi> <mi>l</mi> <mi>o</mi> <mi>g</mi> <mo>&amp;lsqb;</mo> <mi>I</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>w</mi> <mi>L</mi> </msub> <mo>&amp;CenterDot;</mo> <mi>log</mi> <mo>&amp;lsqb;</mo> <mi>I</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> <mo>&amp;rsqb;</mo> </mrow> </mtd> <mtd> <mrow> <mi>I</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <mi>T</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>w</mi> <mi>H</mi> </msub> <mo>&amp;CenterDot;</mo> <mi>l</mi> <mi>o</mi> <mi>g</mi> <mo>&amp;lsqb;</mo> <mi>D</mi> <mo>-</mo> <mi>I</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>+</mo> <mi>log</mi> <mi>D</mi> </mrow> </mtd> <mtd> <mrow> <mi>I</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&gt;</mo> <mi>T</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
    Wherein
    <mrow> <msub> <mi>w</mi> <mi>L</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mfrac> <mi>T</mi> <mrow> <mi>D</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> <mi>log</mi> <mi> </mi> <mi>D</mi> </mrow> <mrow> <mi>l</mi> <mi>o</mi> <mi>g</mi> <mrow> <mo>(</mo> <mi>T</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <msub> <mi>w</mi> <mi>H</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mi>T</mi> <mrow> <mi>D</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> <mo>)</mo> <mo>&amp;CenterDot;</mo> <mi>log</mi> <mi> </mi> <mi>D</mi> </mrow> <mrow> <mi>log</mi> <mrow> <mo>(</mo> <mi>D</mi> <mo>-</mo> <mi>T</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
    Wherein, D is the grayscale dynamic range of image, and for 8 bit image systems, its value is 256;wLAnd wHBe respectively dark space and The weight coefficient in clear zone;T is Intensity segmentation threshold value;Wherein for 8bit images, the span of the T is 0-255.
  2. 2. image enchancing method theoretical improved multiple dimensioned Retinex according to claim 1, it is characterised in that:It is described Realized in step (2) using specification gain compensation multi-Scale Retinex Algorithm enhancing image using MSR methods;The MSR methods Mathematical form for multiple different scales SSR results weighted average:
    <mrow> <msub> <mi>R</mi> <msub> <mi>n</mi> <mi>i</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>log</mi> <mi> </mi> <msub> <mi>I</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>l</mi> <mi>o</mi> <mi>g</mi> <mo>&amp;lsqb;</mo> <mi>F</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>*</mo> <msub> <mi>I</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <msub> <mi>R</mi> <msub> <mi>M</mi> <mi>i</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>w</mi> <mi>n</mi> </msub> <msub> <mi>R</mi> <msub> <mi>n</mi> <mi>i</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
    F (x, y)=Kexp [- (x2+y2)/c2] (6)
    Wherein, K is normalization factor so that
    ∫ ∫ F (x, y) dxdy=1 (7)
    It is the output component of i-th of color spectral coverage, n-th of yardstick;It is multiple dimensioned Retinex in i-th of face The output of chromatogram section;wnTo correspond to the weights of each yardstick.
  3. 3. image enchancing method theoretical improved multiple dimensioned Retinex according to claim 2, it is characterised in that:It is described There is negative value in image pixel after the processing of MSR methods, due to directly negating logarithm to its pixel value, it is impossible to the vision got well Effect;Need to translate and be compressed in the range of display shows its codomain by gain compensation operation, i.e.,
    <mrow> <msubsup> <mi>R</mi> <msub> <mi>M</mi> <mi>i</mi> </msub> <mo>&amp;prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>G</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>R</mi> <msub> <mi>M</mi> <mi>i</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>b</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
    G, b are respectively gain coefficient and penalty coefficient, and mathematic(al) representation is:
    <mrow> <mi>G</mi> <mo>=</mo> <mfrac> <msub> <mi>d</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mrow> <msub> <mi>R</mi> <mi>max</mi> </msub> <mo>-</mo> <msub> <mi>R</mi> <mi>min</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <mi>b</mi> <mo>=</mo> <mo>-</mo> <mfrac> <msub> <mi>R</mi> <mi>min</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>max</mi> </msub> <mo>-</mo> <msub> <mi>R</mi> <mi>min</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
    Rmax, RminThe respectively maximum and minimum value of input picture;dmaxFor the dynamic range of output equipment;Then to image Gray scale is intercepted, and determines overall gray level value scope, then is uniformly stretched to dynamic range corresponding to output equipment, interception rule For:
    <mrow> <msub> <mi>R</mi> <msub> <mi>c</mi> <mi>i</mi> </msub> </msub> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>R</mi> <mrow> <msub> <mi>low</mi> <mi>i</mi> </msub> </mrow> </msub> </mtd> <mtd> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mo>&amp;le;</mo> <msub> <mi>R</mi> <mrow> <msub> <mi>low</mi> <mi>i</mi> </msub> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>R</mi> <mi>i</mi> </msub> </mtd> <mtd> <mrow> <msub> <mi>R</mi> <mrow> <msub> <mi>low</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>&lt;</mo> <msub> <mi>R</mi> <mi>i</mi> </msub> <mo>&amp;le;</mo> <msub> <mi>R</mi> <mrow> <msub> <mi>up</mi> <mi>i</mi> </msub> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>R</mi> <mrow> <msub> <mi>up</mi> <mi>i</mi> </msub> </mrow> </msub> </mtd> <mtd> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mo>&amp;GreaterEqual;</mo> <msub> <mi>R</mi> <mrow> <msub> <mi>up</mi> <mi>i</mi> </msub> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
    WhereinFor RiThe output of both ends gray value is intercepted,WithEach color minimum to be intercepted after respectively MSR processing Value and maximum;Especially for night vision image, its histogram distribution approximation Normal Distribution;According to the confidence of setting
    Coefficient A, calculate the value of both ends intercept pointWithFor:
    <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>R</mi> <mrow> <msub> <mi>low</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>=</mo> <msub> <mi>&amp;mu;</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>A&amp;sigma;</mi> <mi>i</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>R</mi> <mrow> <msub> <mi>up</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>=</mo> <msub> <mi>&amp;mu;</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>A&amp;sigma;</mi> <mi>i</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
    Wherein, μiAnd σiRespectively RiAverage and standard deviation.
  4. 4. image enchancing method theoretical improved multiple dimensioned Retinex according to claim 1, it is characterised in that:It is described By analyzing night vision image in step (3), the information that can most characterize night vision image feature is drawn;And with selection area The foundation that luminance mean value adjusts as S curve.
  5. 5. image enchancing method theoretical improved multiple dimensioned Retinex according to claim 4, it is characterised in that:It is described Mean value computation expression formula is:
    <mrow> <msub> <mi>I</mi> <mi>m</mi> </msub> <mo>=</mo> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mrow> <mi>A</mi> <mi>B</mi> <mi>C</mi> <mi>D</mi> </mrow> </msub> </mrow> </munder> <mi>I</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>N</mi> <mrow> <mi>A</mi> <mi>B</mi> <mi>C</mi> <mi>D</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
    Wherein, NABCDFor the sum of all pixels in the ABCD of region.
  6. 6. image enchancing method theoretical improved multiple dimensioned Retinex according to claim 4, it is characterised in that:It is described The information of night vision image feature heart areas adjacent in the picture;The entirety of state and vehicle local environment including opposite car light Brightness.
  7. 7. image enchancing method theoretical improved multiple dimensioned Retinex according to claim 4, it is characterised in that:It is described Adaptive adjustment S curve step is that the image overall pixel intensity after MSR is handled is approached to average, makes the gray scale of center section Value is not come by significant difference;Wherein mapped using nonlinear S-shaped shape transmission function, by the gray value of center section Stretched.
  8. 8. image enchancing method theoretical improved multiple dimensioned Retinex according to claim 7, it is characterised in that:The S Shape transmission function expression formula is:
    <mrow> <mi>f</mi> <mo>=</mo> <mfrac> <mrow> <mi>h</mi> <mi>x</mi> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>+</mo> <msup> <mi>e</mi> <mrow> <mi>b</mi> <mo>-</mo> <mi>a</mi> <mi>x</mi> </mrow> </msup> <mo>)</mo> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
    Wherein, h is tonal gradation, for 8 gray level images, h=256;A, b is used for the shape of controlling curve;B represents curve The position at place, a represent the speed of curve growth rate;
    The parameter a, b dynamic adjustment expression formula acquiring method be:
    The two kinds of extreme cases to be handled image are chosen, by artificially adjusting a, b obtains preferable visual effect, obtains parameter difference For a0,b0,a1,b1;It is respectively I wherein to correspond to averagem0, Im1;Then a, b expression formula is:
    <mrow> <mi>a</mi> <mo>=</mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mi>m</mi> </msub> <mo>-</mo> <mi>min</mi> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <mi>m</mi> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>I</mi> <mrow> <mi>m</mi> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>|</mo> <mrow> <msub> <mi>I</mi> <mrow> <mi>m</mi> <mn>0</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>m</mi> <mn>1</mn> </mrow> </msub> </mrow> <mo>|</mo> </mrow> </mfrac> <mo>*</mo> <mo>|</mo> <mrow> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> </mrow> <mo>|</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <mi>b</mi> <mo>=</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>b</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mi>m</mi> </msub> <mo>-</mo> <mi>min</mi> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <mi>m</mi> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>I</mi> <mrow> <mi>m</mi> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>|</mo> <mrow> <msub> <mi>I</mi> <mrow> <mi>m</mi> <mn>0</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>m</mi> <mn>1</mn> </mrow> </msub> </mrow> <mo>|</mo> </mrow> </mfrac> <mo>*</mo> <mo>|</mo> <mrow> <msub> <mi>b</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>b</mi> <mn>1</mn> </msub> </mrow> <mo>|</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
  9. 9. image enchancing method theoretical improved multiple dimensioned Retinex according to claim 8, it is characterised in that:It is described Image non-linear mapping step passes through formula (15), (16) calculating parameter a, b;Then by a, b brings formula (14) into, must can export Image expression formula is:
    <mrow> <msub> <mi>I</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mn>256</mn> <mo>*</mo> <msub> <mi>I</mi> <mrow> <mi>M</mi> <mi>S</mi> <mi>R</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <mi>M</mi> <mi>S</mi> <mi>R</mi> </mrow> </msub> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> </mrow> <mo>)</mo> <mo>+</mo> <msup> <mi>e</mi> <mrow> <mi>b</mi> <mo>-</mo> <mi>a</mi> <mo>*</mo> <msub> <mi>I</mi> <mrow> <mi>M</mi> <mi>S</mi> <mi>R</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> </msup> <mo>)</mo> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
    Wherein, IMSR(x, y) is through the enhanced images of MSR;Iout(x, y) is output display image.
CN201210148581.4A 2012-05-14 2012-05-14 A kind of image enchancing method theoretical improved multiple dimensioned Retinex Active CN102682436B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210148581.4A CN102682436B (en) 2012-05-14 2012-05-14 A kind of image enchancing method theoretical improved multiple dimensioned Retinex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210148581.4A CN102682436B (en) 2012-05-14 2012-05-14 A kind of image enchancing method theoretical improved multiple dimensioned Retinex

Publications (2)

Publication Number Publication Date
CN102682436A CN102682436A (en) 2012-09-19
CN102682436B true CN102682436B (en) 2017-12-12

Family

ID=46814304

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210148581.4A Active CN102682436B (en) 2012-05-14 2012-05-14 A kind of image enchancing method theoretical improved multiple dimensioned Retinex

Country Status (1)

Country Link
CN (1) CN102682436B (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102789635B (en) * 2012-07-18 2015-01-28 奇瑞汽车股份有限公司 Image enhancement method and image enhancement device
KR101767094B1 (en) * 2012-12-03 2017-08-31 한화테크윈 주식회사 Apparatus and method for processing image
CN103024328B (en) * 2012-12-28 2015-11-25 北京汉邦高科数字技术股份有限公司 A kind of method improving screenshot quality of digital video recorder
CN103108162A (en) * 2013-01-31 2013-05-15 西安唐都科教仪器开发有限责任公司 High-definition high-frame-rate real-time video anti-reflection instrument
CN103268598B (en) * 2013-06-13 2015-09-16 武汉大学 Based on the low-light (level) low altitude remote sensing image Enhancement Method of Retinex theory
CN103337056B (en) * 2013-07-05 2015-12-09 中国民用航空总局第二研究所 A kind of adaptive optical is according to compressed image Enhancement Method
CN104700111A (en) * 2013-12-04 2015-06-10 华平信息技术股份有限公司 Method and system for vehicle color identification based on Retinex image enhancement algorithm
CN103700077B (en) * 2013-12-30 2017-01-04 北京理工大学 A kind of method for adaptive image enhancement based on human-eye visual characteristic
CN104464646A (en) * 2014-11-19 2015-03-25 天津大学 Method for changing dynamic range of video by adjusting local brightness of insert frame/field
CN104484864B (en) * 2014-12-31 2017-06-23 苏州科达科技股份有限公司 Obtain image gamma curve, the method and system of enhancing picture contrast
CN104618700B (en) * 2015-01-29 2017-01-18 电子科技大学 Enhanced display method for color high dynamic range image
CN104796582B (en) 2015-04-20 2018-05-04 中国矿业大学 Video image denoising and Enhancement Method and device based on random injection retinex
CN105118029A (en) * 2015-08-11 2015-12-02 曲阜裕隆生物科技有限公司 Medical image enhancement method based on human eye visual characteristic
CN105118043A (en) * 2015-08-31 2015-12-02 中国烟草总公司广东省公司 Tobacco field remote sensing image enhancement algorithm
CN105096278B (en) * 2015-09-22 2016-08-17 南阳理工学院 The image enchancing method adjusted based on illumination and equipment
CN105243646A (en) * 2015-10-28 2016-01-13 上海大学 Facial textural feature enhancement method
CN105701777B (en) * 2016-01-08 2018-04-27 北京航空航天大学 A kind of spiral-fault radiotherapy image quality improving method
CN106504244A (en) * 2016-11-03 2017-03-15 中国矿业大学 A kind of mine Edge-Detection Algorithm that is accumulated with wavelet scale based on Retinex
CN106683061B (en) * 2017-01-05 2019-03-15 卡本(深圳)医疗科技有限公司 A method of medical image is enhanced based on modified multiple dimensioned retinex algorithm
CN106971153B (en) * 2017-03-08 2020-02-11 重庆三峡学院 Illumination compensation method for face image
CN106981054B (en) * 2017-03-27 2019-12-24 联想(北京)有限公司 Image processing method and electronic equipment
CN107730470A (en) * 2017-10-18 2018-02-23 四川理工学院 A kind of multiple dimensioned improvement Retinex image enchancing methods blocked with histogram of explicit expression
CN107705268B (en) * 2017-10-20 2021-07-02 天津工业大学 Improved Retinex and Welsh near-infrared image enhancement and colorization algorithm
CN109157241B (en) * 2017-12-29 2022-03-11 飞依诺科技(苏州)有限公司 Medical ultrasonic radio frequency signal imaging method
CN108711140B (en) * 2018-05-16 2021-09-10 广东欧谱曼迪科技有限公司 Image brightness uniformity real-time recovery method based on inter-class variance description
CN108564072A (en) * 2018-05-25 2018-09-21 平安科技(深圳)有限公司 Iris image Enhancement Method, device, equipment and medium based on multi task process
CN109064426B (en) * 2018-07-26 2021-08-31 电子科技大学 Method and device for suppressing glare in low-illumination image and enhancing image
CN109523472B (en) * 2018-10-12 2023-04-14 海南大学 Retinex color image enhancement method and computer vision processing system
CN111311524B (en) * 2020-03-27 2023-04-18 电子科技大学 MSR-based high dynamic range video generation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101303766A (en) * 2008-07-09 2008-11-12 北京航空航天大学 Method for rapidly reinforcing color image based on Retinex theory
CN102231206A (en) * 2011-07-14 2011-11-02 浙江理工大学 Colorized night vision image brightness enhancement method applicable to automotive assisted driving system
KR101134463B1 (en) * 2010-05-24 2012-04-13 금오공과대학교 산학협력단 Color restoration Retinex method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101303766A (en) * 2008-07-09 2008-11-12 北京航空航天大学 Method for rapidly reinforcing color image based on Retinex theory
KR101134463B1 (en) * 2010-05-24 2012-04-13 금오공과대학교 산학협력단 Color restoration Retinex method
CN102231206A (en) * 2011-07-14 2011-11-02 浙江理工大学 Colorized night vision image brightness enhancement method applicable to automotive assisted driving system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
基于S曲线多尺度Retinex红外图像增强算法;王雷雷 等;《浙江理工大学学报》;20110930;第28卷(第5期);论文第1-3节 *
基于多尺度Retinex的雾天降质图象增强方法;赵晓霞 等;《工矿自动化》;20091031(第10期);全文 *
复杂光照下地自适应人脸图像增强;王小明 等;《计算机工程与应用》;20111231;第47卷(第2期);论文第2节 *

Also Published As

Publication number Publication date
CN102682436A (en) 2012-09-19

Similar Documents

Publication Publication Date Title
CN102682436B (en) A kind of image enchancing method theoretical improved multiple dimensioned Retinex
CN102789635B (en) Image enhancement method and image enhancement device
CN105225210B (en) A kind of self-adapting histogram enhancing defogging method based on dark
CN103020920B (en) Method for enhancing low-illumination images
CN103353982B (en) A kind of tone mapping method based on histogram equalization
CN108765336B (en) Image defogging method based on dark and bright primary color prior and adaptive parameter optimization
CN103268598B (en) Based on the low-light (level) low altitude remote sensing image Enhancement Method of Retinex theory
CN102831592B (en) Based on the image nonlinearity enhancement method of histogram subsection transformation
CN103295191A (en) Multi-scale vision self-adaptation image enhancing method and evaluating method
CN107527332A (en) Enhancement Method is kept based on the low-light (level) image color for improving Retinex
CN109447917B (en) Remote sensing image haze eliminating method based on content, characteristics and multi-scale model
CN103530847A (en) Infrared image enhancing method
CN106780375A (en) A kind of image enchancing method under low-light (level) environment
CN104700376A (en) Gamma correction and smoothing filtering based image histogram equalization enhancing method
CN111476725A (en) Image defogging enhancement algorithm based on gradient domain oriented filtering and multi-scale Retinex theory
CN104268843A (en) Image self-adaptation enhancing method based on histogram modification
CN104574337A (en) Image enhancement method based on bilateral gamma correction and multi-scale image fusion
CN104574328A (en) Color image enhancement method based on histogram segmentation
CN102208101A (en) Self-adaptive linearity transformation enhancing method of infrared image
CN106530245A (en) Method for enhancing frequency band of infrared image of unmanned aerial vehicle-mounted tunnel fire hazard
CN108257099A (en) A kind of adaptive infrared image enhancing method of view-based access control model contrast resolution
CN111127340B (en) Image defogging method
CN109345491A (en) A kind of Enhancement Methods about Satellite Images merging gradient and grayscale information
CN101478689B (en) Image irradiation correcting system based on color domain mapping
CN109003238B (en) Image haze removal method based on model, histogram and gray level enhancement

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
ASS Succession or assignment of patent right

Owner name: SAIC CHERY AUTOMOBILE CO., LTD.

Free format text: FORMER OWNER: CHEN JUN

Effective date: 20140917

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 211400 YANGZHOU, JIANGSU PROVINCE TO: 241009 WUHU, ANHUI PROVINCE

TA01 Transfer of patent application right

Effective date of registration: 20140917

Address after: 241009 Wuhu economic and Technological Development Zone, Anhui, No. 8 Changchun Road

Applicant after: Saic Chery Automobile Co., Ltd.

Address before: 211400 science and Technology Pioneering service center, No. 9, Tai Tai Road, Yizheng Economic Development Zone, Yangzhou, Jiangsu

Applicant before: Chen Jun

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant