CN102665030A - 一种基于改进双线性的Bayer格式颜色插值方法 - Google Patents

一种基于改进双线性的Bayer格式颜色插值方法 Download PDF

Info

Publication number
CN102665030A
CN102665030A CN2012101473817A CN201210147381A CN102665030A CN 102665030 A CN102665030 A CN 102665030A CN 2012101473817 A CN2012101473817 A CN 2012101473817A CN 201210147381 A CN201210147381 A CN 201210147381A CN 102665030 A CN102665030 A CN 102665030A
Authority
CN
China
Prior art keywords
component
point
current
green
img
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012101473817A
Other languages
English (en)
Other versions
CN102665030B (zh
Inventor
谢磊
陈惠芳
任浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201210147381.7A priority Critical patent/CN102665030B/zh
Publication of CN102665030A publication Critical patent/CN102665030A/zh
Application granted granted Critical
Publication of CN102665030B publication Critical patent/CN102665030B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)

Abstract

本发明公布了一种基于改进双线性的Bayer格式颜色插值方法。现有方法对色差进行处理时运算量较大,复杂度高,对数字相机成像速度有明显的影响,延时较高。本发明在重建全彩色图像的过程中,采用绿色分量和红蓝分量分步插值的组合方式实现颜色恢复。首先利用图像的空间相关性严格区分图像边缘,重建全分辨率绿色分量;然后通过改进的双线性的插值算法和已恢复的绿色分量的修正补偿来重建全分辨率的红蓝分量。相比于传统的插值算法,恢复得到的全彩色图像颜色信号的峰值信噪比更高,同时还具有在算法运算复杂度没有增加的情况下插值出的图像效果更为理想的优点。

Description

一种基于改进双线性的Bayer格式颜色插值方法
技术领域
本发明属于数字图像处理技术领域,涉及一种基于绿色分量和边缘检测的Bayer格式颜色插值方法,具体是一种绿色分量和红蓝分量分步插值的组合方式实现颜色恢复的方法。
背景技术
随着数码相机、扫描仪和其他计算机输入设备越来越普及,作为图像系统中最重要的组成部分,CCD和CMOS传感器也逐渐的被人们所熟知。为了能够得到对原始图像最详尽的描述,一般需要三组CCD传感器。然而为了降低体积和成本,大多数的数字静态摄像机(数码相机、数字视频录像机等)都只使用一组CCD或CMOS传感器。一般会在数字相机图像传感器上覆盖颜色滤波阵列,因为Bayer格式颜色滤波阵列具有很好的颜色信号敏感性和颜色恢复特性,而每一个敏感点只允许一种颜色分量通过,因此图像的每一个像素点都只有一种颜色灰度值。为了恢复完整的彩色图像,需要通过颜色插值技术利用每个采样点周围的颜色来计算另外两种缺失的颜色分量。目前数字相机系统中,大多数颜色滤波阵列只有一种颜色分量有较高的采样频率,相比其他两种颜色分量采样也较多。在Bayer格式颜色滤波阵列中,绿色分量 (G) 是红色分量 (R) 或蓝色分量 (B) 的两倍,占图像总采样点的一半,包含更多的图像信息,并且由于人眼对绿色分量较红色分量和蓝色分量更为敏感,因此大多颜色插值算法一般先重建图像每个像素点的绿色分量,然后再重建另外两种颜色分量。目前比较典型的颜色插值算法有以下几种:
双线性插值算法:该算法在对一个像素点的某种颜色值进行插值运算时,用与该点相邻的同种像素点的对应像素值,通过算术平均来计算。每估算一个像素点的两个未知颜色值将会用到与其相邻的8个像素点的像素值,计算时涉及到的相关像素较多。
基于连续色调的插值算法:该算法是第一个用到数码相机里的插值算法,是根据图像色调具有相关性来完成插值的。该算法主要包括两个步骤:首先使用双线性插值算法对像素点G进行估计,然后再根据色调相关性估计出其他两个未知的像素值。
边缘导向插值算法:这种方法的提出主要是为了克服边缘的模糊问题。在插值过程中,首先比较水平方向上和垂直方向上的梯度大小,插值时取梯度较小的方向上的像素点作为估算点计算当前待求颜色分量值。为了尽量减少算法复杂度,首先利用该算法重建图像每个像素点的绿色分量,然后利用双线性和已重建的绿色分量的补偿修正来恢复红色和蓝色分量。
基于渐进的插值算法:该算法利用了人眼对于绿色分量比较敏感的视觉特性来实现插值。该算法主要包括两个步骤:首先使用边缘导向插值算法对像素G完成估计。然后利用估计出的G分量再来估计其他两个未知像素值,同时考虑先前估计出的绿色分量的修正。
适应性颜色层插值算法:该算法对红、绿、蓝三种分量均采用基于边缘导向插值算法进行插值恢复,该算法在考虑图像边缘的时候,是通过绿色分量G及红色R或蓝色B分量来确定的。
中值滤波颜色插值算法:该算法主要包括三个步骤:首先采用双线性颜色插值算法分别计算出图像所有像素点的红色R、绿色G、蓝色B三个颜色分量的值,然后对这三个颜色分量相互之间的差值分别进行中值滤波,其主要作用是消除双线性颜色插值算法所带来的误差,特别是对伪彩色的抑制效果非常好。
早期的双线性插值算法由于采用的是一种简单的算术平均,并且没有边缘检测,因此对于色调变化比较明显的图像进行插值,会导致边缘模糊,图像高频细节失真比较明显,纹理表现不够准确,恢复的图像总体视觉效果并不理想。同时,该算法计算时候涉及到的相关像素点较多,处理器的计算量大。基于连续色调的插值算法,较双线性插值算法,其插值效果有了较大的提高。但是,该算法没有进行边缘的区分检测,当色调出现突变时,效果就不会理想,同时,该算法绿色分量的估计是采用双线性插值算法,所以在插值时候所涉及到的像素点的数目仍然较多,而且还会出现乘法和除法的运算,因此处理器的运算量被大大增加。边缘导向插值算法的提出,最重要的贡献是进行了图像边缘检测,解决了图像边缘模糊的问题,因此纹理和边缘的表现较双线性插值算法有了较大提高。基于渐进的插值算法,虽然考虑到了图像边缘检测,但是由于采用的边缘检测方法比较简单,只是对水平和垂直方向进行检测,因此在图像边缘处仍然有不小失真。适应性颜色层插值算法是在边缘导向插值算法的基础上改进而来,进一步降低了图像的边缘模糊及颜色失真,恢复的图像边缘的定位更为准确,视觉效果较理想。该算法的算法复杂度较高,开销较大。中值滤波对图像的边缘表现效果较好,失真较小,且对伪彩色的抑制效果特别好,颜色失真也较小,但是最大的缺点就是对色差进行中值滤波处理的运算量较大,其复杂度太高,对数字相机成像速度有明显的影响,延时较高。
发明内容
本发明的目的在于提供一种利用相关性和边缘检测的基于绿色分量的Bayer格式颜色插值方法,它是一种新型的充分利用图像相关性和边缘检测的Bayer格式图像颜色插值方法。该方法先恢复缺失的绿色分量,然后利用重建的绿色分量修正补偿以重建红蓝分量,在重建红蓝分量的过程中,充分考虑图像边缘检测规则,专门用于降低颜色失真现象,抑制插值过程中产生的伪色,防止色彩跳变,增强色彩平滑度,提高图像细节纹理和边缘以及色彩方面的表现准确度,降低边缘的模糊程度;同时,该方法既保留了双线性算法的图像局部一致性好、算法简单等优点,同时又降低了参与计算的像素点数目,减少了运算量,再加上图像相关性和三角边缘检测方法的引入,使得算法复杂度没有提高的情况下可以插值出较好的图像。
本发明提供的Bayer格式图像颜色插值方法在重建全彩色图像的过程中,采用绿色分量和红蓝分量分步插值的组合方式实现颜色恢复。首先利用图像的空间相关性严格区分图像边缘,重建全分辨率绿色分量;然后通过改进的双线性的插值算法和已恢复的绿色分量的修正补偿来重建全分辨率的红蓝分量。相比于传统的插值算法,恢复得到的全彩色图像颜色信号的峰值信噪比更高,同时还具有在算法运算复杂度没有增加的情况下插值出的图像效果更为理想的优点。
在具体实施方式的阐述过程中,符号RGB分别表示图像的红色分量、绿色分量、蓝色分量,符号R ij G ij B ij 分别表示图像第i行和第j列像素点的红色分量、绿色分量、蓝色分量。
本发明方法包括全分辨率绿色分量G的重建、全分辨率红色分量R和全分辨率蓝色分量B的重建三个内容。
本发明的具体步骤是:
步骤1.重建全分辨率绿色分量G,具体是:
在仅包含蓝色分量B的像素采样点处,从水平方向和垂直方向综合考虑当前点邻域的绿色分量G及蓝色分量B,计算水平方向梯度                                               
Figure 322227DEST_PATH_IMAGE002
和垂直方向梯度
Figure 286641DEST_PATH_IMAGE004
,比较两个方向梯度的大小关系,当
Figure 829618DEST_PATH_IMAGE002
Figure 387638DEST_PATH_IMAGE004
时,则水平方向作为当前点的边缘检测参考方向,选择当前点水平方向上相邻的两个绿色分量G和两个蓝色分量B以及当前的蓝色分量B来计算当前点所缺失的绿色分量G;当
Figure 41473DEST_PATH_IMAGE002
Figure 798077DEST_PATH_IMAGE004
时,则垂直方向作为当前点的边缘检测参考方向,选择当前点垂直方向上相邻的两个绿色分量G和两个蓝色分量B以及当前的蓝色分量B来计算当前点所缺失的绿色分量G;当
Figure 777534DEST_PATH_IMAGE002
=
Figure 557271DEST_PATH_IMAGE004
时,则选择该像素点周围四个绿色分量G和四个蓝色分量B以及当前的蓝色分量B来计算当前所缺失的绿色分量。 
在仅包含红色分量R的像素采样点处,其水平方向梯度
Figure 14797DEST_PATH_IMAGE006
、垂直方向梯度
Figure 891487DEST_PATH_IMAGE008
分别由相邻的绿色分量G和红色分量R共同计算所得。该点处所缺失的绿色分量G的计算与在仅包含蓝色分量B的像素采样点处计算缺失的绿色分量G的插值过程相同。从水平方向和垂直方向综合考虑当前点邻域的绿色分量G及红色分量R,计算水平方向梯度
Figure 713949DEST_PATH_IMAGE006
和垂直方向梯度
Figure 49159DEST_PATH_IMAGE008
,比较两个方向梯度的大小关系,当
Figure 310376DEST_PATH_IMAGE006
时,则水平方向作为当前点的边缘检测参考方向,选择当前点水平方向上相邻的两个绿色分量G和两个红色分量R以及当前的红色分量R来计算当前点所缺失的绿色分量G;当时,则垂直方向作为当前点的边缘检测参考方向,选择当前点垂直方向上相邻的两个绿色分量G和两个红色分量R以及当前的红色分量R来计算当前点所缺失的绿色分量G;当
Figure 588593DEST_PATH_IMAGE006
=
Figure 174295DEST_PATH_IMAGE008
时,则选择该像素点周围四个绿色分量G和四个红色分量R以及当前的红色分量R来计算当前所缺失的绿色分量。 
步骤2.重建全分辨率红色分量R,具体是:
在包含蓝色分量B的像素采样点处,用具有边缘检测的改进型双线性插值算法计算红色分量R,具体是:从水平方向、垂直方向、45°方向及135°方向四个方向,综合考虑当前点邻域的绿色分量G及红色分量R,进行图像边缘检测。首先计算垂直方向梯度
Figure 666457DEST_PATH_IMAGE010
和水平方向梯度
Figure 908082DEST_PATH_IMAGE012
,通过比较
Figure 245522DEST_PATH_IMAGE010
的值,选择数值较小的方向作为当前像素采样点的边缘参考方向。通过G分量修正。
(1)当
Figure 286477DEST_PATH_IMAGE010
Figure 77715DEST_PATH_IMAGE012
时,则垂直方向作为当前点的边缘方向,选择当前点垂直方向上相邻的两个绿色分量G作为当前像素采样点的边缘检测参考方向点。
(2)当
Figure 218847DEST_PATH_IMAGE010
Figure 779141DEST_PATH_IMAGE012
时,则水平方向作为当前点的边缘方向,选择当前点水平方向上相邻的两个绿色分量G作为当前像素采样点的边缘检测参考方向点。
其次是结合比较45°方向及135°方向,考虑邻近同分量像素,通过绿色分量修正。引入阀值k。
并且<k时,则45°方向作为当前点的边缘方向,选择当前点45°方向上相邻的红色分量R作为当前像素采样点的边缘检测参考方向点。通过相邻的两个绿色分量G修正。
Figure 861049DEST_PATH_IMAGE010
Figure 865914DEST_PATH_IMAGE012
并且
Figure 303849DEST_PATH_IMAGE012
<k时,则135°方向作为当前点的边缘方向,选择当前点135°方向上相邻的红色分量R作为当前像素采样点的边缘检测参考方向点。通过相邻的两个绿色分量G修正。
计算当前像素点与邻近上、下、左、右四个方向的绿色分量的差值,分别是e、f、g、h,综合考虑垂直方向梯度
Figure 786783DEST_PATH_IMAGE010
和水平方向梯度
Figure 321670DEST_PATH_IMAGE012
的大小。
并且
Figure 416807DEST_PATH_IMAGE016
时,则选择当前蓝色像素点邻近的向上方向的绿色像素点作为计算红色分量的参考点,计算缺失的红色分量。
Figure 764929DEST_PATH_IMAGE014
并且
Figure 111597DEST_PATH_IMAGE016
时,则选择当前蓝色像素点邻近的向下方向的绿色像素点作为计算红色分量的参考点,计算缺失的红色分量。
Figure 614439DEST_PATH_IMAGE022
并且时,则选择当前蓝色像素点邻近的向左方向的绿色像素点作为计算红色分量的参考点,计算缺失的红色分量。
Figure 72468DEST_PATH_IMAGE022
并且
Figure 700896DEST_PATH_IMAGE024
Figure 64881DEST_PATH_IMAGE028
时,则选择当前蓝色像素点邻近的向右方向的绿色像素点作为计算红色分量的参考点,计算缺失的红色分量。
对于G分量上的R分量的计算,考虑邻近的红色分量R,通过邻近的相应绿色分量G修正。
步骤3.重建全分辨率蓝色分量B,具体是:
在包含红色分量R的像素采样点处,用具有边缘检测的改进型双线性插值算法计算蓝色分量B,具体是:从水平方向、垂直方向、45°方向及135°方向四个方向,综合考虑当前点邻域的绿色分量G及蓝色分量B,进行图像边缘检测。首先计算垂直方向梯度
Figure 487772DEST_PATH_IMAGE030
和水平方向梯度,通过比较
Figure 259922DEST_PATH_IMAGE032
的值,选择数值较小的方向作为当前像素采样点的边缘参考方向。通过G分量修正。
(1)当
Figure 119294DEST_PATH_IMAGE030
Figure 790446DEST_PATH_IMAGE032
时,则垂直方向作为当前点的边缘方向,选择当前点垂直方向上相邻的两个绿色分量G作为当前像素采样点的边缘检测参考方向点。
(2)当
Figure 26256DEST_PATH_IMAGE030
Figure 99254DEST_PATH_IMAGE032
时,则水平方向作为当前点的边缘方向,选择当前点水平方向上相邻的两个绿色分量G作为当前像素采样点的边缘检测参考方向点。
其次是结合比较45°方向及135°方向,考虑邻近同分量像素,通过相邻的两个绿色分量修正。引入阀值k。
Figure 67210DEST_PATH_IMAGE034
并且
Figure 231518DEST_PATH_IMAGE036
时,则45°方向作为当前点的边缘方向,选择当前点45°方向上相邻的蓝色分量B作为当前像素采样点的边缘检测参考方向点.通过相邻的两个绿色分量G修正。
Figure 5439DEST_PATH_IMAGE038
并且
Figure 932944DEST_PATH_IMAGE040
时,则135°方向作为当前点的边缘方向,选择当前点135°方向上相邻的蓝色分量B作为当前像素采样点的边缘检测参考方向点。通过相邻的两个绿色分量G修正。
计算当前像素点与邻近上、下、左、右四个方向的绿色分量的差值,分别是e、f、g、h,综合考虑垂直方向梯度和水平方向梯度
Figure 779863DEST_PATH_IMAGE032
的大小。
Figure 91896DEST_PATH_IMAGE038
并且
Figure 77169DEST_PATH_IMAGE042
Figure 449245DEST_PATH_IMAGE018
时,则选择当前红色像素点邻近的向上方向的绿色像素点作为计算蓝色分量的参考点,计算缺失的蓝色分量。
Figure 582286DEST_PATH_IMAGE038
并且
Figure 537789DEST_PATH_IMAGE020
时,则选择当前红色像素点邻近的向下方向的绿色像素点作为计算蓝色分量的参考点,计算缺失的蓝色分量。
Figure 80766DEST_PATH_IMAGE034
并且
Figure 435524DEST_PATH_IMAGE044
Figure 354939DEST_PATH_IMAGE026
时,则选择当前红色像素点邻近的向左方向的绿色像素点作为计算蓝色分量的参考点,计算缺失的蓝色分量。
Figure 111542DEST_PATH_IMAGE034
并且
Figure 825420DEST_PATH_IMAGE044
时,则选择当前红色像素点邻近的向右方向的绿色像素点作为计算蓝色分量的参考点,计算缺失的蓝色分量。
对于G分量上的蓝色分量B的计算,考虑邻近的蓝色分量B,通过邻近的相应绿色分量G修正。
本发明的有益效果:本发明有效降低了在颜色插值过程中产生边缘模糊和色彩失真,解决了双线性插值方法所带来的图像效果不理想、边缘模糊、图像纹理和细节表现不准确、色彩失真严重等问题。边缘判断更准确、色彩平滑度更高以及恢复的图像各颜色分量峰值信噪比更高,图像效果更好,并且计算复杂度较低。
附图说明
图1为计算蓝色分量
Figure 328263DEST_PATH_IMAGE046
像素点所缺失的绿色分量
Figure 939372DEST_PATH_IMAGE048
示意图;
图2为计算特殊点
Figure 107309DEST_PATH_IMAGE050
像素点的绿色分量
Figure 436659DEST_PATH_IMAGE052
示意图;
图3为计算红色分量
Figure 635560DEST_PATH_IMAGE054
像素点所缺失的绿色分量
Figure 101176DEST_PATH_IMAGE048
示意图;
图4为计算特殊点像素点的绿色分量示意图;
图5为计算蓝色分量
Figure 38411DEST_PATH_IMAGE046
像素点所缺失的红色分量
Figure 686430DEST_PATH_IMAGE054
示意图;
图6为计算特殊点
Figure 178591DEST_PATH_IMAGE050
像素点所缺失的红色分量
Figure 216954DEST_PATH_IMAGE060
示意图;
图7为计算红色分量像素点所缺失的蓝色分量
Figure 525762DEST_PATH_IMAGE046
示意图;
图8为计算特殊点
Figure 923245DEST_PATH_IMAGE056
像素点所缺失的蓝色分量
Figure 714484DEST_PATH_IMAGE062
示意图。
具体实施方式
以下结合附图对本发明作进一步说明。
步骤1.重建全分辨率绿色分量G
在Bayer格式颜色滤波阵列中,绿色分量采样点数占图像总采样点数的一半,是红色分量或蓝色分量采样点数的两倍,包含更多的图像信息,并且人眼对绿色较红色和蓝色敏感,对亮度较色彩敏感,而从RGB到YUV的颜色空间转换中,绿色分量对亮度Y的贡献接近60%,亮度Y计算:
Y = 0.299R + 0.587G + 0.114B.                       (1)
因此全分辨率绿色分量的重建在全彩色图像恢复过程中最重要,分量G的重建采用自适应算法计算,其具体方法是:
在仅包含蓝色分量B的像素采样点处,从水平方向和垂直方向综合考虑当前点邻域的绿色分量G及蓝色分量B,计算水平方向梯度和垂直方向梯度,选择梯度较小的方向作为当前像素采样点的边缘方向。以图1中所示计算
Figure 921977DEST_PATH_IMAGE046
像素点的绿色分量
Figure 206371DEST_PATH_IMAGE048
为例,其水平方向的梯度
Figure 151193DEST_PATH_IMAGE002
、垂直方向的梯度 分别为:
Figure 570859DEST_PATH_IMAGE064
                        (2)
Figure 8794DEST_PATH_IMAGE066
                        (3)
通过比较两个方向梯度的大小关系,当
Figure 491728DEST_PATH_IMAGE002
Figure 26614DEST_PATH_IMAGE004
时,则水平方向作为当前点
Figure 936801DEST_PATH_IMAGE046
的边缘检测参考方向,选择当前点水平方向上相邻的两个绿色分量
Figure 538050DEST_PATH_IMAGE070
和两个蓝色分量
Figure 884718DEST_PATH_IMAGE072
Figure 359561DEST_PATH_IMAGE074
以及当前的蓝色分量
Figure 121981DEST_PATH_IMAGE046
来计算当前点所缺失的绿色分量
Figure 365880DEST_PATH_IMAGE048
;当
Figure 883449DEST_PATH_IMAGE002
Figure 845589DEST_PATH_IMAGE004
时,则垂直方向作为当前点的边缘检测参考方向,选择当前点
Figure 572423DEST_PATH_IMAGE046
垂直方向上相邻的两个绿色分量和两个蓝色分量
Figure 808692DEST_PATH_IMAGE080
Figure 27183DEST_PATH_IMAGE082
以及当前的蓝色分量
Figure 886555DEST_PATH_IMAGE046
来计算当前点所缺失的绿色分量
Figure 557708DEST_PATH_IMAGE048
。当
Figure 793517DEST_PATH_IMAGE002
=
Figure 866515DEST_PATH_IMAGE004
时,则选择该像素点
Figure 896788DEST_PATH_IMAGE046
周围四个绿色分量
Figure 55237DEST_PATH_IMAGE068
Figure 501262DEST_PATH_IMAGE070
Figure 694346DEST_PATH_IMAGE076
Figure 895520DEST_PATH_IMAGE078
和四个蓝色分量
Figure 853298DEST_PATH_IMAGE074
Figure 900888DEST_PATH_IMAGE080
Figure 272964DEST_PATH_IMAGE082
以及当前的蓝色分量
Figure 343688DEST_PATH_IMAGE046
来计算当前所缺失的绿色分量
Figure 459411DEST_PATH_IMAGE048
。其计算公式为:
Figure 367368DEST_PATH_IMAGE084
(4) 
以图2中像素采样点
Figure 910344DEST_PATH_IMAGE050
为例,计算该像素点的绿色分量
Figure 265102DEST_PATH_IMAGE052
,则该像素点的水平方向的梯度
Figure 122200DEST_PATH_IMAGE002
、垂直方向的梯度
Figure 878803DEST_PATH_IMAGE004
分别为:
Figure 592682DEST_PATH_IMAGE086
                               (5)
Figure 700315DEST_PATH_IMAGE088
                               (6)
根据水平、垂直方向的梯度
Figure 157841DEST_PATH_IMAGE002
 、
Figure 706634DEST_PATH_IMAGE004
的大小关系,有:
Figure 856993DEST_PATH_IMAGE090
       (7)
以特殊像素点
Figure 186343DEST_PATH_IMAGE092
为例,则图像水平方向的梯度
Figure 181981DEST_PATH_IMAGE002
、垂直方向的梯度 、
Figure 850859DEST_PATH_IMAGE004
分别为:
Figure 172119DEST_PATH_IMAGE086
                                (8)
Figure 723186DEST_PATH_IMAGE094
                                        (9)
比较以上两个梯度值,选择较小的方向作为当前点的边缘方向。
Figure 788094DEST_PATH_IMAGE002
<
Figure 373796DEST_PATH_IMAGE004
时,即水平方向边缘差值较小,则水平方向作为当前点
Figure 600378DEST_PATH_IMAGE092
的边缘方向,选择当前点
Figure 842004DEST_PATH_IMAGE092
水平方向上相邻的两个绿色分量
Figure 445024DEST_PATH_IMAGE096
Figure 902810DEST_PATH_IMAGE098
和两个蓝色分量
Figure 565873DEST_PATH_IMAGE100
Figure 91532DEST_PATH_IMAGE102
以及当前的蓝色分量
Figure 498243DEST_PATH_IMAGE092
来计算当前点所缺失的绿色分量
Figure 996220DEST_PATH_IMAGE104
,计算方法如下:
                           (10)
Figure 843139DEST_PATH_IMAGE002
>时,即垂直方向边缘差值较小,则垂直方向作为当前点的边缘方向,选择当前点垂直方向上相邻的绿色分量
Figure 504617DEST_PATH_IMAGE108
和蓝色分量
Figure 253130DEST_PATH_IMAGE050
以及当前的蓝色分量
Figure 460120DEST_PATH_IMAGE092
来计算当前点所缺失的绿色分量
Figure 635887DEST_PATH_IMAGE104
,计算方法如下:
Figure 623434DEST_PATH_IMAGE110
                                     (11)
Figure 910059DEST_PATH_IMAGE002
=
Figure 237135DEST_PATH_IMAGE004
时,则选择像素点
Figure 583803DEST_PATH_IMAGE092
周围三个绿色分量
Figure 798927DEST_PATH_IMAGE096
Figure 889242DEST_PATH_IMAGE108
和三个蓝色分量
Figure 588394DEST_PATH_IMAGE050
Figure 550534DEST_PATH_IMAGE102
Figure 178961DEST_PATH_IMAGE100
以及当前的蓝色分量
Figure 277367DEST_PATH_IMAGE092
来计算当前点所缺失的绿色分量,计算方法如下:
Figure 149694DEST_PATH_IMAGE112
                    (12)
在仅包含红色分量R的像素采样点处,其水平方向的梯度
Figure 519496DEST_PATH_IMAGE006
、垂直方向的梯度
Figure 737987DEST_PATH_IMAGE008
分别由相邻的绿色分量G和红色分量R计算,该点处所缺失的绿色分量G的计算与在仅包含蓝色分量B的像素采样点处计算缺失的绿色分量G的插值过程相同。如图3中所示,其水平方向的梯度
Figure 597359DEST_PATH_IMAGE006
、垂直方向的梯度
Figure 268512DEST_PATH_IMAGE008
 分别为:
                        (13)
                        (14)
通过比较两个方向梯度的大小关系,当
Figure 438145DEST_PATH_IMAGE008
时,则水平方向作为当前点
Figure 212066DEST_PATH_IMAGE054
的边缘检测参考方向,选择当前点水平方向上相邻的两个绿色分量
Figure 544007DEST_PATH_IMAGE068
Figure 918314DEST_PATH_IMAGE070
和两个红色分量
Figure 543516DEST_PATH_IMAGE120
以及当前的红色分量
Figure 915591DEST_PATH_IMAGE054
来计算当前点所缺失的绿色分量
Figure 720736DEST_PATH_IMAGE048
;当
Figure 738557DEST_PATH_IMAGE008
时,则垂直方向作为当前点的边缘检测参考方向,选择当前点
Figure 901871DEST_PATH_IMAGE054
垂直方向上相邻的两个绿色分量
Figure 555706DEST_PATH_IMAGE076
Figure 515572DEST_PATH_IMAGE078
和两个红色分量
Figure 229450DEST_PATH_IMAGE122
Figure 71504DEST_PATH_IMAGE124
以及当前的红色分量
Figure 529030DEST_PATH_IMAGE054
来计算当前点所缺失的绿色分量
Figure 405719DEST_PATH_IMAGE048
。当=
Figure 557532DEST_PATH_IMAGE008
时,则选择该像素点
Figure 818749DEST_PATH_IMAGE054
周围四个绿色分量
Figure 611485DEST_PATH_IMAGE070
Figure 365814DEST_PATH_IMAGE076
Figure 430722DEST_PATH_IMAGE078
和四个红色分量
Figure 16424DEST_PATH_IMAGE118
Figure 243006DEST_PATH_IMAGE120
Figure 546948DEST_PATH_IMAGE122
Figure 87651DEST_PATH_IMAGE124
以及当前的红色分量
Figure 527860DEST_PATH_IMAGE054
来计算当前所缺失的绿色分量
Figure 190922DEST_PATH_IMAGE048
。其计算公式为::
 (15)
以图4中像素采样点
Figure 60975DEST_PATH_IMAGE056
为例,则该点的水平方向的梯度
Figure 355690DEST_PATH_IMAGE006
 、垂直方向的梯度
Figure 189654DEST_PATH_IMAGE008
分别为:
Figure 202610DEST_PATH_IMAGE128
                               (16)
Figure 85115DEST_PATH_IMAGE130
                               (17)
通过比较两个方向梯度的大小关系,有:
Figure 499916DEST_PATH_IMAGE132
       (18)
以特殊像素点
Figure 504781DEST_PATH_IMAGE134
为例,计算该点所缺失的绿色分量
Figure 5032DEST_PATH_IMAGE136
,则图像水平方向的梯度
Figure 753546DEST_PATH_IMAGE006
 、、垂直方向的梯度
Figure 960536DEST_PATH_IMAGE008
分别为:
Figure 136302DEST_PATH_IMAGE138
                                        (19)
Figure 953928DEST_PATH_IMAGE140
                             (20)
比较以上两个梯度值,选择较小的方向作为当前点的边缘方向。
1)当
Figure 240553DEST_PATH_IMAGE006
<
Figure 629946DEST_PATH_IMAGE008
时,即水平方向边缘差值较小,则水平方向作为当前点
Figure 711034DEST_PATH_IMAGE134
的边缘方向,选择当前点
Figure 123561DEST_PATH_IMAGE134
水平方向上相邻的绿色分量
Figure 213877DEST_PATH_IMAGE142
和红色分量
Figure 457776DEST_PATH_IMAGE056
以及当前点的红色分量
Figure 975345DEST_PATH_IMAGE134
来计算当前点所缺失的绿色分量
Figure 734223DEST_PATH_IMAGE136
,计算方法如下:
Figure 362650DEST_PATH_IMAGE144
                                          (21)
2)当>
Figure 415106DEST_PATH_IMAGE008
时,即垂直方向边缘差值较小,则垂直方向作为当前点的边缘方向,选择当前点
Figure 968764DEST_PATH_IMAGE134
垂直方向上相邻的两个绿色分量
Figure 187256DEST_PATH_IMAGE146
Figure 46627DEST_PATH_IMAGE148
和两个红色分量
Figure 717780DEST_PATH_IMAGE150
以及当前点
Figure 766868DEST_PATH_IMAGE134
的红色分量
Figure 734824DEST_PATH_IMAGE134
来计算当前点所缺失的绿色分量
Figure 893273DEST_PATH_IMAGE136
,计算方法如下:
Figure 667194DEST_PATH_IMAGE154
                              (22)
3)当
Figure 594698DEST_PATH_IMAGE006
=时,则选择像素点
Figure 441618DEST_PATH_IMAGE134
周围三个绿色分量
Figure 19229DEST_PATH_IMAGE146
Figure 738924DEST_PATH_IMAGE142
和三个红色分量
Figure 244040DEST_PATH_IMAGE150
Figure 359764DEST_PATH_IMAGE056
Figure 261861DEST_PATH_IMAGE152
以及当前点的红色分量
Figure 742521DEST_PATH_IMAGE134
来计算当前点所缺失的绿色分量
Figure 362858DEST_PATH_IMAGE136
,,计算方法如下:
Figure 16693DEST_PATH_IMAGE156
                        (23)
步骤2.计算B分量上的R分量
在包含蓝色分量B的像素采样点处,用具有边缘检测的改进型双线性插值算法计算R分量,利用图像数据的相关特性,并引入了三角形边缘检测算法,从水平方向、垂直方向、45°方向及135°方向四个方向,综合考虑当前点邻域的绿色分量G及红色分量R,进行图像边缘检测。首先计算垂直方向梯度
Figure 773297DEST_PATH_IMAGE010
和水平方向梯度,比较
Figure 984158DEST_PATH_IMAGE012
的值,选择数值较小的方向作为当前像素采样点的边缘参考方向。通过G分量修正。
(1)当
Figure 860847DEST_PATH_IMAGE010
Figure 745626DEST_PATH_IMAGE012
时,则垂直方向作为当前点的边缘方向,选择当前点垂直方向上相邻的两个绿色分量G作为当前像素采样点的边缘检测参考方向点。
(2)当
Figure 74977DEST_PATH_IMAGE010
Figure 336194DEST_PATH_IMAGE012
时,则水平方向作为当前点的边缘方向,选择当前点水平方向上相邻的两个绿色分量G作为当前像素采样点的边缘检测参考方向点。
如图5所示,
Figure 123070DEST_PATH_IMAGE012
的计算公式如下:
Figure 939716DEST_PATH_IMAGE158
                         (24)
Figure 739045DEST_PATH_IMAGE160
                         (25)
其次是结合比较45°方向及135°方向,考虑临近同像素分量,通过绿色分量修正,e、f、g、h分别代表当前像素点
Figure 262430DEST_PATH_IMAGE046
与邻近上、下、左、右四个方向像素点
Figure 754591DEST_PATH_IMAGE076
Figure 58534DEST_PATH_IMAGE078
Figure 395974DEST_PATH_IMAGE068
Figure 101762DEST_PATH_IMAGE070
的绿色分量的差值,引入的阀值 k 的判断可根据图像的不同而调整,从而使算法能够适应对不同图像的处理要求。k参数实际控制的是图像中像素之间梯度的支撑范围,大部分像素点仅仅需要做对角平均,因此k需要选择较大,而K选择较大值会使得公式的计算对于大部分像素只需进行前两个条件的运算,从而大大降低运算速度,而像素之间的梯度差,一般大于20—30会让人的视觉感觉有差异,对于真彩色来说R/G/B最大的梯度差理论上是255最小是0,但大部分像素之间的梯度差都会小于100。在利用梯度做边缘检测的算法预置都不会太大也是这个原因,否则会漏掉很多边缘。
Figure 499245DEST_PATH_IMAGE010
Figure 228167DEST_PATH_IMAGE012
并且
Figure 369298DEST_PATH_IMAGE010
<k时,则45°方向作为当前点
Figure 929593DEST_PATH_IMAGE046
的边缘方向,选择当前点
Figure 769416DEST_PATH_IMAGE046
45°方向上相邻的两个红色分量
Figure 782371DEST_PATH_IMAGE162
Figure 664876DEST_PATH_IMAGE164
作为当前像素采样点
Figure 79677DEST_PATH_IMAGE046
的边缘检测参考点。对应的两个绿色分量作为修正。
Figure 67728DEST_PATH_IMAGE010
Figure 540297DEST_PATH_IMAGE012
并且
Figure 716064DEST_PATH_IMAGE012
<k时,则135°方向作为当前点
Figure 703611DEST_PATH_IMAGE046
的边缘方向,选择当前点135°方向上相邻的两个红色分量
Figure 114050DEST_PATH_IMAGE170
Figure 460718DEST_PATH_IMAGE172
作为当前像素采样点
Figure 935561DEST_PATH_IMAGE046
的边缘检测参考点。对应的两个绿色分量
Figure 963560DEST_PATH_IMAGE174
作为修正。
Figure 459450DEST_PATH_IMAGE014
并且
Figure 421589DEST_PATH_IMAGE016
Figure 50017DEST_PATH_IMAGE018
时,则选择当前蓝色像素点
Figure 431580DEST_PATH_IMAGE046
邻近的向上方向的绿色像素点
Figure 854471DEST_PATH_IMAGE076
作为计算红色分量的参考点,通过该点
Figure 241590DEST_PATH_IMAGE076
邻近的两个红色分量
Figure 673709DEST_PATH_IMAGE162
Figure 626621DEST_PATH_IMAGE170
计算缺失的红色分量
Figure 485993DEST_PATH_IMAGE054
。对应的两个绿色分量
Figure 94829DEST_PATH_IMAGE166
Figure 330638DEST_PATH_IMAGE174
的作为修正。
Figure 465953DEST_PATH_IMAGE014
并且
Figure 496226DEST_PATH_IMAGE016
时,则选择当前蓝色像素点
Figure 428596DEST_PATH_IMAGE046
邻近的向下方向的绿色像素点
Figure 356100DEST_PATH_IMAGE078
作为计算红色分量的参考点,通过该点
Figure 494958DEST_PATH_IMAGE078
邻近的两个红色分量
Figure 140703DEST_PATH_IMAGE172
Figure 452735DEST_PATH_IMAGE164
计算缺失的红色分量
Figure 500326DEST_PATH_IMAGE054
。对应的两个绿色分量
Figure 872401DEST_PATH_IMAGE176
Figure 11302DEST_PATH_IMAGE168
的作为修正。
Figure 127025DEST_PATH_IMAGE022
并且
Figure 29122DEST_PATH_IMAGE024
Figure 509782DEST_PATH_IMAGE026
时,则选择当前蓝色像素点
Figure 864540DEST_PATH_IMAGE046
邻近的向左方向的绿色像素点
Figure 783955DEST_PATH_IMAGE068
作为计算红色分量的参考点,通过该点
Figure 540558DEST_PATH_IMAGE068
邻近的两个红色分量
Figure 254436DEST_PATH_IMAGE162
Figure 362069DEST_PATH_IMAGE172
计算缺失的红色分量
Figure 757279DEST_PATH_IMAGE054
。对应的两个绿色分量
Figure 368389DEST_PATH_IMAGE166
Figure 518747DEST_PATH_IMAGE176
的作为修正。
Figure 848097DEST_PATH_IMAGE022
并且
Figure 109314DEST_PATH_IMAGE024
时,则选择当前蓝色像素点邻近的向右方向的绿色像素点
Figure 650520DEST_PATH_IMAGE070
作为计算红色分量的参考点,通过该点
Figure 449849DEST_PATH_IMAGE070
邻近的两个红色分量
Figure 35551DEST_PATH_IMAGE170
Figure 521853DEST_PATH_IMAGE164
计算缺失的红色分量
Figure 497899DEST_PATH_IMAGE054
。对应的两个绿色分量
Figure 100919DEST_PATH_IMAGE174
的作为修正。
其计算公式如下:
 (26)
其中:                                    (27)
     
Figure 136560DEST_PATH_IMAGE182
                                    (28)
Figure 696854DEST_PATH_IMAGE184
                                    (29)
     
Figure 265239DEST_PATH_IMAGE186
                                    (30)
 对于G分量上的R分量的计算,如图5中所示,
Figure 481456DEST_PATH_IMAGE076
分量上
Figure 426279DEST_PATH_IMAGE188
分量的计算,考虑邻近的R分量
Figure 841079DEST_PATH_IMAGE162
,通过G分量
Figure 346196DEST_PATH_IMAGE076
Figure 829130DEST_PATH_IMAGE166
Figure 364016DEST_PATH_IMAGE174
修正,
Figure 211887DEST_PATH_IMAGE068
分量上
Figure 199434DEST_PATH_IMAGE190
分量的计算,考虑邻近的R分量
Figure 486059DEST_PATH_IMAGE162
Figure 881312DEST_PATH_IMAGE172
,通过G分量
Figure 227979DEST_PATH_IMAGE068
Figure 465243DEST_PATH_IMAGE176
修正。其计算公式如下: 
Figure 709142DEST_PATH_IMAGE192
               (31)
Figure 226711DEST_PATH_IMAGE194
               (32)
以图6中的
Figure 188851DEST_PATH_IMAGE050
为例,则在该像素点计算缺失的红色分量
Figure 754961DEST_PATH_IMAGE060
, 
Figure 853368DEST_PATH_IMAGE010
计算公式为:
                               (33)
Figure 157813DEST_PATH_IMAGE198
                               (34)
其次是结合比较45°方向及135°方向,考虑邻近同像素分量,通过绿色分量修正,e、f、g、h分别代表当前像素点
Figure 313988DEST_PATH_IMAGE050
与邻近上、下、左、右四个方向像素点
Figure 173359DEST_PATH_IMAGE108
Figure 844512DEST_PATH_IMAGE200
Figure 80321DEST_PATH_IMAGE202
Figure 91003DEST_PATH_IMAGE204
的绿色分量的差值,同样引入阀值k,
Figure 121276DEST_PATH_IMAGE010
Figure 279724DEST_PATH_IMAGE012
并且
Figure 788066DEST_PATH_IMAGE010
<k时,则45°方向作为当前点
Figure 998728DEST_PATH_IMAGE050
的边缘方向,选择当前点
Figure 199902DEST_PATH_IMAGE050
45°方向上相邻的两个红色分量
Figure 95363DEST_PATH_IMAGE206
作为当前像素采样点
Figure 142954DEST_PATH_IMAGE050
的边缘检测参考点。对应的两个绿色分量
Figure 648070DEST_PATH_IMAGE208
作为修正。
Figure 763794DEST_PATH_IMAGE010
Figure 728208DEST_PATH_IMAGE012
并且
Figure 271184DEST_PATH_IMAGE012
<k时,则135°方向作为当前点
Figure 625942DEST_PATH_IMAGE050
的边缘方向,选择当前点
Figure 483040DEST_PATH_IMAGE050
135°方向上相邻的两个红色分量
Figure 239643DEST_PATH_IMAGE210
Figure 953521DEST_PATH_IMAGE212
作为当前像素采样点
Figure 61155DEST_PATH_IMAGE050
的边缘检测参考点。对应的两个绿色分量作为修正。
Figure 217832DEST_PATH_IMAGE014
并且
Figure 553042DEST_PATH_IMAGE016
Figure 548680DEST_PATH_IMAGE018
时,则选择当前蓝色像素点
Figure 279875DEST_PATH_IMAGE050
邻近的向上方向的绿色像素点
Figure 538818DEST_PATH_IMAGE108
作为计算红色分量的参考点,通过该点
Figure 89886DEST_PATH_IMAGE108
邻近的两个红色分量
Figure 154794DEST_PATH_IMAGE056
Figure 740496DEST_PATH_IMAGE210
计算缺失的红色分量
Figure 904761DEST_PATH_IMAGE060
。通过对应的两个绿色分量
Figure 208703DEST_PATH_IMAGE058
修正。
Figure 189614DEST_PATH_IMAGE014
并且
Figure 852677DEST_PATH_IMAGE016
Figure 378336DEST_PATH_IMAGE020
时,则选择当前蓝色像素点
Figure 785047DEST_PATH_IMAGE050
邻近的向下方向的绿色像素点
Figure 345341DEST_PATH_IMAGE200
作为计算红色分量的参考点,通过该点邻近的两个红色分量
Figure 129943DEST_PATH_IMAGE212
Figure 74766DEST_PATH_IMAGE206
计算缺失的红色分量
Figure 489567DEST_PATH_IMAGE060
。通过对应的两个绿色分量
Figure 228852DEST_PATH_IMAGE216
修正。
Figure 409441DEST_PATH_IMAGE022
并且
Figure 678748DEST_PATH_IMAGE024
Figure 854514DEST_PATH_IMAGE026
时,则选择当前蓝色像素点
Figure 842062DEST_PATH_IMAGE050
邻近的向左方向的绿色像素点
Figure 66370DEST_PATH_IMAGE202
作为计算红色分量的参考点,通过该点
Figure 455763DEST_PATH_IMAGE202
邻近的两个红色分量
Figure 802431DEST_PATH_IMAGE056
Figure 11695DEST_PATH_IMAGE212
计算缺失的红色分量
Figure 102011DEST_PATH_IMAGE060
。通过对应的两个绿色分量
Figure 283594DEST_PATH_IMAGE058
Figure 801163DEST_PATH_IMAGE216
修正。
Figure 763302DEST_PATH_IMAGE022
并且
Figure 391730DEST_PATH_IMAGE024
Figure 490136DEST_PATH_IMAGE028
时,则选择当前蓝色像素点邻近的向右方向的绿色像素点
Figure 300146DEST_PATH_IMAGE204
作为计算红色分量的参考点,通过该点邻近的两个红色分量
Figure 950756DEST_PATH_IMAGE210
Figure 810128DEST_PATH_IMAGE206
计算缺失的红色分量。通过对应的两个绿色分量
Figure 468051DEST_PATH_IMAGE208
修正。
其计算公式如下:
Figure 498324DEST_PATH_IMAGE218
            (35)
其中:
Figure 656773DEST_PATH_IMAGE220
                                    (36)
      
Figure 368377DEST_PATH_IMAGE222
                                    (37)
Figure 561461DEST_PATH_IMAGE224
                                    (38)
Figure 762635DEST_PATH_IMAGE226
                                    (39)
Figure 142801DEST_PATH_IMAGE108
分量上
Figure 720413DEST_PATH_IMAGE228
分量的计算,考虑邻近的R分量
Figure 768003DEST_PATH_IMAGE056
Figure 77762DEST_PATH_IMAGE210
,通过G分量
Figure 945224DEST_PATH_IMAGE108
Figure 60947DEST_PATH_IMAGE058
Figure 963044DEST_PATH_IMAGE214
修正,
Figure 506021DEST_PATH_IMAGE202
分量上
Figure 126358DEST_PATH_IMAGE230
分量的计算,考虑邻近的R分量
Figure 780193DEST_PATH_IMAGE056
Figure 740059DEST_PATH_IMAGE212
,通过G分量
Figure 453937DEST_PATH_IMAGE202
Figure 313569DEST_PATH_IMAGE058
Figure 771096DEST_PATH_IMAGE216
修正。计算公式为:
Figure 647785DEST_PATH_IMAGE232
                             (40)
Figure 470247DEST_PATH_IMAGE234
                             (41)
步骤3.计算R分量上的B分量
在包含红色分量R的像素采样点处,用具有边缘检测的改进型双线性插值算法计算B分量,利用图像数据的相关特性,并引入了三角形边缘检测算法,从水平方向、垂直方向、45°方向及135°方向四个方向,综合考虑当前点邻域的绿色分量G及蓝色分量B,进行图像边缘检测。计算垂直方向梯度
Figure 799597DEST_PATH_IMAGE030
和水平方向梯度,首先比较
Figure 792010DEST_PATH_IMAGE030
Figure 910008DEST_PATH_IMAGE032
的值,选择数值较小的方向作为当前像素采样点的边缘参考方向。通过G分量修正。
(1)当
Figure 726654DEST_PATH_IMAGE030
Figure 791562DEST_PATH_IMAGE032
时,则垂直方向作为当前点的边缘方向,选择当前点垂直方向上相邻的两个绿色分量G作为当前像素采样点的边缘检测参考方向点。
(2)当
Figure 603846DEST_PATH_IMAGE032
时,则水平方向作为当前点的边缘方向,选择当前点水平方向上相邻的两个绿色分量G作为当前像素采样点的边缘检测参考方向点。
如图7所示,
Figure 907788DEST_PATH_IMAGE030
Figure 510808DEST_PATH_IMAGE032
计算公式如下:
Figure 888700DEST_PATH_IMAGE236
                        (42)
Figure 551762DEST_PATH_IMAGE238
                        (43)
其次是结合比较45°方向及145°方向,考虑邻近同像素分量,e、f、g、h分别代表当前像素点
Figure 77421DEST_PATH_IMAGE054
与邻近上、下、左、右四个方向
Figure 489991DEST_PATH_IMAGE076
Figure 784707DEST_PATH_IMAGE078
的绿色分量的差值,同样,引入的阀值 k。
Figure 514131DEST_PATH_IMAGE034
并且
Figure 928932DEST_PATH_IMAGE036
时,则45°方向作为当前点
Figure 933797DEST_PATH_IMAGE054
的边缘方向,选择当前点
Figure 434048DEST_PATH_IMAGE054
45°方向上相邻的蓝色分量
Figure 451869DEST_PATH_IMAGE242
作为当前像素采样点的边缘检测参考点。对应的两个绿色分量
Figure 615183DEST_PATH_IMAGE166
Figure 839491DEST_PATH_IMAGE168
作为修正。
Figure 228884DEST_PATH_IMAGE038
并且时,则135°方向作为当前点
Figure 784816DEST_PATH_IMAGE054
的边缘方向,选择当前点
Figure 875132DEST_PATH_IMAGE054
135°方向上相邻的蓝色分量
Figure 56714DEST_PATH_IMAGE244
Figure 574283DEST_PATH_IMAGE246
作为当前像素采样点
Figure 264985DEST_PATH_IMAGE054
的边缘检测参考点。对应的两个绿色分量
Figure 893412DEST_PATH_IMAGE176
作为修正。
Figure 945868DEST_PATH_IMAGE038
并且
Figure 67407DEST_PATH_IMAGE042
Figure 499526DEST_PATH_IMAGE018
时,则选择当前红色像素点邻近的向上方向的绿色像素点
Figure 577389DEST_PATH_IMAGE076
作为计算蓝色分量的参考点,通过该点
Figure 248542DEST_PATH_IMAGE076
邻近的两个蓝色分量
Figure 218772DEST_PATH_IMAGE240
Figure 291770DEST_PATH_IMAGE246
计算缺失的蓝色分量
Figure 322043DEST_PATH_IMAGE046
。对应的两个绿色分量
Figure 192096DEST_PATH_IMAGE174
作为修正。
Figure 119601DEST_PATH_IMAGE038
并且
Figure 320775DEST_PATH_IMAGE042
Figure 904203DEST_PATH_IMAGE020
时,则选择当前红色像素点邻近的向下方向的绿色像素点
Figure 263826DEST_PATH_IMAGE078
作为计算蓝色分量的参考点,通过该点邻近的两个蓝色分量
Figure 890526DEST_PATH_IMAGE242
计算缺失的蓝色分量
Figure 730306DEST_PATH_IMAGE046
。对应的两个绿色分量
Figure 273282DEST_PATH_IMAGE176
Figure 893620DEST_PATH_IMAGE168
作为修正。
Figure 547455DEST_PATH_IMAGE034
并且
Figure 304058DEST_PATH_IMAGE044
Figure 283516DEST_PATH_IMAGE026
时,则选择当前红色像素点
Figure 63253DEST_PATH_IMAGE054
邻近的向左方向的绿色像素点
Figure 520779DEST_PATH_IMAGE068
作为计算蓝色分量的参考点,通过该点
Figure 397468DEST_PATH_IMAGE068
邻近的两个蓝色分量
Figure 282247DEST_PATH_IMAGE240
Figure 611598DEST_PATH_IMAGE244
计算缺失的蓝色分量
Figure 810498DEST_PATH_IMAGE046
。对应的两个绿色分量
Figure 541693DEST_PATH_IMAGE166
Figure 597374DEST_PATH_IMAGE176
作为修正。
Figure 414020DEST_PATH_IMAGE034
并且
Figure 213349DEST_PATH_IMAGE044
Figure 736734DEST_PATH_IMAGE028
时,则选择当前红色像素点
Figure 246474DEST_PATH_IMAGE054
邻近的向右方向的绿色像素点
Figure 550416DEST_PATH_IMAGE070
作为计算蓝色分量的参考点,通过该点
Figure 887856DEST_PATH_IMAGE070
邻近的两个蓝色分量
Figure 593644DEST_PATH_IMAGE246
Figure 991128DEST_PATH_IMAGE242
计算缺失的蓝色分量
Figure 720049DEST_PATH_IMAGE046
。对应的两个绿色分量
Figure 861181DEST_PATH_IMAGE174
Figure 546109DEST_PATH_IMAGE168
作为修正。
其计算公式如下:
Figure 380072DEST_PATH_IMAGE248
(44)      其中: 
Figure 393028DEST_PATH_IMAGE250
                                      (45)
Figure 337850DEST_PATH_IMAGE252
                                      (46)
Figure 752651DEST_PATH_IMAGE254
                                      (47)
   
Figure 757516DEST_PATH_IMAGE256
                                      (48)
对于G分量上的B分量的计算,如图7中所示,
Figure 257767DEST_PATH_IMAGE076
分量上
Figure 740701DEST_PATH_IMAGE258
分量的计算,考虑邻近的B分量
Figure 213271DEST_PATH_IMAGE240
Figure 394897DEST_PATH_IMAGE246
,通过G分量
Figure 382444DEST_PATH_IMAGE076
Figure 669069DEST_PATH_IMAGE166
修正,
Figure 77234DEST_PATH_IMAGE068
分量上分量的计算,考虑邻近的B分量
Figure 642393DEST_PATH_IMAGE240
Figure 886293DEST_PATH_IMAGE244
,通过G分量
Figure 75966DEST_PATH_IMAGE068
Figure 38106DEST_PATH_IMAGE166
Figure 666533DEST_PATH_IMAGE176
修正。其计算公式如下: 
Figure 92835DEST_PATH_IMAGE262
               (49)
Figure 515726DEST_PATH_IMAGE264
               (50)
以图8中的
Figure 902845DEST_PATH_IMAGE056
为例,则在该像素点计算缺失的蓝色分量
Figure 334964DEST_PATH_IMAGE062
Figure 147248DEST_PATH_IMAGE032
计算公式为:
Figure 818400DEST_PATH_IMAGE266
                               (51)
Figure 991893DEST_PATH_IMAGE268
                               (52)
其次是结合比较45°方向及135°方向,考虑邻近同像素分量,e、f、g、h分别代表当前像素点与邻近上、下、左、右四个方向
Figure 21674DEST_PATH_IMAGE142
Figure 949179DEST_PATH_IMAGE108
的绿色分量的差值,同样,引入的阀值 k。
并且
Figure 733781DEST_PATH_IMAGE036
时,则45°方向作为当前点
Figure 45814DEST_PATH_IMAGE056
的边缘方向,选择当前点
Figure 93404DEST_PATH_IMAGE056
45°方向上相邻的蓝色分量
Figure 465480DEST_PATH_IMAGE100
Figure 598521DEST_PATH_IMAGE050
作为当前像素采样点
Figure 651928DEST_PATH_IMAGE056
的边缘检测参考点。对应的两个绿色分量
Figure 554025DEST_PATH_IMAGE270
Figure 97001DEST_PATH_IMAGE052
作为修正。
Figure 451759DEST_PATH_IMAGE038
并且
Figure 371174DEST_PATH_IMAGE040
时,则135°方向作为当前点
Figure 127777DEST_PATH_IMAGE056
的边缘方向,选择当前点135°方向上相邻的蓝色分量
Figure 886972DEST_PATH_IMAGE272
Figure 350357DEST_PATH_IMAGE092
作为当前像素采样点的边缘检测参考点。对应的两个绿色分量
Figure 49509DEST_PATH_IMAGE274
作为修正。
并且
Figure 43376DEST_PATH_IMAGE042
Figure 364636DEST_PATH_IMAGE018
时,则选择当前红色像素点
Figure 181282DEST_PATH_IMAGE056
邻近的向上方向的绿色像素点
Figure 980611DEST_PATH_IMAGE096
作为计算蓝色分量的参考点,通过该点
Figure 566313DEST_PATH_IMAGE096
邻近的两个蓝色分量
Figure 996157DEST_PATH_IMAGE100
Figure 34520DEST_PATH_IMAGE092
计算缺失的蓝色分量
Figure 637540DEST_PATH_IMAGE062
。对应的两个绿色分量
Figure 343328DEST_PATH_IMAGE270
作为修正。
Figure 469733DEST_PATH_IMAGE038
并且
Figure 610864DEST_PATH_IMAGE042
Figure 171158DEST_PATH_IMAGE020
时,则选择当前红色像素点邻近的向下方向的绿色像素点
Figure 955761DEST_PATH_IMAGE202
作为计算蓝色分量的参考点,通过该点
Figure 900583DEST_PATH_IMAGE202
邻近的两个蓝色分量
Figure 332962DEST_PATH_IMAGE272
Figure 337827DEST_PATH_IMAGE050
计算缺失的蓝色分量。对应的两个绿色分量作为修正。
Figure 703769DEST_PATH_IMAGE034
并且
Figure 691317DEST_PATH_IMAGE044
时,则选择当前红色像素点
Figure 367335DEST_PATH_IMAGE056
邻近的向左方向的绿色像素点
Figure 714002DEST_PATH_IMAGE142
作为计算蓝色分量的参考点,通过该点邻近的两个蓝色分量
Figure 13582DEST_PATH_IMAGE100
Figure 257482DEST_PATH_IMAGE272
计算缺失的蓝色分量
Figure 712734DEST_PATH_IMAGE062
。对应的两个绿色分量
Figure 674874DEST_PATH_IMAGE270
Figure 303301DEST_PATH_IMAGE274
作为修正。
Figure 464024DEST_PATH_IMAGE034
并且
Figure 220671DEST_PATH_IMAGE044
Figure 607790DEST_PATH_IMAGE028
时,则选择当前红色像素点
Figure 774329DEST_PATH_IMAGE056
邻近的向右方向的绿色像素点作为计算蓝色分量的参考点,通过该点
Figure 976826DEST_PATH_IMAGE108
邻近的两个蓝色分量
Figure 647979DEST_PATH_IMAGE092
Figure 883788DEST_PATH_IMAGE050
计算缺失的蓝色分量
Figure 330688DEST_PATH_IMAGE062
。对应的两个绿色分量
Figure 513550DEST_PATH_IMAGE052
作为修正。
其计算公式如下:
Figure 959575DEST_PATH_IMAGE276
           (53)
其中:
Figure 214976DEST_PATH_IMAGE278
                                   (54)
     
Figure 416150DEST_PATH_IMAGE280
                                    (55)
Figure 61895DEST_PATH_IMAGE282
                                    (56)
Figure 436244DEST_PATH_IMAGE284
                                    (57)
Figure 421518DEST_PATH_IMAGE096
分量上
Figure 793594DEST_PATH_IMAGE286
分量的计算,考虑邻近的蓝色分量
Figure 926635DEST_PATH_IMAGE100
Figure 42358DEST_PATH_IMAGE100
,通过G分量
Figure 779873DEST_PATH_IMAGE104
修正,
Figure 699287DEST_PATH_IMAGE142
分量上
Figure 455891DEST_PATH_IMAGE288
分量的计算,考虑邻近的蓝色分量
Figure 169769DEST_PATH_IMAGE100
Figure 283262DEST_PATH_IMAGE272
,通过G分量
Figure 289581DEST_PATH_IMAGE142
修正。计算公式为:
                             (58)
Figure 702610DEST_PATH_IMAGE292
                             (59)
通过上述步骤,全分辨率的R、G、B分量全部产生。

Claims (1)

1. 一种基于改进双线性的Bayer格式颜色插值方法,其特征在于该方法包括以下步骤:
步骤1.重建全分辨率绿色分量G,具体是:
在仅包含蓝色分量B的像素采样点处,从水平方向和垂直方向综合考虑当前点邻域的绿色分量G及蓝色分量B,计算水平方向梯度                                               和垂直方向梯度
Figure 2012101473817100001DEST_PATH_IMAGE004
,比较两个方向梯度的大小关系,当
Figure 685897DEST_PATH_IMAGE002
Figure 7156DEST_PATH_IMAGE004
时,则水平方向作为当前点的边缘检测参考方向,选择当前点水平方向上相邻的两个绿色分量G和两个蓝色分量B以及当前的蓝色分量B来计算当前点所缺失的绿色分量G;当
Figure 495907DEST_PATH_IMAGE002
Figure 560815DEST_PATH_IMAGE004
时,则垂直方向作为当前点的边缘检测参考方向,选择当前点垂直方向上相邻的两个绿色分量G和两个蓝色分量B以及当前的蓝色分量B来计算当前点所缺失的绿色分量G;当
Figure 146517DEST_PATH_IMAGE002
=
Figure 373099DEST_PATH_IMAGE004
时,则选择该像素点周围四个绿色分量G和四个蓝色分量B以及当前的蓝色分量B来计算当前所缺失的绿色分量; 
在仅包含红色分量R的像素采样点处,其水平方向梯度、垂直方向梯度
Figure 2012101473817100001DEST_PATH_IMAGE008
分别由相邻的绿色分量G和红色分量R共同计算所得;该点处所缺失的绿色分量G的计算与在仅包含蓝色分量B的像素采样点处计算缺失的绿色分量G的插值过程相同;从水平方向和垂直方向综合考虑当前点邻域的绿色分量G及红色分量R,计算水平方向梯度和垂直方向梯度
Figure 342378DEST_PATH_IMAGE008
,比较两个方向梯度的大小关系,当
Figure 383332DEST_PATH_IMAGE008
时,则水平方向作为当前点的边缘检测参考方向,选择当前点水平方向上相邻的两个绿色分量G和两个红色分量R以及当前的红色分量R来计算当前点所缺失的绿色分量G;当
Figure 908991DEST_PATH_IMAGE006
Figure 315702DEST_PATH_IMAGE008
时,则垂直方向作为当前点的边缘检测参考方向,选择当前点垂直方向上相邻的两个绿色分量G和两个红色分量R以及当前的红色分量R来计算当前点所缺失的绿色分量G;当
Figure 875996DEST_PATH_IMAGE006
=
Figure 444381DEST_PATH_IMAGE008
时,则选择该像素点周围四个绿色分量G和四个红色分量R以及当前的红色分量R来计算当前所缺失的绿色分量; 
步骤2.重建全分辨率红色分量R,具体是:
在包含蓝色分量B的像素采样点处,用具有边缘检测的改进型双线性插值算法计算R分量,具体是:从水平方向、垂直方向、45°方向及135°方向四个方向,综合考虑当前点邻域的绿色分量G及红色分量R,进行图像边缘检测;计算垂直方向梯度
Figure 2012101473817100001DEST_PATH_IMAGE010
和水平方向梯度,比较
Figure 724195DEST_PATH_IMAGE012
的值,选择数值较小的方向作为当前像素采样点的边缘参考方向;同时也考虑加入了G分量的修正;
(1)当
Figure 138996DEST_PATH_IMAGE010
时,则垂直方向作为当前点的边缘方向,选择当前点水平方向上相邻的两个绿色分量G作为当前像素采样点的边缘检测参考方向点;
(2)当
Figure 127046DEST_PATH_IMAGE012
时,则水平方向作为当前点的边缘方向,选择当前点垂直方向上相邻的两个绿色分量G作为当前像素采样点的边缘检测参考方向点;
其次是结合比较45°方向及135°方向,考虑临近同像素分量,并加入绿色分量的修正;引入阀值k;
Figure 396354DEST_PATH_IMAGE010
Figure 509803DEST_PATH_IMAGE012
并且
Figure 497351DEST_PATH_IMAGE010
<k时,则45°方向作为当前点的边缘方向,选择当前点45°方向上相邻的红色分量R作为当前像素采样点的边缘检测参考方向点;并考虑相邻的两个绿色分量G的作为修正;
Figure 783976DEST_PATH_IMAGE010
并且
Figure 520036DEST_PATH_IMAGE012
<k时,则135°方向作为当前点的边缘方向,选择当前点135°方向上相邻的红色分量R作为当前像素采样点的边缘检测参考方向点;并考虑相邻的两个绿色分量G的作为修正;
计算当前像素点与邻近上、下、左、右四个方向的绿色分量的差值,分别是e、f、g、h,综合考虑垂直方向梯度
Figure 666984DEST_PATH_IMAGE010
和水平方向梯度
Figure 757300DEST_PATH_IMAGE012
的大小;
    当
Figure 2012101473817100001DEST_PATH_IMAGE014
并且
Figure 2012101473817100001DEST_PATH_IMAGE016
Figure 2012101473817100001DEST_PATH_IMAGE018
时,则选择当前绿色像素点邻近的向上方向的绿色像素点作为计算红色分量的参考点,计算缺失的红色分量;
Figure 125833DEST_PATH_IMAGE014
并且
Figure 649261DEST_PATH_IMAGE016
Figure 2012101473817100001DEST_PATH_IMAGE020
时,则选择当前绿色像素点邻近的向下方向的绿色像素点作为计算红色分量的参考点,计算缺失的红色分量;
Figure 2012101473817100001DEST_PATH_IMAGE022
并且
Figure 2012101473817100001DEST_PATH_IMAGE026
时,则选择当前绿色像素点邻近的向左方向的绿色像素点作为计算红色分量的参考点,计算缺失的红色分量;
Figure 736035DEST_PATH_IMAGE022
并且
Figure 2012101473817100001DEST_PATH_IMAGE028
时,则选择当前绿色像素点邻近的向右方向的绿色像素点作为计算红色分量的参考点,计算缺失的红色分量;
对于G分量上的R分量的计算,考虑邻近的红色分量R,并且参考邻近的相应绿色分量G的修正;
步骤3.重建全分辨率蓝色分量B,具体是:
在包含红色分量R的像素采样点处,用具有边缘检测的改进型双线性插值算法计算B分量,具体是:从水平方向、垂直方向、45°方向及135°方向四个方向,综合考虑当前点邻域的绿色分量G及蓝色分量B,进行图像边缘检测;计算垂直方向梯度和水平方向梯度
Figure 2012101473817100001DEST_PATH_IMAGE032
,比较
Figure 587502DEST_PATH_IMAGE030
Figure 275972DEST_PATH_IMAGE032
的值,选择数值较小的方向作为当前像素采样点的边缘参考方向;同时也考虑加入了G分量的修正;
(1)当
Figure 459829DEST_PATH_IMAGE030
Figure 891948DEST_PATH_IMAGE032
时,则垂直方向作为当前点的边缘方向,选择当前点垂直方向上相邻的两个绿色分量G作为当前像素采样点的边缘检测参考方向点;
(2)当
Figure 48122DEST_PATH_IMAGE030
Figure 907494DEST_PATH_IMAGE032
时,则水平方向作为当前点的边缘方向,选择当前点水平方向上相邻的两个绿色分量G作为当前像素采样点的边缘检测参考方向点;
其次是结合比较45°方向及135°方向,考虑临近同像素分量,并加入绿色分量的修正;引入阀值k;
Figure 2012101473817100001DEST_PATH_IMAGE034
并且
Figure 2012101473817100001DEST_PATH_IMAGE036
时,则45°方向作为当前点的边缘方向,选择当前点45°方向上相邻的蓝色分量B作为当前像素采样点的边缘检测参考方向点;并考虑相邻的两个绿色分量G的作为修正;
Figure 2012101473817100001DEST_PATH_IMAGE038
并且
Figure 2012101473817100001DEST_PATH_IMAGE040
时,则135°方向作为当前点的边缘方向,选择当前点135°方向上相邻的蓝色分量B作为当前像素采样点的边缘检测参考方向点;并考虑相邻的两个绿色分量G的作为修正;
计算当前像素点与邻近上、下、左、右四个方向的绿色分量的差值,分别是e、f、g、h,综合考虑垂直方向梯度
Figure 765597DEST_PATH_IMAGE030
和水平方向梯度
Figure 753406DEST_PATH_IMAGE032
的大小;
    当
Figure 826404DEST_PATH_IMAGE038
并且
Figure 2012101473817100001DEST_PATH_IMAGE042
Figure 981310DEST_PATH_IMAGE018
时,则选择当前绿色像素点邻近的向上方向的绿色像素点作为计算蓝色分量的参考点,计算缺失的蓝色分量;
Figure 139759DEST_PATH_IMAGE038
并且
Figure 913680DEST_PATH_IMAGE042
Figure 106764DEST_PATH_IMAGE020
时,则选择当前绿色像素点邻近的向下方向的绿色像素点作为计算蓝色分量的参考点,计算缺失的蓝色分量;
Figure 307938DEST_PATH_IMAGE034
并且
Figure 688104DEST_PATH_IMAGE026
时,则选择当前绿色像素点邻近的向左方向的绿色像素点作为计算蓝色分量的参考点,计算缺失的蓝色分量;
Figure 265716DEST_PATH_IMAGE034
并且
Figure 313307DEST_PATH_IMAGE044
Figure 685382DEST_PATH_IMAGE028
时,则选择当前绿色像素点邻近的向右方向的绿色像素点作为计算蓝色分量的参考点,计算缺失的蓝色分量;
对于G分量上的蓝色分量B的计算,考虑邻近的蓝色分量B,并且参考邻近的相应绿色分量G的修正。
CN201210147381.7A 2012-05-14 2012-05-14 一种基于改进双线性的Bayer格式颜色插值方法 Expired - Fee Related CN102665030B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210147381.7A CN102665030B (zh) 2012-05-14 2012-05-14 一种基于改进双线性的Bayer格式颜色插值方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210147381.7A CN102665030B (zh) 2012-05-14 2012-05-14 一种基于改进双线性的Bayer格式颜色插值方法

Publications (2)

Publication Number Publication Date
CN102665030A true CN102665030A (zh) 2012-09-12
CN102665030B CN102665030B (zh) 2014-11-12

Family

ID=46774434

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210147381.7A Expired - Fee Related CN102665030B (zh) 2012-05-14 2012-05-14 一种基于改进双线性的Bayer格式颜色插值方法

Country Status (1)

Country Link
CN (1) CN102665030B (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103049878A (zh) * 2012-12-10 2013-04-17 天津天地伟业数码科技有限公司 基于fpga和边缘预测算法的颜色插值方法
CN103179407A (zh) * 2013-03-11 2013-06-26 浙江大学 应用于去马赛克算法方向插值的实现装置及方法
CN103313066A (zh) * 2013-05-08 2013-09-18 华为技术有限公司 插值方法及装置
CN103871035A (zh) * 2014-03-24 2014-06-18 华为技术有限公司 图像去噪方法及装置
CN104143176A (zh) * 2013-05-10 2014-11-12 富士通株式会社 图像放大方法和装置
CN104506784A (zh) * 2014-12-04 2015-04-08 中国科学院西安光学精密机械研究所 基于方向插值修正的贝尔格式图像坏行消除方法
CN104902178A (zh) * 2015-05-27 2015-09-09 重庆大学 一种原数据分析与成像并行处理方法
CN105376562A (zh) * 2015-10-16 2016-03-02 凌云光技术集团有限责任公司 一种彩色线阵相机的空间校正方法及系统
CN105578160A (zh) * 2015-12-23 2016-05-11 天津天地伟业数码科技有限公司 一种基于fpga平台的高清晰度去马赛克插值方法
CN106375740A (zh) * 2016-09-28 2017-02-01 华为技术有限公司 生成rgb图像的方法、装置和系统
CN107018343A (zh) * 2017-03-15 2017-08-04 珠海全志科技股份有限公司 一种Bayer图像绿色通道平衡方法及装置
CN108024100A (zh) * 2017-12-15 2018-05-11 上海交通大学 基于改进边缘导向的Bayer格式图像插值方法
CN108769583A (zh) * 2018-05-24 2018-11-06 上海大学 一种基于fpga的超细电子内镜高清插值模块与方法
CN109658358A (zh) * 2018-12-25 2019-04-19 辽宁工程技术大学 一种基于多导向滤波的快速bayer彩色重建方法
WO2019196109A1 (zh) * 2018-04-13 2019-10-17 深圳市锐明技术股份有限公司 一种抑制图像伪彩的方法及装置
CN110430403A (zh) * 2019-07-25 2019-11-08 上海晰图信息科技有限公司 一种图像处理方法和装置
CN110807771A (zh) * 2019-10-31 2020-02-18 长安大学 一种道路减速带的缺损检测方法
CN111340693A (zh) * 2019-08-29 2020-06-26 杭州海康慧影科技有限公司 一种Bayer图像的插值方法、装置及电子设备
CN111445403A (zh) * 2020-03-23 2020-07-24 北京空间机电研究所 一种适用于星上图像预处理的图像插值方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1677548A2 (en) * 2004-12-30 2006-07-05 LG Electronics Inc. Color interpolation algorithm
CN101442673A (zh) * 2008-12-19 2009-05-27 太原理工大学 贝尔模板图像编码与解码方法
CN101917629A (zh) * 2010-08-10 2010-12-15 浙江大学 一种基于绿色分量和色差空间的Bayer格式颜色插值方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1677548A2 (en) * 2004-12-30 2006-07-05 LG Electronics Inc. Color interpolation algorithm
CN100521800C (zh) * 2004-12-30 2009-07-29 Lg电子株式会社 颜色插值方法
CN101442673A (zh) * 2008-12-19 2009-05-27 太原理工大学 贝尔模板图像编码与解码方法
CN101917629A (zh) * 2010-08-10 2010-12-15 浙江大学 一种基于绿色分量和色差空间的Bayer格式颜色插值方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张亚等: "一种有效的数字图像传感器彩色插值算法", 《计算机测量与控制》 *
李渊渊: "一种用硬件实现的Bayer格式图像恢复算法", 《中国光学与应用光学》 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103049878A (zh) * 2012-12-10 2013-04-17 天津天地伟业数码科技有限公司 基于fpga和边缘预测算法的颜色插值方法
CN103179407A (zh) * 2013-03-11 2013-06-26 浙江大学 应用于去马赛克算法方向插值的实现装置及方法
CN103179407B (zh) * 2013-03-11 2015-03-11 浙江大学 应用于去马赛克算法方向插值的实现装置及方法
CN103313066A (zh) * 2013-05-08 2013-09-18 华为技术有限公司 插值方法及装置
CN103313066B (zh) * 2013-05-08 2015-07-08 华为技术有限公司 插值方法及装置
CN104143176A (zh) * 2013-05-10 2014-11-12 富士通株式会社 图像放大方法和装置
CN103871035B (zh) * 2014-03-24 2017-04-12 华为技术有限公司 图像去噪方法及装置
CN103871035A (zh) * 2014-03-24 2014-06-18 华为技术有限公司 图像去噪方法及装置
CN104506784A (zh) * 2014-12-04 2015-04-08 中国科学院西安光学精密机械研究所 基于方向插值修正的贝尔格式图像坏行消除方法
CN104506784B (zh) * 2014-12-04 2017-07-28 中国科学院西安光学精密机械研究所 基于方向插值修正的贝尔格式图像坏行消除方法
CN104902178A (zh) * 2015-05-27 2015-09-09 重庆大学 一种原数据分析与成像并行处理方法
CN105376562A (zh) * 2015-10-16 2016-03-02 凌云光技术集团有限责任公司 一种彩色线阵相机的空间校正方法及系统
CN105578160A (zh) * 2015-12-23 2016-05-11 天津天地伟业数码科技有限公司 一种基于fpga平台的高清晰度去马赛克插值方法
CN106375740A (zh) * 2016-09-28 2017-02-01 华为技术有限公司 生成rgb图像的方法、装置和系统
CN106375740B (zh) * 2016-09-28 2018-02-06 华为技术有限公司 生成rgb图像的方法、装置和系统
CN107018343A (zh) * 2017-03-15 2017-08-04 珠海全志科技股份有限公司 一种Bayer图像绿色通道平衡方法及装置
CN108024100A (zh) * 2017-12-15 2018-05-11 上海交通大学 基于改进边缘导向的Bayer格式图像插值方法
WO2019196109A1 (zh) * 2018-04-13 2019-10-17 深圳市锐明技术股份有限公司 一种抑制图像伪彩的方法及装置
CN108769583A (zh) * 2018-05-24 2018-11-06 上海大学 一种基于fpga的超细电子内镜高清插值模块与方法
CN109658358A (zh) * 2018-12-25 2019-04-19 辽宁工程技术大学 一种基于多导向滤波的快速bayer彩色重建方法
CN110430403A (zh) * 2019-07-25 2019-11-08 上海晰图信息科技有限公司 一种图像处理方法和装置
CN110430403B (zh) * 2019-07-25 2021-11-02 上海晰图信息科技有限公司 一种图像处理方法和装置
CN111340693A (zh) * 2019-08-29 2020-06-26 杭州海康慧影科技有限公司 一种Bayer图像的插值方法、装置及电子设备
CN111340693B (zh) * 2019-08-29 2023-12-01 杭州海康慧影科技有限公司 一种Bayer图像的插值方法、装置及电子设备
CN110807771A (zh) * 2019-10-31 2020-02-18 长安大学 一种道路减速带的缺损检测方法
CN110807771B (zh) * 2019-10-31 2022-03-22 长安大学 一种道路减速带的缺损检测方法
CN111445403A (zh) * 2020-03-23 2020-07-24 北京空间机电研究所 一种适用于星上图像预处理的图像插值方法

Also Published As

Publication number Publication date
CN102665030B (zh) 2014-11-12

Similar Documents

Publication Publication Date Title
CN102665030B (zh) 一种基于改进双线性的Bayer格式颜色插值方法
CN101917629B (zh) 一种基于绿色分量和色差空间的Bayer格式颜色插值方法
JP5724185B2 (ja) 画像処理装置、および画像処理方法、並びにプログラム
US7825965B2 (en) Method and apparatus for interpolating missing colors in a color filter array
US7577315B2 (en) Method and apparatus for processing image data of a color filter array
Chung et al. Demosaicing of color filter array captured images using gradient edge detection masks and adaptive heterogeneity-projection
TWI542224B (zh) 影像訊號處理方法以及影像訊號處理裝置
WO2013031367A1 (ja) 画像処理装置、および画像処理方法、並びにプログラム
CN103595981B (zh) 基于非局部低秩的色彩滤波阵列图像去马赛克方法
CN102170572A (zh) 一种新型边缘自适应cfa彩色图像插值方法
CN103202022A (zh) 图像处理设备及其控制方法
Su Highly effective iterative demosaicing using weighted-edge and color-difference interpolations
CN110852953B (zh) 图像插值方法及装置、存储介质、图像信号处理器、终端
US20110043671A1 (en) Signal processing device, imaging device, and signal processing method
CN105430357B (zh) 图像传感器的去马赛克方法及装置
CN114445290A (zh) 一种面向硬件的联合去噪去马赛克方法
CN113068011B (zh) 图像传感器、图像处理方法及系统
CN116503259B (zh) 一种马赛克插值方法和系统
KR20110130266A (ko) 영상 처리 장치, 영상 처리 방법, 및 이를 실행하기 위해 프로그램을 저장한 기록 매체
US7978908B2 (en) Color signal interpolation system and method
CN101778297B (zh) 影像序列的干扰消除方法
Lee et al. Purple fringing correction using colorization in Yxy color space
CN110139087B (zh) 一种基于拜耳排布的图像处理方法
CN116416126A (zh) 一种Bayer图像插值算法中解决伪彩色问题的方法
CN111445403A (zh) 一种适用于星上图像预处理的图像插值方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141112

CF01 Termination of patent right due to non-payment of annual fee