CN102663097A - Agricultural timing sequence data organization method based on Hadoop+Hbase - Google Patents

Agricultural timing sequence data organization method based on Hadoop+Hbase Download PDF

Info

Publication number
CN102663097A
CN102663097A CN 201210107915 CN201210107915A CN102663097A CN 102663097 A CN102663097 A CN 102663097A CN 201210107915 CN201210107915 CN 201210107915 CN 201210107915 A CN201210107915 A CN 201210107915A CN 102663097 A CN102663097 A CN 102663097A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
data
value
time
actual
timing
Prior art date
Application number
CN 201210107915
Other languages
Chinese (zh)
Inventor
崔文顺
崔硕
曹亚男
王昕�
郭作玉
Original Assignee
农业部信息中心
北京华夏神农信息技术有限公司
廊坊市大华夏神农信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention discloses an agricultural timing sequence data organization method based on Hadoop+Hbase, belonging to the field of analysis of agricultural economy technology information. The method mainly solves the scientific organization problem of massive agricultural economy technology data with time attribute on a Hadoop+Hbase cloud computing foundation platform and is used for storing the massive data. The key point of the technical scheme is that during a data organization storage stage, under the actual conditions that multiple agricultural economy technology data has time attribute and probability of searching the later data is higher, actual-time-data-assisted reverse timing sequence data is added in original data, and a reverse timing sequence value and an actual time value are in negative correlation on values, so that when the actual time is later, the reverse timing sequence value is smaller, and a higher ranking the ascending sort is in, the more quickly the data can be searched in the sequential search. During a data search stage, the actual time value provided by the user in a search condition is converted to the reverse timing sequence value to form a main key value, thereby realizing the quick search.

Description

—种基于Hadoop+Hbase的农业时序数据组织方法 - kind of agriculture-series data organization method based on Hadoop + Hbase

一、技术领域 First, the technical field

[0001] 农业经济技术信息的分析领域。 [0001] the field of economic and technical analysis of agricultural information.

ニ、背景技术 Ni, background

[0002] 目前农业信息化发展迅速,农业网站建设、农业电子商务、农业市场信息、农业经济信息通过国际互联网迅速富集,在移动互联网迅速发展的未来,农业经济技术信息还有爆发式增长的趋势。 [0002] the current rapid development of agricultural information, agricultural construction sites, agricultural e-commerce, agricultural market information, economic information the rapid enrichment of Agriculture via the Internet, in the future the rapid development of mobile Internet, the agricultural economic and technical information as well as the explosive growth of trend. 这ー方面是农业信息化发展、农业产业化、农业现代化发展的必然结果,另一方面也为我们采集、存储、利用这些海量信息为农业生产服务提出了新的需求。ー this regard is the development of agricultural information, agricultural industrialization, the inevitable result of the development of agricultural modernization, on the other hand also for our collection, storage, use these vast amounts of information put forward new demands for agricultural production services.

[0003] 当今,以Hadoop为代表的Key-Value NoSQL云计算技术,以其廉价、稳定、通用,已经逐渐成为各个行业进行海量数据采集、存储和分析的主要平台。 [0003] Nowadays, represented by Hadoop's Key-Value NoSQL cloud computing technology, with its cheap, stable, versatile, has gradually become the main platform for massive data collection, storage and analysis of various industries. 其技术在应用中不断得到改进和发展。 In the application of its technology continuously improved and developed. 但是,在农业海量信息处理领域,还是刚刚起歩。 However, in the field of information processing massive agriculture, or just from the ho. 结合农业生产和经营的特点形成的海量数据,以及围绕这些数据形成的数据处理利用的需求,都还缺乏很多公知的技术手段进行高效的处理。 Massive data combined with the characteristics of the formation of agricultural production and management, and data formed around the use of these data processing needs, still lacks many of the known techniques for efficient processing.

[0004] 本发明解决的问题是:在云计算基础平台Hadoop之上部署的大型数据库Hbase,然后存储。 [0004] The present invention addresses the problem: a large database on the basis Hbase cloud computing platform Hadoop deployment and storage. 在利用中发现查询结果发挥很慢,用户体验很差。 We found that the use of query results play very slow, poor user experience. 经过研究发现与数据的组织方式有很大关系,因为Hadoop是基于主键顺序查找数据的,主键顺序设计不合理,就会直接影响查询结果返回的速度。 After the study found a great relationship with the organization of the data, because Hadoop is based on the primary key order finding data, primary key order design is unreasonable, it will directly affect the speed of query results returned. 很多数据都是具有时间顺序属性的,例如农产品的农贸市场价格信息是按照年月日的顺序采集、存储的,再如农产品期货市场价格信息是按照年月日和时分秒的顺序采集、存储的,还有农业气象的数据也是按照年月日和时分秒的时间顺序采集、存储的。 Many data both with chronological attributes, such as farmers market price information of agricultural products is in the order of date of acquisition, storage, another example, agricultural futures market price information is collected in order of date and time every minute, and storage there is also the agro-meteorological data in chronological order and the date when the minutes and seconds of acquisition, storage. 越早的数据时间值越小,主键的字母序越是排在前面,查询就快,越新的数据时间值越大,主键的字母序越是排在后面,查询就慢。 The sooner the smaller the value of the time data, the more primary key alphabetically top surface, the query faster, the larger the data of the new time value, the more the primary key alphabetically at the back, the query slow. 因为多数情况下,用户是使用最新的数据,所以就会频繁出现查询速度慢的情况。 Because in most cases, the user is using the latest data, so the situation will slow queries occur frequently.

三、发明内容 III. SUMMARY OF THE INVENTION

[0005] 本发明的目的是研究一种对于具有时间属性的农业经济技术数据的组织方法,以便解决存储在Hadoop+Hbase云计算基础平台上的农业经济技术数据查询速度慢的问题。 [0005] The object of the present invention is to develop a method for tissue agronomic techniques have time attribute data, to solve the problems in Hadoop + Hbase stored agronomic techniques cloud data based on the query speed slower platform.

[0006] 为实现本发明的目的提供一种对于具有时间顺序的农业经济技术数据的组织方法,包括下列步骤: [0006] provides a method for tissue agronomic techniques with time-sequential data for the purposes of the present invention, comprising the steps of:

[0007] 步骤100.在数据组织阶段,为农业经济技术数据増加反向时序数据。 [0007] Step 100. At the stage of data organization, data Technical data for the agricultural economy to increase in reverse sequence.

[0008] 步骤200.在数据查询阶段,将用户在查询条件中提供的实际时间值转换为反向时序值,组成主键,进行查询。 [0008] Step 200. In the query phase data, converts the actual time value provided by the user for query reverse timing value, up the primary key, query.

[0009] 所述步骤100,具体包括如下步骤: [0009] step 100, includes the following steps:

[0010] 步骤110.选定实际时间的时间粒度:时间按粒度大小可依次分为年度、年度+月份、年+月+日、年+月+日+小时、年+月+日+小时+分钟、年+月+日+小时+分钟+秒钟、年+月+日+小吋+分钟+秒钟+毫秒等多种类型。 [0010] Step 110. The selected time granularity real time: the time according to particle size can in turn be divided into annual, year + month, year + month + day, year + month + date + hour, year + month + date + hour + minute, year + month + date + hour + minutes + seconds, year + month + date + small + minutes + seconds + inch millisecond other types. 要根据需要选定其中ー种。 Which ー species to be selected according to need.

[0011] 步骤120.设定历史參照时序值:设定ー个历史的时刻为历史參照时间点,它是与、实际时间的时间粒度一致的时间值,该时间值应当比需要存储数据的时间值都要小,通常是在实际时间中不可能出现的久远的历史时刻。 [0011] Step 120. The historical reference to the timing set value: set time ー historical point of historical reference time, and it is, the actual time the time granularity consistent time values, the time values ​​should be required than the data storage time value should be small, usually ancient historic moment in real time not the case. 进ー步将这个时间值转化为一个长整型正数,即历史參照时序值,其数值等于I;ー further into this time value is converted to a long integer positive number, i.e., the history reference to a timing value, which value is equal to I;

[0012] 步骤130.设定未来參照时序值:设定ー个未来很遥远的本系统存储的数据不能抵达的未来时间点,它是与实际时间的时间粒度一致的时间值,该时间值应当比需要存储数据的时间值都要大。 [0012] Referring next sequence step 130. The set values: a time point of the next set ー very distant future data storage system can not reach, which is consistent with the actual time the time granularity of the time value, the time value should value is bigger than the time required to store data. 进ー步根据历史參照时序值将这个时间值转化为ー个长整型正数,即未来參照时序值。 The further reference to the timing advance value ー history this time value is converted to a long integer ー positive, i.e. the next timing reference value. 该未来參照时序值的字符个数定义为时间内容在主键中占据的标准字符个数。 The number of characters defined in the future value of timing reference standard number of characters occupied time of the content in the primary key.

[0013] 步骤140.设置ー个时间字段和一个反向时序字段:时间字段用于存放该数据集的实际时间值。 [0013] Step 140. ー set field and a time field reverse timing: time field for storing the actual time value of the data set. 反向时序字段用于存放该数据集的反向时序值,反向时序值与实际时间值 Reverse timing value field to store a reverse timing of the data set, the reverse timing value and actual value of the time

对应存放; Corresponding to the storage;

[0014] 步骤150.计算反向时序值:为每ー个实际时间值计算对应的反向时序值。 [0014] Step 150. The reverse timing calculated value: calculating a value corresponding to the reverse timing for each ー th actual time values. 反向时序值=未来參照时序值-实际时序值。 Reverse timing reference to the timing value = future value - actual timing values. 其中:实际时序值等于实际时间值以历史參照时间值为參照转换的一个长整型正数,是实际时间值距离历史參照时间值的时间单位个数。 Wherein: The actual timing of the actual time value is equal to the value of a positive number to long integer historical reference time value refers to the conversion, the number per unit of time is the actual time value from the historical reference time value. 实际时序值越大,反向时序值越小。 The actual timing of the larger the value, the smaller the value of the reverse timing.

[0015] 步骤160.用反向时序值组建主键。 [0015] Step 160. The reverse timing set by the primary key value. 将反向时序值作为主键的重要一部分,组建数据的主键与其它数据一起存入数据库。 The reverse timing value as an important part of the primary key, the formation of the primary key data stored in the database together with other data. 注意,如果反向时序值的字符个数没有达到标准字符宽度,要在左侧用O补齐后在组合主键键值。 Note that, if the number of characters does not reach the reverse timing value standard character width to the left after the O filled with a composite primary key key.

[0016] 所述步骤200中,包括如下步骤:· [0016] In step 200, comprising the steps of:

[0017] 步骤210.将用户选择的实际时间值,转化为实际时序值。 [0017] Step 210. The actual time value selected by the user, into the actual timing values. 实际时序值等于用户选择的实际时间值距离以历史參照时间值的时间单位个数,为ー个长整型正数。 The actual timing of the actual value is equal to the user selected value for the time to the number of time units with reference to the time history value, as long ー positive integer.

[0018] 步骤220.计算对应的反向时序值:反向时序值=未来參照时序值-实际时序值。 [0018] Step 220. The calculated value corresponding to the reverse timing: reverse timing reference to the timing value = future value - actual timing values.

[0019] 步骤230.利用反向时序值组合成数据主键的键值。 [0019] Step 230. The use of the reverse timing values ​​into the data key value of the primary key. 如果反向时序值的字符个数没有达到标准字符宽度,要在左侧用O补齐后在组合主键键值。 If the number of characters does not reach the reverse timing value standard character width to the left after the O filled with a composite primary key key.

[0020] 步骤240.按主键键值查询Hbase数据库,从查询结果中可以获得与反向时序值对应的实际时间的数据。 [0020] Step 240. The primary key Hbase key database queries, data may be obtained from real time reverse timing corresponding to the value from the query results.

[0021 ] 本发明的优点或积极效果是: [0021] The positive effects or advantages of the present invention are:

[0022] 本发明不需改变直接适应基础平台Hadoop+Hbase,方法简单,易于实施,适用多数的有时间顺序属性的数据,又能显著提高查询速度,改善客户体验。 [0022] The present invention does not directly change to adapt to the base platform Hadoop + Hbase, simple, easy to implement, most suitable time order attribute data, but also significantly speed up the search and improve the customer experience.

四、附图说明 IV BRIEF DESCRIPTION

[0023] 图I是本发明提出的基于Hadoop+Hbase的海量农业经济技术数据组织存储和查询方法的步骤流程图; [0023] Figure I is a flowchart illustrating the steps Hadoop + agronomic techniques massive data storage and organization Hbase query method proposed by the present invention;

[0024] 图2是本发明提出的计算反向时序字段数据的具体步骤流程图; [0024] FIG 2 is to calculate the specific steps proposed by the invention reverse timing flowchart field data;

[0025] 图3是本发明提出的根据用户查询的实际时间值換算主键键值的具体步骤流程图。 [0025] FIG. 3 is a detailed steps of the actual time value of the user query key terms of the primary key of the present invention proposed a flowchart.

五、具体实施方式 V. DETAILED DESCRIPTION

[0026] 下面结合流程图和实例进ー步说明本发明实施方式。 [0026] The following examples in conjunction with the flowchart and feed ー further embodiments of the present invention. 应当理解,此处描述的具体实施例仅仅用以解释本发明,并不用干限制本发明。 It should be understood that the specific embodiments described herein are only intended to illustrate the present invention and are not limiting of the present invention dry.

[0027] 如图I所示,本发明可分为数据组织阶段和数据查询阶段,包括下列步骤: [0027] FIG I, the present invention can be divided into stages and data organization data inquiry stage, comprising the steps of:

[0028] 步骤100.在数据组织阶段,为农业经济技术数据増加反向时序数据。 [0028] Step 100. The data in the organizational phase, plus reverse time-series data for the agricultural economic and technical data zo. 对于具有时间属性的农业经济和技术数据,存储量是随着时间延续不断增长的,因此原始数据中的实际时间通常是越来越晚的,其数值是越来越大的。 For economic and technical data attributes agriculture have time, storage capacity is growing as time continues, so the actual time of the original data is usually getting late, and its value is increasing. 所以,如果按照原始数据中实际时间值建立主键,则实际时间早实际时间值小的数据就会先被查询到,而实际时间晚实际时间值大的数据就会后被查询到,因此查询结果返回就慢。 So, if the value of the raw data in real time in accordance with established primary key, then the actual time actual time early small value data will first be queried, but the actual time is later than the actual time value will be after the large data queries to, so the query results slow return. 而我们为原始数据增加的辅助性数据反向时序字段,其反向时序值与实际时间值呈反相关,实际时间值越大,反向时序值越小,用来组建主键就容易查询到了。 And we add supplementary data for the original data field reverse timing that the actual value and the reverse timing inversely correlated time values, the greater the actual time value, the smaller the reverse timing values, used to build the primary key is easy to query. 所以,本步骤是计算与实际时间值对应的反向时序值,并增加到原始数据中去。 Therefore, this step is to calculate the actual time value corresponding to the value of the reverse timing, and added to the original data. 结合图2说明以下详细步骤: [0029] 步骤110.设定时间类型:做主键的时间类型按时间按粒度大小可依次分为年度、年度+月份、年+月+日、年+月+日+小时、年+月+日+小吋+分钟、年+月+日+小时+分钟+秒钟、年+月+日+小吋+分钟+秒钟+毫秒等多种类型。 Described in detail below in conjunction with FIG. 2 steps: [0029] Step 110. The setting time Type: shots time by time according to the type of the key may be sequentially divided into particle size year, year + month, year + month + day, day of month + + + hour, day of month + + + + small inch-minute, year + month + date + hour + minutes + seconds, year + month + date + small + minutes + seconds + inch millisecond other types. 要根据需要选定其中一种,以下以年+月+日为例说明。 One needs to be selected according to the following order of + month + day as an example.

[0030] 步骤120.设定历史时间点及历史參照时序值:先设定ー个历史时间点,它与实际时间的时间粒度一致,应比需要存储数据的时间值都小。 [0030] Step 120. The history point set and historical reference time values: a first set ー history point, which coincides with the actual time the time granularity, should have a value smaller than the time needed for data storage. 设定对应该历史时间值的历史參照时序值为I。 History should set the timing for the historical value of the time reference value I. 针对所选择的时间类型,设定历史參照时序值。 Time for the selected type, set the historical reference to the timing value. 先设定历史时间点,本实施例时间类型为年+月+日,所以历史时间点设定为公元1900年I月I日,对应的历史參照时序值为I。 History point previously set, the present embodiment is a time of year + month + type date, the history point is set to 1900 AD I I month day, corresponding historical reference to a timing value I.

[0031] 步骤130.设定未来參照时序值:先设定未来參照时间值,针对农业经济技术数据可设定为公元5000年12月31日。 [0031] Step 130. The timing reference value set in the future: the first time reference value set in the future, for economic and technical data can be set to Agriculture Year 5000 December 31. 因为该未来參照时间值距历史參照时间值的时间单位个数即天数为1132618,所以,可得到对应的未来參照时序值为1132618。 Since the number of the future time value of the reference time unit from the historical reference time value, i.e. the number of days 1,132,618, so that the next reference to a timing corresponding to the obtained value of 1,132,618. 该未来參照时序值共有7个字符,所以本实施例的标准字符个数为7。 The reference to the timing value of the next seven characters, so the standard number of characters of Example 7 of the present embodiment.

[0032] 步骤140.设定时间字段和反向时序字段:先设定ー个类型为年+月+日的时间字段,存放该数据集的实际时间值;再设定ー个具有标准字符个数7的反向时序字段,存放该数据集的反向时序值。 [0032] Step 140. The time field and reverse timing setting fields: a first set ー type year + month + date time field, storing the data set the actual time value; reset ー more characters having a standard reverse timing field number 7, stored value reverse timing of the data set. 反向时序值与实际时间值在同一个数据行内一一对应; Reverse timing values ​​correspond to the actual time values ​​in the same data row;

[0033] 步骤150.计算反向时序值:为每个实际时间值计算对应的反向时序值。 [0033] Step 150. The reverse timing calculated value: calculated reverse timing corresponding to the actual value for each time value. 反向时序值=未来參照时序值-实际时序值。 Reverse timing reference to the timing value = future value - actual timing values. 其中:实际时序值等于实际时间值距历史參照时间值的时间单位个数,为ー长整型正数,本实施例为。 Wherein: The actual timing of the actual time value of the time value is equal to the number of units from the historical reference time value, as long ー positive integer, in this embodiment. 先逐一计算该数据集实际时间值的实际时序值,例如实际时间值“1950年3月15日”距离“1900年I月I日”的天数为18337天,所以实际时序值为18337。 The actual timing of the first one by calculating the actual value of the data set of time values, such as the actual time value "15 March 1950," the number of days from "January 1900 I I day" is 18,337 days, the actual timing value of 18,337. 再计算出对应的反向时序值为1114281,因为:未来參照时序值1132618-实际时序值18337 =反向时序值为1114281。 And then calculate the corresponding value of reverse timing 1,114,281, because: the next value of reference to the timing the actual time values ​​1132618- reverse timing value 1114281 = 18337. 再如,实际时间值“3011年I月I日”距离“1900年I月I日”的天数为405786天,所以实际时序值为405786。 Again, the actual time value "3011 years I dated I May" days away "May I 1900 I day" for the 405,786 days, the actual timing is 405,786. 再计算出对应的反向时序值为0726832,因为:未来參照时序值1132618-实际时序值405786 =反向时序值为726832,因不足标准字符数在左侧用O补齐后为0726832。 Then calculate the corresponding value of reverse timing 0,726,832, because: the next value of reference to the timing the actual time values ​​1132618- reverse timing value = 405786 726832, because of the lack of standard character filled with O in the left 0,726,832. 仿此,可逐一计算出各个反向时序值,填入对应的反向时序字段之中,形成辅助数据。 This imitation, one by one can calculate the value of the respective reverse timing, fill in the corresponding field of the reverse timing to form the auxiliary data.

[0034] 步骤160.组建主键:将反向时序值作为主键的一部分,组建数据的主键键值,与其它数据一起存入数据库。 [0034] Step 160. The formation of the primary key: the reverse timing value as a part of the primary key, the formation of the primary key of the key data, along with other data stored in the database. 至此,数据的组织工作完成。 So far, the organization of data is completed.

[0035] 步骤200.在数据查询阶段,将用户在查询条件中提供的实际时间值转换为反向时序值,组成主键键值,进行查询。 [0035] Step 200. In the query phase data, converts the actual time value provided by the user for query reverse timing value, key up the primary key, query. 指定实际时间的ー个值或者ー个范围作为条件查询存储的数据的模式更符合用户的习惯,为了反向时序值的利用变得透明,需要把实际时间值转换为反向时序值,再找到对应的主键键值,才能达到快速查询的目的。ー specified time or the actual value ranges ー query condition data stored as a mode more user habits in order to utilize the reverse timing value becomes transparent, the actual time required to convert the value of the reverse timing values, to find corresponding primary key key, in order to achieve the purpose of fast query. 所以本步骤是利用实际时间值与反向时间值的換算公式将实际时间的查询转化为对应主键键值查询。 Therefore, this step is performed using the conversion formula and the actual time value of the time counter value query into query key value corresponding to the primary key of the actual time. 从而实现快速查询到实际时间较晚的数据。 In order to achieve fast query data to the actual time later. 结合图3说明以下详细步骤: 3 illustrates in detail below in conjunction with the steps of:

[0036] 步骤210.将用户选择的实际时间值,转化为实际时序值:实际时序值等于用户选择的实际时间值距离历史參照时间值的时间单位个数,本实施例为天数。 [0036] Step 210. The actual time value selected by the user, into the actual timing values: The actual timing of the actual value is equal to the user selected value for the time value of the number of time units with reference to the time history of the present embodiment, the number of days. 例如用户输入的实际时间值为“2010年3月15日”,距离“1900年I月I日”的天数为40252天,所以实际时序值为40252。 Such as the actual time the user enters a value of "15 March 2010", the number of days from the "May I 1900 I day" for 40,252 days, the actual timing is 40252.

[0037] 步骤220.计算对应的反向时序值:反向时序值=未来參照时序值-实际时序值。 [0037] Step 220. The calculated value corresponding to the reverse timing: reverse timing reference to the timing value = future value - actual timing values. 例如用户输入的实际时间值为“2010年3月15日”,实际时序值为40252。 Such as the actual time the user enters a value of "15 March 2010", the actual timing is 40252. 对应的反向时序值=未来參照时序值1132618-实际时序值40252 = 1092366。 Reverse timing value corresponding to the next reference to the timing value = actual timing values ​​1132618- 1092366 = 40252.

[0038] 步骤230.利用反向时序值组合成数据主键的键值:例如用户输入的实际时间值为“2010年3月15日”,则主键键值的反向时序值部分为“ 1092366”。 [0038] Step 230. The use of the reverse timing values ​​into the data key value of the primary key: for example, the real time user input is "15 March 2010", the key of the key main part of the reverse timing value is "1092366" .

[0039] 步骤240.按主键键值查询Hbase数据库,从查询结果中可以获得与反向时序值对应的实际时间的数据。 [0039] Step 240. The primary key Hbase key database queries, data may be obtained from real time reverse timing corresponding to the value from the query results. 由于用户输入的实际时间在多数情况下是较晚的,对应的实际时序值也较大,按反向时序值能比按实际时序值能被优先搜索,所以能较快地查到。 Since the actual time input by the user in most cases is the later, corresponding to the actual time values ​​is large, can press the reverse timing value, it can quickly be found by the search priority over the actual time values.

[0040] 以上仅以时间类型年+月+日为例进行了说明,应当理解,此处描述的具体实施例仅仅用以解释本发明,并不用干限制本发明。 [0040] Types of the above time only + + dated May an example has been described, it should be understood that the specific embodiments described herein are only intended to illustrate the present invention and are not limiting of the present invention dry. ,

Claims (1)

  1. 1. 一种基于Hadoop+Hbase的农业时序数据组织方法,其特征在于: 在原始数据中增加反向时序数据用做组建主键键值的重要内容,反向时序数据由与原始数据中的实际时间值一一对应的反向时序值组成,反向时序值为实际时间值距离未来时间点的最小时间单位的个数,在数值上与实际时间值是负相关的。 An agricultural Hadoop + Hbase tissue based on time-series data, comprising: increasing the reverse timing important key value data form a primary key used in the original data, by the reverse timing data and the actual time of the original data the value of the reverse timing values ​​correspond composition, reverse timing the actual time value of the number is a minimum time unit of time from the point in the future, the value in the negative value associated with the actual time. 在数据查询阶段,要将用户在查询条件中提供的实际时间值转换为反向时序值,组成主键键值用于检索查询。 In the query phase data, actual user-supplied values ​​for a time in the query is converted into reverse timing value, key up the primary key for a search query.
CN 201210107915 2012-04-10 2012-04-10 Agricultural timing sequence data organization method based on Hadoop+Hbase CN102663097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210107915 CN102663097A (en) 2012-04-10 2012-04-10 Agricultural timing sequence data organization method based on Hadoop+Hbase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210107915 CN102663097A (en) 2012-04-10 2012-04-10 Agricultural timing sequence data organization method based on Hadoop+Hbase

Publications (1)

Publication Number Publication Date
CN102663097A true true CN102663097A (en) 2012-09-12

Family

ID=46772588

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210107915 CN102663097A (en) 2012-04-10 2012-04-10 Agricultural timing sequence data organization method based on Hadoop+Hbase

Country Status (1)

Country Link
CN (1) CN102663097A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103605805A (en) * 2013-12-09 2014-02-26 冶金自动化研究设计院 Storage method of massive time series data
CN104750809A (en) * 2015-03-26 2015-07-01 中国科学院软件研究所 Storage method for supporting relation model and blended data of key-value structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101158976A (en) * 2007-11-21 2008-04-09 金蝶软件(中国)有限公司 Method and system for data-base recording enquire preprocess
CN101256561A (en) * 2007-03-02 2008-09-03 阿里巴巴集团控股有限公司 Method, apparatus and system for storing and accessing database data
CN101477532A (en) * 2008-12-23 2009-07-08 北京畅游天下网络技术有限公司 Method, apparatus and system for implementing data storage and access
US20110258199A1 (en) * 2010-04-16 2011-10-20 Salesforce.Com, Inc. Methods and systems for performing high volume searches in a multi-tenant store

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101256561A (en) * 2007-03-02 2008-09-03 阿里巴巴集团控股有限公司 Method, apparatus and system for storing and accessing database data
CN101158976A (en) * 2007-11-21 2008-04-09 金蝶软件(中国)有限公司 Method and system for data-base recording enquire preprocess
CN101477532A (en) * 2008-12-23 2009-07-08 北京畅游天下网络技术有限公司 Method, apparatus and system for implementing data storage and access
US20110258199A1 (en) * 2010-04-16 2011-10-20 Salesforce.Com, Inc. Methods and systems for performing high volume searches in a multi-tenant store

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103605805A (en) * 2013-12-09 2014-02-26 冶金自动化研究设计院 Storage method of massive time series data
CN103605805B (en) * 2013-12-09 2016-10-26 冶金自动化研究设计院 A method of storing vast amounts of time series data
CN104750809A (en) * 2015-03-26 2015-07-01 中国科学院软件研究所 Storage method for supporting relation model and blended data of key-value structure
CN104750809B (en) * 2015-03-26 2018-05-18 中国科学院软件研究所 Species and key support relational model - hybrid data storage method of the value of the structure

Similar Documents

Publication Publication Date Title
Cattell Scalable SQL and NoSQL data stores
US20110040749A1 (en) Method for extracting, merging and ranking search engine results
CN102654859A (en) Method and system for recommending songs
US20140358889A1 (en) Natural language search results for intent queries
CN103678665A (en) Heterogeneous large data integration method and system based on data warehouses
CN101251861A (en) Method for loading and inquiring magnanimity data
CN101533406A (en) Mass data querying method
Sharma et al. A brief review on leading big data models
CN102521307A (en) Parallel query processing method for share-nothing database cluster in cloud computing environment
CN101458695A (en) Mixed picture index construct and enquiry method based on key word and content characteristic and use thereof
Tang Agriculture in the industrialization of Communist China and the Soviet Union
Gao et al. Ontology similarity measure by optimizing NDCG measure and application in physics education
US20130013585A1 (en) Hash join and hash aggregation integration system
Phaneendra et al. Big Data-solutions for RDBMS problems-A survey
Cafarella et al. Data management projects at Google
Tran et al. SemSearchPro–Using semantics throughout the search process
Baglioni et al. Land Grabbing, Large-and Small-scale Farming: what can evidence and policy from 20th century Africa contribute to the debate?
Chevalier et al. How can we implement a Multidimensional Data Warehouse using NoSQL?
Sharma et al. Leading NoSQL models for handling Big Data: a brief review
Liu et al. U-skyline: A new skyline query for uncertain databases
US20120150838A1 (en) Automated database generation for answering fact lookup queries
Stefanidis et al. A context-aware preference database system
CN101661483A (en) Recommendation system and recommendation method
CN103020281A (en) Data storage and search method based on numerical indexing of spatial data
Ramanathan et al. Comparison of cloud database: Amazon's SimpleDB and Google's Bigtable

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)