CN102662351A - Three-axis linkage contour error compensation control method for cylinder cam machining - Google Patents

Three-axis linkage contour error compensation control method for cylinder cam machining Download PDF

Info

Publication number
CN102662351A
CN102662351A CN 201210073867 CN201210073867A CN102662351A CN 102662351 A CN102662351 A CN 102662351A CN 201210073867 CN201210073867 CN 201210073867 CN 201210073867 A CN201210073867 A CN 201210073867A CN 102662351 A CN102662351 A CN 102662351A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
axis
contour
error
coordinate system
ε
Prior art date
Application number
CN 201210073867
Other languages
Chinese (zh)
Other versions
CN102662351B (en )
Inventor
王士军
赵国勇
赵庆志
赵玉刚
Original Assignee
山东理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention relates to a three-axis linkage contour error compensation control method for cylinder cam machining. The method carries out contour error calculation and compensation during an interpolation machining process according to the linkage of axis A, axis X and axis Y, and is characterized in that the method comprises the steps of in each sampling cycle detecting the actual location of the worktable of axis A, axis X and axis Y in a machine tool coordinate system; converting into a space rectangular coordinate system and approximating the distance between the actual cutter location point and the line connecting with the two closest interpolation points on the tool path of the cylindrical cam contour at contour errors; converting into the machine tool coordinate system to obtain the corresponding contour errors of axis A, axis X and axis Y; and introducing a scaling factor, acquiring the contour error compensation quantities through proportional control, separately stacking the contour error compensation quantities with the location control quantities of shaft A, shaft X and shaft Y to follow errors, and outputting to a servo actuator. The method provided by the invention has the advantages that during axis A, axis X and axis Y linkage machining contour error description is intuitive, calculation precision is high, and contour error compensation method is simple and effective.

Description

面向圆柱凸轮加工的三轴联动轮廓误差补偿控制方法 Axis linkage contour error compensation control method for machining a cylindrical cam

技术领域 FIELD

[0001] 本发明涉及一种轮廓误差补偿控制方法,特别是涉及一种面向圆柱凸轮加工的三轴联动轮廓误差补偿控制方法。 [0001] The present invention relates to a profile error compensation control method, particularly to a three-axis profile error compensation control method for a cylindrical cam for processing.

背景技术 Background technique

[0002] 圆柱凸轮机构与平面凸轮机构相比,体积小、结构紧凑、刚性好、运转可靠、传动转矩大,在实现间隙分度运动、较大运动升程方面具有很大优势。 [0002] Cylindrical Cam mechanism compared to a planar cam mechanism, small size, compact structure, rigid, reliable operation, a large drive torque, has a great advantage in achieving clearance indexing motion, lift the larger movement. 圆柱凸轮属于空间凸轮,按照从动件的运动方式可以分为直动从动件圆柱凸轮和摆动从动件圆柱凸轮。 Cylindrical Cam belong to space the cam, the follower member in accordance with motion into linear motion may be cylindrical cam and the swing cylindrical cam. 可以采用带有一个回转工作台的数控铣床加工圆柱凸轮轮廓,例如在带有回转工作台的立式数控铣床上,可以用X进给轴、A旋转轴联动加工直动从动件圆柱凸轮,用X进给轴、Y进给轴、A旋转轴联动加工摆动从动件圆柱凸轮。 CNC milling machine can be used with a cylindrical cam profile of the rotary table, for example on a vertical CNC milling machine with rotary table, can feed axis X, A linear motion rotation axis simultaneous machining of cylindrical cam, a feed axis X, Y feed axis, A-axis machining oscillating rotation of cylindrical cam. 圆柱凸轮加工中影响圆柱凸轮加工精度的误差来源包括丝杠间隙、导轨不直、热变形等机床结构误差,驱动系统的动态特性、控制器与外部干扰引起的误差等。 Cylindrical Cam processing in cylindrical cam machining accuracy error sources include screw gap, not straight rails, machine dynamic structural error, thermal deformation of the drive system, controller and the external interference due to errors. 其中,由于数控机床机械部分、伺服驱动比较复杂,且涉及机械、电气、控制及在运动过程中参数的变化,机床各联动进给轴之间实际动态性能很难做到完全匹配,这直接影响了轮廓精度的提高,是造成轮廓误差的重要原因。 Wherein, since the CNC machine mechanical parts, the servo drive is complicated, and involves mechanical, electrical, control and parameter changes during the movement of the machine to feed the linkages between the actual dynamic performance is difficult to completely match the shaft, which directly affects improved contour accuracy, is an important cause of contour error. 研究表明,在零件加工中对轮廓误差计算并进行实时补偿,是提高系统轮廓精度的有效途径。 Studies have shown that the contour of the error calculation and compensation in real-time processing part, is an effective way to improve the accuracy of the system profile. 轮廓误差指当前实际刀位点到所跟踪刀具轨迹曲线的最短距离。 It refers to the current actual tool contour error site to the shortest distance curve tracing tool path. 在直线轴联动场合,轮廓误差描述直观,便于计算和补偿;但是在直线轴和旋转轴联动场合,轮廓误差的描述以及计算补偿较为困难。 In the case of linear-axis, contour error description intuitive, and easy to calculate compensation; however, where the linkage linear and rotary axes, and calculating a contour error described compensation more difficult.

[0003] 对现有的技术文献检索发现,现有研究成果多集中在两个或三个直线轴联动时轮廓误差耦合控制方法,但是对直线轴与旋转轴联动加工时轮廓误差的计算方法、补偿方法少有研究。 [0003] The prior art literature search found concentrated in prior studies contour error control method of coupling two or three-axis linear, but the method for calculating the linear axis and the rotary shaft when simultaneous machining contour error, compensation method rare. 如Syh-Shiuh Yeh 等在学术期刊《IEEE TRANSACTIONS ON CONTROL SYSTEMSTECHNOLOGY》(2003,11 (3) :375-382)上发表的论文“Analysis and Design of IntegratedControl for Multi-Axis Motion Systems”中,提出在三直线轴联动时将某采样周期实际刀位点到指令刀轨曲线上当前插补点处切线的距离近似为轮廓误差;刘宜等在学术期刊《系统仿真学报》(2009,21(11) =3381-3386)上发表的论文“基于工作坐标系的最优轮廓控制及其仿真”中,提出在三直线轴联动时通过在期望轨迹上建立Frenet坐标系作为工作坐标系,用位置跟随误差在工作坐标系中的法向分量来近似轮廓误差;龚时华等人在学术期刊《电气自动化》(2010,32(4) :11-13)上发表的论文“凸轮轴磨削加工轮廓误差的自适应控制”中,针对一个直线轴和一个旋转轴联动加工,提出一种在在极坐标系下凸轮轴磨削加工轮廓误差的表达式,但该轮廓误 As Syh-Shiuh Yeh and other academic journals "IEEE TRANSACTIONS ON CONTROL SYSTEMSTECHNOLOGY" (2003,11 (3): 375-382) published in the paper "Analysis and Design of IntegratedControl for Multi-Axis Motion Systems" proposes three when the linear axis of a sampling period the linkage site to the actual cutter tool path command at the current interpolation curve tangents from approximately contour error; Liu Yi et al in "Journal of system simulation" academic Journal (2009,21 (11) = 3381-3386 published in the) paper, "based on the work coordinate system and simulation of the optimum contour", the proposed through the establishment of Frenet coordinate system on the work coordinate system as desired trajectory during the third linear axis linkage with the position following error working coordinate system to the normal component of the error approximation contour; Gongshi Hua et al academic journal "electrical automation" (2010,32 (4): 11-13) published the paper "cam grinding contour error adaptive control ", for a linear axis and a rotational axis machining, to provide a camshaft grinding contour error expression in polar coordinates, but the error profile 模型描述较为抽象。 Model describes more abstract.

[0004] 综上所述,在圆柱凸轮零件数控加工中,如何在每个采样周期,直观的描述并高精度的计算轮廓误差和轮廓误差补偿量,对A轴、X轴、Y轴伺服执行机构进行补偿控制,对于增强各进给轴之间匹配程度,提高轮廓精度具有重要意义,已成为本领域技术人员急需解决的技术问题。 [0004] In summary, the cylindrical cam part NC machining, how each sampling period, intuitive and highly accurate description of the error and calculate the contour profile error compensation amount,, X-axis, Y-axis servo is performed on the A axis control mechanism to compensate for the importance of enhancing the degree of match between each feed shaft, improve contour accuracy, it has become known to those skilled in urgent need of technical problems to solve. 发明内容[0005] 本发明的目的是提供一种能克服现有技术的不足、轮廓误差描述直观、计算精度高、轮廓误差补偿控制简单的面向圆柱凸轮加工的三轴联动轮廓误差补偿控制方法。 SUMMARY OF THE INVENTION [0005] The object of the present invention is to provide a overcome the deficiencies of the prior art, described an intuitive contour error, high precision, the profile error compensation control for simple processing of three-axis cylindrical cam contour error compensation control method. 其技术方案为: The technical proposal is:

[0006] 针对A轴、X轴、Y轴联动,在插补加工过程中进行轮廓误差计算和轮廓误差补偿,其特征在于包括以下步骤: [0006] For the A-axis, X-axis, Y-axis, the contour profile error compensation and error calculation in the interpolation process, characterized by comprising the steps of:

[0007] I)在对圆柱凸轮轮廓线刀具轨迹插补加工的每个采样周期,一方面,在机床坐标系下,经A轴、X轴、Y轴各自的位置传感器检测当前各轴工作台实际位置,得到实际刀位点R(RA,Rx,Ry)坐标,计算得到A轴、X轴、Y轴的跟随误差,分别记为EA、Ex、Ey ;另一方面,将机床坐标系下实际刀位点R(Ra,Rx, Ry)转化到空间直角坐标系Oxyz下,得到对应的实际刀位点R' (Rx' , R/ ,Rz')坐标,其中Rx' = Rx, R/ =Ry,Rz' = Ry • tgRA; [0008] 2)在空间直角坐标系Oxyz下,找到圆柱凸轮轮廓线刀具轨迹上距当前实际刀位点R' OV,R/,Rz')最近的两个插补点pa、Pb,将实际刀位点R'到插补点pa、Pb连线PaPb之距离近似为轮廓误差e,,将轮廓误差e,沿X轴、Y轴、Z轴分解得到、丨、e;、 [0007] I) at each sampling period of the cylindrical cam profile toolpath interpolation processing, on the one hand, in the machine coordinate system, the A-axis, X-axis, Y-axis sensor detects the current position of each of the respective axis table the actual position, and the actual tool locus R (RA, Rx, Ry) coordinates, axis a is calculated, X-axis, Y-axis following error, denoted as EA, Ex, Ey; on the other hand, the lower the machine coordinate system the actual tool locus R (Ra, Rx, Ry) was transformed into the spatial Cartesian coordinate system Oxyz, to give the corresponding actual tool locus R '(Rx', R /, Rz ') coordinates, where Rx' = Rx, R / = Ry, Rz '= Ry • tgRA; [0008] 2) at spatial Cartesian coordinate system Oxyz, found on a cylindrical cam profile tool path from the current actual tool locus R' OV, R /, Rz ') nearest two interpolating points pa, Pb, actual tool locus R 'to the interpolation point pa, Pb distance PaPb connecting the contour error is approximately the contour error e ,, e, along the X axis, Y axis, Z axis decomposition , Shu, e ;,

e J ; e J;

[0009] 3)将空间直角坐标系Oxyz下轮廓误差e ' ( e J,e y',e J )转化到机床坐 [0009] 3) The lower space Cartesian coordinate system Oxyz contour error e '(e J, e y', e J) into the machine coordinate conversion

6:' 6: '

标系下,得到A轴、X轴、Y轴对应的轮廓误差e (eA,ex,ey),分别为~ = 扠JT,ex = Index system, to give the A-axis, X-axis, Y-axis corresponds to the contour of the error e (eA, ex, ey), respectively, fork = ~ JT, ex =

S S

e ' , e = e '; e ', e = e';

x7y y , x7y y,

[0010] 4)借用A轴、X轴、Y轴进给系统各自跟随误差PID位置控制器中的比例系数KpA、Kpx、Kpy,来计算沿A轴、X轴、Y轴的轮廓误差补偿量,Cea= e A • KpA, Cex= ex • Kpx • w, CEy=ey • Kpy • w,其中w为引入的比例缩放因子,用来控制轮廓误差补偿程度强弱,在0. 9〜 [0010] 4) A borrow axis, X axis, Y axis feed system follow each scale factor KpA position error PID controller, Kpx, Kpy, calculated along the A axis, X-axis, Y-axis error compensation profile of , Cea = e a • KpA, Cex = ex • Kpx • w, CEy = ey • Kpy • w, where w is the ratio of a scaling factor is introduced for controlling the degree of strength of the profile error compensation in 0. 9~

I. I之间取值;然后将轮廓误差补偿量CEA、CEX、CEy分别叠加到A轴、X轴、Y轴对跟随误差的位置控制量中,并将叠加结果输出到A轴、X轴、Y轴的伺服执行机构进行轮廓误差补偿控制。 I. value between I; and the contour error compensation amount CEA, CEX, CEy are superimposed axis A, X axis, Y-axis position control in the following error amount, and outputs the result to the A-axis is superimposed, X-axis , the Y-axis servo actuator contour error compensation control.

[0011] 本发明与现有方法相比,优点是:在用A旋转轴、X直线轴、Y直线轴联动加工圆柱凸轮时,除了机床坐标系,还建立了空间直角坐标系Oxyz,将机床坐标系下抽象的轮廓误差转化到Oxyz坐标系下描述,使轮廓误差描述直观;在空间直角坐标系Oxyz下,用当前实际刀位点到所跟踪刀具轨迹曲线上最近的两个插补点连线之距离近似为轮廓误差,所以轮廓误差计算方法简单,计算精度高;引入比例缩放因子,并借用各轴跟随误差位置控制器中比例系数,使轮廓误差补偿量计算方法简单、有效。 [0011] Compared with the prior methods of the present invention, advantages are: when a rotation shaft A, X linear axis, Y-axis linear machining cylindrical cam, in addition to the machine coordinate system, also established a Cartesian coordinate system Oxyz space, the machine abstract coordinate system of the contour error is transformed into a coordinate system Oxyz described in the description of the error profile directly; in spatial rectangular coordinate system Oxyz, the actual tool with the current site to the nearest two points connected to the tool path the interpolation curve being tracked the contour line is approximately the distance error, the error calculation method for simple contours, high accuracy; scaling factor is introduced, and a position controller error borrow scale factor for each axis to follow the contour error compensation amount calculating method is simple and effective.

附图说明 BRIEF DESCRIPTION

[0012] 图I是本发明的流程图。 [0012] Figure I is a flow chart of the present invention.

[0013] 图2是本发明的圆柱凸轮加工时机床坐标系和空间直角坐标系图。 [0013] FIG. 2 is a cylindrical cam according to the present invention, the spatial processing machine coordinate system and the Cartesian coordinate system in FIG.

[0014] 图3是本发明的面向圆柱凸轮加工的在空间直角坐标系下轮廓误差计算方法示意图。 [0014] FIG. 3 is a schematic outline calculation error in the spatial Cartesian coordinate system oriented cylindrical cam processing method of the present invention.

[0015] 图4是本发明的面向圆柱凸轮加工的三轴联动轮廓误差计算补偿程序流程图。 [0015] FIG. 4 is a process for the three-axis cylindrical cam contour error compensation procedure according to the present invention calculates a flowchart.

[0016] 图5是采用本发明的三轴联动数控运动平台硬件结构图。 [0016] FIG. 5 is a three-axis NC motion platform hardware configuration diagram of the present invention.

[0017] 图6是一段圆柱凸轮轮廓线刀具轨迹。 [0017] FIG. 6 is a section of a cylindrical cam profile toolpath. [0018] 图7是插补跟踪图6所示刀具轨迹时轮廓误差图。 [0018] FIG. 7 is a tool path contour interpolation tracking error shown in FIG. 6 FIG.

[0019] 图中:R'、实际刀位点Pa、插补点Pb、插补点P。 [0019] FIG: R ', the actual cutter location points Pa, interpolation point Pb, interpolation point P. 、插补点L、刀具轨迹 , Interpolation point L, tool path

具体实施方式 detailed description

[0020] 针对用A轴、X轴、Y轴联动加工圆柱凸轮,下面结合图I〜4对本发明做进一步详细描述: [0020] A shaft for use, X-axis, Y-axis machining cylindrical cam further below in connection with FIG. I~4 detailed description of the invention:

[0021] I)如图2所示,在用A轴、X轴、Y轴联动加工圆柱凸轮时,X直线轴与Y直线轴垂直,A轴为绕X轴的旋转轴,以此建立机床坐标系;建立的空间直角坐标系Oxyz中,除了联动加工的X直线轴、Y直线轴,还虚拟了Z直线轴,且X轴、Y轴、Z轴符合右手直角笛卡儿坐标系。 [0021] I) As shown, when using the A-axis, the X-axis, Y-axis machining cylindrical cam, the linear X axis and Y axis perpendicular to the linear, A-axis as a rotation axis around the X axis, in order to establish the machine 2 coordinate system; Cartesian coordinate system Oxyz space created in addition to the X-axis machining linear axis, Y-axis linear, but also the virtual straight line Z axis and X axis, Y axis, Z-axis in line with right-handed rectangular Cartesian coordinate system.

[0022] 在对圆柱凸轮轮廓线刀具轨迹插补加工的每个采样周期,在机床坐标系下,经A轴、X轴、Y轴各自的位置传感器(如圆光栅、光栅尺等)检测当前各轴工作台实际位置,得到实际刀位点R(Ra,Rx, Ry)坐标,与A轴、X轴、Y轴的插补指令点相减计算得到A轴、X轴、Y轴的跟随误差,分别记为EA、Ex、Ey ;另一方面,将机床坐标系下实际刀位点R(Ra,Rx, Ry)坐标转化到空间直角坐标系Oxyz下,得到对应的实际刀位点R' (Rx/ , R/,Rz')坐标,其中 [0022] in each sampling period cylindrical cam profile toolpath interpolation processing in the machine coordinate system, the A-axis, X-axis, Y-axis position of each sensor (e.g., circular grating, grating, etc.) detects the current the actual position of each axis table, and the actual tool locus R (Ra, Rx, Ry) coordinates, and a-axis interpolation instruction of X-axis, Y-axis calculated by subtracting the axis a, following the X-axis, Y-axis error, denoted as EA, Ex, Ey; on the other hand, the actual machine coordinate system at the tool site R (Ra, Rx, Ry) to the lower space coordinates into Cartesian coordinate system Oxyz, the actual tool position to give the corresponding point R '(Rx /, R /, Rz') coordinates, wherein

[0023] Rx' = Rx (I) [0023] Rx '= Rx (I)

[0024] R/ = Ry (2) [0024] R / = Ry (2)

[0025] Rz' = Ry • tgRA (3) [0025] Rz '= Ry • tgRA (3)

[0026] 2)如图3所示,在空间直角坐标系Oxyz下,设某圆柱凸轮轮廓线刀具轨迹为L,当前实际刀位点为R',找到圆柱凸轮轮廓线刀具轨迹L上距当前实际刀位点R'最近的两个插补点M丄PaPb,则在Oxyz坐标系下轮廓误差e ' M,将轮廓误差e丨沿X轴、Y轴、Z轴分解得到e x'、e/、e z'。 [0026] 2) 3, in the Cartesian coordinate system Oxyz space, is provided a cylindrical cam profile for the tool path L, the current actual tool locus is R ', found on a cylindrical cam profile L from the current toolpath the actual tool locus R 'latest two interpolation points M Shang PaPb, in the coordinate system Oxyz contour error e' M, Shu contour error e along the X axis, Y axis, Z axis decomposed e x ', e /, e z '.

[0027] 3)将空间直角坐标系Oxyz下轮廓误差e ' ( e x',e /,e z')转化到机床坐标系下,得到A轴、X轴、Y轴对应的轮廓误差e (eA, ex, ey),分别为 [0027] 3) The lower space Cartesian coordinate system Oxyz contour error e '(e x', e /, e z ') is transformed into the machine coordinate system, to give the A-axis, X axis, Y axis corresponds to the contour error e ( eA, ex, ey), respectively,

[0028] [0028]

S ' ,、 S ',,

sA - arctgC4) sA - arctgC4)

[0029] ex= e / (5) [0029] ex = e / (5)

[0030] ey= e / (6) [0030] ey = e / (6)

[0031 ] 4)设A轴进给系统跟随误差PID位置控制器中比例系数为KpA,积分系数为KiA,微分系数为KdA ;设X轴进给系统跟随误差PID位置控制器中比例系数为Kpx,积分系数为Kix,微分系数为Kdx ;设Y轴进给系统跟随误差PID位置控制器中比例系数为Kpy,积分系数为Kiy,微分系数为Kdy ;则容易计算在该采样周期A轴、X轴、Y轴各自的跟随误差位置控制量,设分别为CEA、CEx、CEy ;借用A轴、X轴、Y轴进给系统各自跟随误差PID位置控制器中的比例系数KpA、Kpx, Kpy,并引入轮廓误差补偿比例缩放因子w,其中w在0. 9〜I. I之间依实际补偿效果取值,来计算沿A轴、X轴、Y轴的轮廓误差补偿量: [0031] 4) A-axis feed system is provided to follow the error position PID controller scale factor KpA, the integral coefficient KiA, the differential coefficient of kdA; X-axis feed system is provided to follow the error position PID controller scale factor Kpx , Kix integral coefficient, the differential coefficient of Kdx; Let Y-axis feed system following error position PID controller KPY scale factor, the integral factor of KIY, the differential coefficient is KDY; it is easy to calculate the sampling period axis A, X axis, the position error of the respective control amounts to follow the Y-axis, are disposed CEA, CEx, CEy; borrow a axis, X axis, Y axis feed system follow each scale factor KpA position error PID controller, Kpx, Kpy, introducing profile error compensation and scaling factor w, wherein w between the I compensation effect according to the actual value in 0. 9~I, calculated along the a axis, X-axis, Y-axis error compensation profile of:

[0032] Cea= eA*KpA (7) [0032] Cea = eA * KpA (7)

[0033] Cex= ex • Kpx • w (8)、[0034] Ccy= ey • Kpy • w (9) [0033] Cex = ex • Kpx • w (8), [0034] Ccy = ey • Kpy • w (9)

[0035] 然后将各轴轮廓误差补偿量和跟随误差位置控制量相叠加,A轴的叠加结果为(CEA+CEA),X轴的叠加结果为(CEx+Cex),Y轴的叠加结果为(CEy+CEy),最后将叠加结果分别输出到A轴、X轴、Y轴的伺服执行机构进行轮廓误差补偿控制。 [0035] Then contour error compensation amount and the following error position control of each axis is superimposed, superimposing the results of the A-axis is (CEA + CEA), superimposing the results of the X axis is (CEx + Cex), superimposing the results of the Y-axis of (CEy + CEy), and finally outputs the result of the superposition to the a-axis, X-axis, Y-axis servo actuator contour error compensation control.

[0036] 本发明可在图5所示的A轴、X轴、Y轴三轴联动数控运动平台的数控系统中获得实现:由工控机和可编程DSP运动控制卡构成上下位机结构,通过USB实现数据通信,采样周期等于插补周期,均为T = 4ms。 [0036] The present invention may be implemented is obtained in the A-axis as shown in FIG. 5, X axis, Y axis motion platform axis NC numerical control system: composed of upper and lower machine structure consisting of IPC and programmable DSP motion control card, through USB data communication, the sampling period is equal to the interpolation cycle, both T = 4ms. X轴、Y轴均用交流伺服电机和滚珠丝杠螺母副拖动工作台运动,在每个采样周期用光栅尺检测工作台实际位置;A轴用交流伺服电机和蜗杆蜗轮传动副拖动工作台旋转运动,在每个采样周期用圆光栅检测工作台实际位置。 X-axis, Y-axis motor are AC servo ball screw nut and the sub-drag table movement, at each sampling period grating by detecting the actual position of the stage; A worm gear shaft of the motor and the sub-drag a servo with AC table rotation motion, with the actual position of the table circular grating detected in each sampling period. 在可编程DSP运动控制卡中实现加减速控制、插补算法、跟随误差位置控制、轮廓误差计算及补偿控制等。 Motion control implemented in programmable DSP card control acceleration and deceleration, interpolation algorithm, to follow the position control error, error calculation and compensation profile control.

[0037] 图6为一段圆柱凸轮轮廓线刀具轨迹,用参数曲线形式描述:在A轴、X轴、Y轴 [0037] FIG. 6 is a section of a cylindrical cam profile tool path, curve described by the formal parameters: A axis, X axis, Y axis

X = IOOf X = IOOf

联动的机床坐标系下描述为少=35cos2^,(0</<1);在图2所示建立的空间直角坐标系 Describe the linkage machine coordinate system less = 35cos2 ^, (0 </ <1); rectangular coordinate system established in the space shown in FIG. 2

A = Int A = Int

X - IOOf X - IOOf

Oxyz 下描述为< y = 35 cos 2^,(0 < / < I) □z = 3 5 sin 2^/ As described in the Oxyz <y = 35 cos 2 ^, (0 </ <I) □ z = 3 5 sin 2 ^ /

[0038] 图7为插补跟踪图6所示轮廓线刀具轨迹时轮廓误差图。 [0038] FIG. 7 is shown when the tool path contour tracing the contour interpolation error FIG. 6 FIG. 其中,图7中datal为不采取本发明所提出轮廓误差计算、补偿控制方法时轮廓误差图,最大轮廓误差为0. 112mm左右。 Wherein, in FIG. 7 is not taken datal present invention proposes contour error calculation, when the compensation control method of FIG contour error, the maximum error is approximately contour 0. 112mm. 当采用本发明所提出轮廓误差计算、补偿控制方法时(令W= I. 05),轮廓误差曲线如图7中data2所示,最大轮廓误差为0. 065mm左右。 When the present invention proposes contour error calculation, when the compensation control method (so W = I. 05), the profile error curve as shown in FIG. 7 DATA2, maximum profile error is approximately 0. 065mm.

[0039] 对比说明,本发明所提出的针对A轴、X轴、Y轴联动的轮廓误差计算、补偿控制方法非常有效,可以提高轮廓精度,减小轮廓误差,增强A轴、X轴、Y轴之间匹配程度。 [0039] comparative illustration, the present invention is proposed for the A-axis, X-axis, Y-axis contour error calculation, compensation control method is very effective, can improve the accuracy of the contour, the contour error is reduced, enhancing the axis A, X, Y, the degree of matching between the shafts. 本发明适合于旋转轴和直线轴联动控制场合,可在圆柱凸轮加工的数控系统和数控机床中应用和推广。 The present invention is suitable for joint rotation axis and linear axis control applications, and can be applied to a cylindrical cam promotion processing numerical control system and the NC machine tool.

Claims (1)

  1. 1. ー种面向圆柱凸轮加工的三轴联动轮廓误差补偿控制方法,针对A轴、X轴、Y轴联动,在插补加工过程中进行轮廓误差计算和轮廓误差补偿,其特征在于包括以下步骤:I)在对圆柱凸轮轮廓线刀具轨迹插补加工的每个采样周期,一方面,在机床坐标系下,经A轴、X轴、Y轴各自的位置传感器检测当前各轴工作台实际位置,得到实际刀位点R(Ra,Rx, Ry)坐标,计算得到A轴、X轴、Y轴的跟随误差,分别记为Ea、Ex、Ey ;另ー方面,将机床坐标系下实际刀位点R(Ra,Rx, Ry)转化到空间直角坐标系Oxyz下,得到对应的实际刀位点R' (Rx' ,R/,RZ')坐标,其中Rx' = Rx, R/ =Ry,Rz' = Ry · tgRA ;2)在空间直角坐标系Oxyz下,找到圆柱凸轮轮廓线刀具轨迹上距当前实际刀位点R' OV , R/,RZ')最近的两个插补点Pa、Pb,将实际刀位点V到插补点Pa、Pb连线PaPb之距离近似为轮廓误差ε ,,将轮廓误差ε Axis linkage contour error compensation control method for a cylindrical cam ー kinds of processing, for the A-axis, X-axis, Y-axis, the contour profile error compensation and error calculation in the interpolation process, characterized by comprising the steps of : I) at each sampling period of the cylindrical cam profile toolpath interpolation processing, on the one hand, in the machine coordinate system, the a-axis, X-axis, Y-axis position sensor for detecting the respective actual current position of each axis table , and the actual tool locus R (Ra, Rx, Ry) coordinates calculated a-axis, X-axis, the following error Y axis denoted as Ea, Ex, Ey; other ー aspect, the machine coordinate system the actual knife site R (Ra, Rx, Ry) is transformed into the spatial Cartesian coordinate system Oxyz, the obtained corresponding actual tool locus R '(Rx', R /, RZ ') coordinates, where Rx' = Rx, R / = Ry , Rz '= Ry · tgRA; 2) at the space Cartesian coordinate system Oxyz, the cylindrical cam profile found toolpath from the current actual tool locus R' OV, R /, RZ ') two nearest interpolation point Pa , Pb, V actual cutter sites into the interpolation points Pa, Pb distance PaPb connecting the contour approximation error ε ,, the contour error [epsilon] ,沿X轴、Y轴、Z轴分解得到εノへ'、り;3)将空间直角坐标系Oxyz下轮廓误差ε'(りへ'へ')转化到机床坐标系下,得到A轴、X轴、Y轴对应的轮廓误差ε ( ε Α,ε χ,ε y),分别为らε X = ε ノ, ε y = ε / ;4)借用A轴、X轴、Y轴进给系统各自跟随误差PID位置控制器中的比例系数KpA、Kpx, Kpy,来计算沿A 轴、X 轴、Y 轴的轮廓误差补偿量,Cea = εΑ· KpA, Cex= ε χ · Kpx · w, CEy = ε y · Kpy · w,其中w为引入的比例缩放因子,用来控制轮廓误差补偿程度強弱,在0. 9〜I. I之间取值;然后将轮廓误差补偿量CeA、CEX、CEy分别叠加到A轴、X轴、Y轴对跟随误差的位置控制量中,并将叠加结果输出到A轴、X轴、Y轴的伺服执行机构进行轮廓误差补偿控制。 Along the X axis, Y axis, Z axis decomposition [epsilon] Techno inverted V ', ri; 3) spatial rectangular coordinate system profile error ε Oxyz under' (ri understands 'inverted V') was transformed into the machine coordinate system, to give the A-axis, X-axis, Y-axis corresponds to the contour of the error ε (ε Α, ε χ, ε y), respectively ra ε X = ε Techno, ε y = ε /; 4) borrow a-axis, X axis, Y axis feed system Follow the respective scale factor errors KpA PID position controller, Kpx, Kpy, calculated along the a axis, X-axis, the contour of the Y-axis error compensation, Cea = εΑ · KpA, Cex = ε χ · Kpx · w, CEy = ε y · Kpy · w, where w is the ratio of a scaling factor is introduced for controlling the degree of profile error compensation intensity, I is the value between 0. 9~I;. then the profile error compensation amount CeA, CEX, CEy are respectively superposed to the axis a, X axis, Y-axis position control amount of the following error, and outputs the result to the a-axis is superimposed, X-axis, Y-axis servo actuator contour error compensation control.
CN 201210073867 2012-03-18 2012-03-18 Three-axis linkage contour error compensation control method for cylinder cam machining CN102662351B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210073867 CN102662351B (en) 2012-03-18 2012-03-18 Three-axis linkage contour error compensation control method for cylinder cam machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210073867 CN102662351B (en) 2012-03-18 2012-03-18 Three-axis linkage contour error compensation control method for cylinder cam machining

Publications (2)

Publication Number Publication Date
CN102662351A true true CN102662351A (en) 2012-09-12
CN102662351B CN102662351B (en) 2014-03-19

Family

ID=46771857

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210073867 CN102662351B (en) 2012-03-18 2012-03-18 Three-axis linkage contour error compensation control method for cylinder cam machining

Country Status (1)

Country Link
CN (1) CN102662351B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103135498A (en) * 2013-01-25 2013-06-05 南京工程学院 Method and device for contour machining radius error compensation control of numerical control machine tool
CN104656560A (en) * 2013-11-19 2015-05-27 发那科株式会社 Machine tool for chamfering and chamfering method
CN106354092A (en) * 2016-09-24 2017-01-25 大连理工大学 Follow-up and contour error adaptive real-time compensation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6269284B1 (en) * 1997-05-09 2001-07-31 Kam C. Lau Real time machine tool error correction using global differential wet modeling
CN101308379A (en) * 2007-05-17 2008-11-19 发那科株式会社 Numerical control method for five-axis processing machine
JP2011034434A (en) * 2009-08-04 2011-02-17 Fanuc Ltd Numerical control device with error compensating means
CN101980091A (en) * 2010-08-23 2011-02-23 西安交通大学苏州研究院 Method for compensating central point of double-turntable five-axis linked numerical control machining rotary tool
CN102087517A (en) * 2010-07-19 2011-06-08 朴承镐 Method for reducing speed interpolation error and hardware system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6269284B1 (en) * 1997-05-09 2001-07-31 Kam C. Lau Real time machine tool error correction using global differential wet modeling
CN101308379A (en) * 2007-05-17 2008-11-19 发那科株式会社 Numerical control method for five-axis processing machine
JP2011034434A (en) * 2009-08-04 2011-02-17 Fanuc Ltd Numerical control device with error compensating means
CN102087517A (en) * 2010-07-19 2011-06-08 朴承镐 Method for reducing speed interpolation error and hardware system
CN101980091A (en) * 2010-08-23 2011-02-23 西安交通大学苏州研究院 Method for compensating central point of double-turntable five-axis linked numerical control machining rotary tool

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
李静: "凸轮非圆磨削动态误差预测及补偿", 《制造技术与机床》, 2 October 2009 (2009-10-02) *
莫姣: "凸轮轴形位误差在线测量方法的研究", 《中国优秀硕士学位论文全文数据库》, 15 January 2012 (2012-01-15), pages 21 - 43 *
赵国勇: "基于曲线插补的多轴联动交叉耦合控制方法", 《计算机集成制造系统》, 30 September 2011 (2011-09-30) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103135498A (en) * 2013-01-25 2013-06-05 南京工程学院 Method and device for contour machining radius error compensation control of numerical control machine tool
CN103135498B (en) * 2013-01-25 2015-07-29 南京工程学院 Numerical control machine that contouring radius error compensation control method and apparatus
CN104656560A (en) * 2013-11-19 2015-05-27 发那科株式会社 Machine tool for chamfering and chamfering method
US9690284B2 (en) 2013-11-19 2017-06-27 Fanuc Corporation Machine tool for chamfering and chamfering method
CN106354092A (en) * 2016-09-24 2017-01-25 大连理工大学 Follow-up and contour error adaptive real-time compensation method
CN106354092B (en) * 2016-09-24 2018-08-07 大连理工大学 Species follow the contour of the error compensating method of an adaptive real-time

Also Published As

Publication number Publication date Type
CN102662351B (en) 2014-03-19 grant

Similar Documents

Publication Publication Date Title
Cheng et al. Motion controller design for contour-following tasks based on real-time contour error estimation
Sencer et al. Modeling and control of contouring errors for five-axis machine tools—part I: modeling
CN101980091A (en) Method for compensating central point of double-turntable five-axis linked numerical control machining rotary tool
CN101859126A (en) Five-coordinate numerical control machining cutter path changing method
Lo Real-time generation and control of cutter path for 5-axis CNC machining
CN103056759A (en) Robot grinding system based on feedback of sensor
CN102929210A (en) Control and optimization system for feature-based numerical control machining process and control and optimization method therefor
CN102129232A (en) Five-axis side milling machining process parameter design method
Habibi et al. Tool deflection and geometrical error compensation by tool path modification
Huo et al. Precision contouring control of machine tools
CN1540469A (en) Method and device of three coordinate circular interpolations in use for digital control machine tool
JP2006155530A (en) Numerical controller and numerical control machine tool
Tang et al. Multiaxis contour control—The state of the art
Sun et al. A synchronization approach for the minimization of contouring errors of CNC machine tools
Zhu et al. Formulating the swept envelope of rotary cutter undergoing general spatial motion for multi-axis NC machining
CN101976060A (en) NURBS (Non-Uniform Rational B-Spline) interpolation method based on machine tool dynamics and curve characteristics
JPH11309646A (en) Method and device for controlling servo motor in orbit working with bite tool
CN102269984A (en) Post Processing Method axis CNC machining
CN103878666A (en) Free-form surface robot polishing system
Tutunea-Fatan et al. Determination of geometry-based errors for interpolated tool paths in five-axis surface machining
CN102049719A (en) Numerically controlled grinding machining method of camshaft
Conway et al. Performance analysis of cross-coupled controllers for CNC machines based upon precise real-time contour error measurement
CN1624613A (en) Four-axle linked digital controlled processing post processing method and its control system
CN101976055A (en) Feed rate control system for five-axis digital control processing
CN103699056A (en) Real-time smooth transition interpolation method of small high-speed and high-accuracy numerical control machining line segment

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
EXPY Termination of patent right or utility model