CN102659099A - Preparation method of anisotropic graphene foam - Google Patents
Preparation method of anisotropic graphene foam Download PDFInfo
- Publication number
- CN102659099A CN102659099A CN201210171707XA CN201210171707A CN102659099A CN 102659099 A CN102659099 A CN 102659099A CN 201210171707X A CN201210171707X A CN 201210171707XA CN 201210171707 A CN201210171707 A CN 201210171707A CN 102659099 A CN102659099 A CN 102659099A
- Authority
- CN
- China
- Prior art keywords
- graphene
- preparation
- anisotropy
- prepare
- foam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 131
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 100
- 239000006260 foam Substances 0.000 title claims abstract description 48
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 52
- 239000006185 dispersion Substances 0.000 claims abstract description 27
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 25
- 239000010439 graphite Substances 0.000 claims abstract description 25
- 239000007788 liquid Substances 0.000 claims abstract description 7
- 230000009467 reduction Effects 0.000 claims abstract description 4
- 239000000126 substance Substances 0.000 claims abstract description 4
- 239000007791 liquid phase Substances 0.000 claims abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 7
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 5
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 230000005855 radiation Effects 0.000 claims description 4
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims description 3
- 238000005189 flocculation Methods 0.000 claims description 3
- 230000016615 flocculation Effects 0.000 claims description 3
- 239000001509 sodium citrate Substances 0.000 claims description 3
- 238000010907 mechanical stirring Methods 0.000 claims description 2
- 235000010378 sodium ascorbate Nutrition 0.000 claims description 2
- PPASLZSBLFJQEF-RKJRWTFHSA-M sodium ascorbate Substances [Na+].OC[C@@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RKJRWTFHSA-M 0.000 claims description 2
- 229960005055 sodium ascorbate Drugs 0.000 claims description 2
- PPASLZSBLFJQEF-RXSVEWSESA-M sodium-L-ascorbate Chemical compound [Na+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RXSVEWSESA-M 0.000 claims description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims 2
- 239000013543 active substance Substances 0.000 claims 2
- 239000003795 chemical substances by application Substances 0.000 claims 2
- 230000002829 reductive effect Effects 0.000 claims 2
- 230000003019 stabilising effect Effects 0.000 claims 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims 1
- 229920000642 polymer Polymers 0.000 claims 1
- -1 polyoxyethylene Polymers 0.000 claims 1
- 230000001681 protective effect Effects 0.000 claims 1
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 claims 1
- 229940038773 trisodium citrate Drugs 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 239000004094 surface-active agent Substances 0.000 abstract description 7
- 239000003638 chemical reducing agent Substances 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 2
- 239000003223 protective agent Substances 0.000 abstract description 2
- 230000006641 stabilisation Effects 0.000 abstract description 2
- 238000011105 stabilization Methods 0.000 abstract description 2
- 239000000725 suspension Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 239000006262 metallic foam Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- BZSXEZOLBIJVQK-UHFFFAOYSA-N 2-methylsulfonylbenzoic acid Chemical compound CS(=O)(=O)C1=CC=CC=C1C(O)=O BZSXEZOLBIJVQK-UHFFFAOYSA-N 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 239000012065 filter cake Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- PWKSKIMOESPYIA-UHFFFAOYSA-N 2-acetamido-3-sulfanylpropanoic acid Chemical group CC(=O)NC(CS)C(O)=O PWKSKIMOESPYIA-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 235000013878 L-cysteine Nutrition 0.000 description 2
- 239000004201 L-cysteine Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 229920003081 Povidone K 30 Polymers 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000036632 reaction speed Effects 0.000 description 2
- 238000001338 self-assembly Methods 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 235000010344 sodium nitrate Nutrition 0.000 description 2
- 239000004317 sodium nitrate Substances 0.000 description 2
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002238 carbon nanotube film Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005520 electrodynamics Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 235000011083 sodium citrates Nutrition 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
本发明涉及一种各向异性石墨烯泡沫的制备方法,该方法包括以下步骤:(1)制备氧化石墨;(2)制备氧化石墨烯分散液:将步骤(1)中制备的氧化石墨分散在溶液中,制备氧化石墨烯分散液;(3)制备石墨烯分散液:向步骤2)中的分散液中添加表面活性剂或本身具有一定表面活性的还原剂作为保护剂,通过化学液相还原制备石墨烯分散液;(4)制备各向异性石墨烯泡沫:破坏原有的石墨烯稳定体系,使石墨烯自组装成各向异性泡沫。该方法制备所得的石墨烯泡沫由至少一层石墨烯结构单元组成,沿石墨烯生长方向和垂直于生长方向具有结构和特性的各向异性,比表面积在200-2000m2/g,沿石墨烯生长方向和垂直于生产方向的热导率差别达两个数量级。The present invention relates to a kind of preparation method of anisotropic graphene foam, and the method comprises the following steps: (1) prepare graphite oxide; (2) prepare graphene oxide dispersion liquid: disperse the graphite oxide prepared in step (1) in In the solution, prepare a graphene oxide dispersion; (3) prepare a graphene dispersion: add a surfactant or a reducing agent that itself has a certain surface activity to the dispersion in step 2) as a protective agent, through chemical liquid phase reduction Prepare graphene dispersion; (4) prepare anisotropic graphene foam: destroy the original graphene stabilization system, and make graphene self-assemble into anisotropic foam. The graphene foam prepared by the method is composed of at least one layer of graphene structural units, has structure and characteristic anisotropy along the graphene growth direction and perpendicular to the growth direction, and has a specific surface area of 200-2000m 2 /g. The thermal conductivity in the growth direction and perpendicular to the production direction differs by two orders of magnitude.
Description
技术领域 technical field
本发明涉及一种各向异性石墨烯泡沫的制备方法,属于新材料技术领域。The invention relates to a preparation method of anisotropic graphene foam, which belongs to the technical field of new materials.
背景技术 Background technique
新材料产业已成为进入21世纪以来发展最快的高新技术产业之一,也是各国竞相占领的技术高地。以石墨烯为代表的新型碳材料的研究获得一系列重大突破,2010年10月5日,英国曼彻斯特大学的物理学家安德烈·海姆(Andre Geim)教授和康斯坦丁·诺沃肖洛夫(Konstantin Novoselov)教授因从事石墨烯的研究并揭示了其性质而获得2010年诺贝尔物理学奖。The new material industry has become one of the fastest-growing high-tech industries since the 21st century, and it is also a technological highland that countries are competing to occupy. A series of major breakthroughs have been made in the research of new carbon materials represented by graphene. On October 5, 2010, Professor Andre Geim, a physicist at the University of Manchester, and Konstantin Novosho Professor Konstantin Novoselov won the 2010 Nobel Prize in Physics for his research on graphene and revealing its properties.
石墨烯是由碳原子按六边形晶格整齐排布而成的碳单质,结构非常稳定。研究表明,石墨烯的电子迁移率较高,能把电极做得更薄、更透明,良好的导电性及其对光的高透过性使其在液晶显示以及太阳能电池等领域独具优势。石墨烯薄膜具有与碳纳米管薄膜相比拟的场发射特性,在半导体器件和平板显示等方面具有非常广泛的应用前景;由于其独特的二维结构和优异的晶体学质量,为量子电动力学现象的研究提供了理想的平台,具有重要的理论研究价值。此外,石墨烯与塑料复合后,可使其成为导体并提高其机械性能和耐热性。石墨烯与塑料复合制成的新材料,轻巧而坚固,可应用于新一代人造卫星、飞机及汽车等交通工具。因而,石墨烯可望在高性能纳米电子器件、复合材料、气体传感器及能量存储等领域获得广泛的应用。Graphene is a simple carbon substance composed of carbon atoms arranged in a hexagonal lattice, and its structure is very stable. Studies have shown that graphene has high electron mobility, which can make electrodes thinner and more transparent. Its good electrical conductivity and high transparency to light make it unique in the fields of liquid crystal display and solar cells. Graphene film has field emission characteristics comparable to carbon nanotube films, and has very broad application prospects in semiconductor devices and flat panel displays; due to its unique two-dimensional structure and excellent crystallographic quality, it is a quantum electrodynamic phenomenon The research provides an ideal platform and has important theoretical research value. In addition, graphene, when combined with plastic, can make it a conductor and improve its mechanical properties and heat resistance. The new material made of graphene and plastic composite is light and strong, and can be applied to the new generation of artificial satellites, aircraft and automobiles and other vehicles. Therefore, graphene is expected to be widely used in high-performance nanoelectronic devices, composite materials, gas sensors, and energy storage.
石墨烯及其相关材料由于其优异的电学、热学和力学性能,引起了物理学界、材料学界的广泛关注。石墨烯的制备方法包括:微机械分离法,取向附生法—晶膜生长,加热SiC法,化学气相沉积法,化学还原法等。石墨烯是单分子平面材料,是一种二维结构,采用该二维结构材料构筑三维体材料的文献和专利尚很少见。2011年,中科院金属研究所沈阳材料科学国家(联合)实验室成会明、任文才带领研究团队制备出了石墨烯三维体材料(Chen ZP,Ren WC,GaoLB,Liu BL,Pei SF,Cheng HM,Three-dimensional flexible and conductiveinterconnected graphene networks grown by chemical vapour deposition.Nature Material,2011,10,424–428)。他们采用的方法是化学气相沉积:以铜或镍等泡沫金属为基体材料,单层碳原子附于泡沫金属的表面,这样,石墨烯体材料完整地复制了泡沫金属的结构;把铜或镍等基体金属材料蚀刻掉后,就得到了该石墨烯三维体材料。该方法采用了一种类似硬模板(以金属泡沫为模板)的方法制备出了三维石墨烯泡沫,但是化学气相沉积的方法,工艺条件较难控制,需要极为专业的人员精确调控,并且需要用铜或镍等泡沫金属作为硬模板,该硬模板的制备工艺较为复杂,价格较贵,且在蚀刻除去硬模板的过程中,可能形成一些影响石墨烯性能的缺陷。目前尚很少有采用自组装的方法来制备石墨烯泡沫,该方法相对于硬模板法而言,自组装法制备工艺更加简单,也没有环境污染的压力,且该方法能得到具有各向异性特征的石墨烯泡沫,对于发挥石墨烯的特性具有重要意义。Due to their excellent electrical, thermal and mechanical properties, graphene and its related materials have attracted extensive attention in the fields of physics and materials science. The preparation methods of graphene include: micro-mechanical separation method, orientation epitaxy-crystal film growth, heating SiC method, chemical vapor deposition method, chemical reduction method, etc. Graphene is a monomolecular planar material and a two-dimensional structure. There are few literatures and patents on the construction of three-dimensional materials using this two-dimensional structure material. In 2011, a research team led by Cheng Huiming and Ren Wencai of Shenyang National (Joint) Laboratory of Materials Science, Institute of Metal Research, Chinese Academy of Sciences prepared graphene three-dimensional materials (Chen ZP, Ren WC, GaoLB, Liu BL, Pei SF, Cheng HM , Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapor deposition. Nature Material, 2011, 10, 424–428). The method they used is chemical vapor deposition: using metal foam such as copper or nickel as the base material, a single layer of carbon atoms is attached to the surface of the metal foam, so that the graphene body material completely replicates the structure of the metal foam; After the matrix metal material is etched away, the three-dimensional graphene material is obtained. This method uses a method similar to a hard template (using metal foam as a template) to prepare a three-dimensional graphene foam, but the method of chemical vapor deposition, the process conditions are difficult to control, and it requires very professional personnel to precisely adjust and control. Foam metals such as copper or nickel are used as hard templates. The preparation process of the hard template is relatively complicated and expensive, and some defects that affect the performance of graphene may be formed during the process of etching and removing the hard template. At present, few self-assembly methods are used to prepare graphene foams. Compared with the hard template method, the self-assembly method has a simpler preparation process and no environmental pollution pressure, and this method can obtain anisotropic The characteristic graphene foam is of great significance for exerting the characteristics of graphene.
发明内容 Contents of the invention
本发明的目的是克服现有石墨烯制备方法中的不足,而提供一种各向异性石墨烯泡沫的制备方法,该方法未采用泡沫金属等基体材料,不需要除去金属泡沫模板,具有成本低廉、简单易行、可规模化生产等优点。The purpose of the present invention is to overcome the deficiencies in the existing graphene preparation method, and provide a kind of preparation method of anisotropic graphene foam, this method does not adopt matrix materials such as foam metal, does not need to remove metal foam template, has low cost , Simple and easy to implement, and can be produced on a large scale.
为实现本发明的目的,本发明的技术方案是:For realizing the purpose of the present invention, technical scheme of the present invention is:
一种各向异性石墨烯泡沫的制备方法,该方法包括以下步骤:A preparation method of anisotropic graphene foam, the method comprises the following steps:
(1)制备氧化石墨;(1) prepare graphite oxide;
(2)制备氧化石墨烯分散液:将步骤(1)中制备的氧化石墨分散在溶液中,制备氧化石墨烯分散液;(2) preparing a graphene oxide dispersion: dispersing the graphite oxide prepared in step (1) in the solution to prepare a graphene oxide dispersion;
(3)制备石墨烯分散液:向步骤2)中的分散液中添加表面活性剂或本身具有一定表面活性的还原剂作为保护剂,通过化学液相还原制备石墨烯分散液;(3) prepare graphene dispersion: in the dispersion in step 2), add surfactant or the reductant that itself has certain surface activity as protective agent, prepare graphene dispersion by chemical liquid phase reduction;
(4)制备各向异性石墨烯泡沫:破坏原有的石墨烯稳定体系,使石墨烯自组装成各向异性泡沫。(4) Preparation of anisotropic graphene foam: Destroy the original graphene stabilization system to make graphene self-assemble into anisotropic foam.
在本发明的一优选实施例中,制备具有各向异性石墨烯泡沫的方法,步骤1)中,制备氧化石墨的方法为Hummers方法、改良Hummers法、改良的Brodie方法、改良的Staudenmaier方法或Hofmann方法中的一种。In a preferred embodiment of the present invention, the method for preparing anisotropic graphene foam, in step 1), the method for preparing graphite oxide is Hummers method, improved Hummers method, improved Brodie method, improved Staudenmaier method or Hofmann one of the methods.
在本发明的一优选实施例中,所述的制备各向异性石墨烯泡沫的方法,步骤2)中,所述溶液为水或乙醇。In a preferred embodiment of the present invention, in step 2) of the method for preparing anisotropic graphene foam, the solution is water or ethanol.
在本发明的一优选实施例中,所述的制备各向异性石墨烯泡沫的方法,步骤2)中,所述氧化石墨分散采用的是超声,或机械搅拌或两者共同实施。In a preferred embodiment of the present invention, in the method for preparing anisotropic graphene foam, in step 2), the dispersion of graphite oxide is carried out by ultrasound, mechanical stirring or both.
在本发明的一优选实施例中,所述的制备各向异性石墨烯泡沫的方法,步骤3)中,所述的表面活性剂为聚乙二醇、聚乙烯吡咯烷酮或聚丙烯酸钠中的一种或两种以上的混合物。In a preferred embodiment of the present invention, in the method for preparing anisotropic graphene foam, in step 3), the surfactant is one of polyethylene glycol, polyvinylpyrrolidone or sodium polyacrylate a mixture of two or more.
在本发明的一优选实施例中,所述的制备各向异性石墨烯泡沫的方法,步骤3)中,所述的还原剂为L-半胱氨酸、柠檬酸、柠檬酸钠、抗坏血酸或抗坏血酸钠中的一种或两种以上的混合物。In a preferred embodiment of the present invention, in the method for preparing anisotropic graphene foam, in step 3), the reducing agent is L-cysteine, citric acid, sodium citrate, ascorbic acid or One or more mixtures of sodium ascorbate.
在本发明的一优选实施例中,所述的制备各向异性石墨烯泡沫的方法,步骤4)中,破坏原有的石墨烯稳定体系的方法采用的是加热、辐射或絮凝中的一者或两者以上的共同实施。In a preferred embodiment of the present invention, in the method for preparing anisotropic graphene foam, in step 4), the method of destroying the original graphene stable system adopts one of heating, radiation or flocculation or a common implementation of both.
本发明与现有制备方法相比,其优点和积极效果是:本发明公开的制备各向异性石墨烯泡沫的方法是以氧化石墨烯分散液为前驱体,通过对氧化石墨烯的还原,制备石墨烯分散液,再通过加热、辐射或絮凝等方法破坏原有的石墨烯稳定体系,将石墨烯由亲水性变为非亲水性,从而自组装成石墨烯泡沫,该石墨烯泡沫具有较大的比表面积(200-2000m2/g);石墨烯在组装的过程中,由于迁移阻力等原因,具有各向异性的特征,其沿石墨烯生长方向和垂直于生产方向的热导率差别达两个数量级,这是化学气相沉积法所做不到的,沿石墨烯生长方向的导热系数可达200W/m.k,而垂直于生产方向的热导率只有0.5W/m.k。Compared with the existing preparation method, the present invention has the advantages and positive effects as follows: the method for preparing anisotropic graphene foam disclosed by the present invention uses the graphene oxide dispersion as a precursor, and prepares the anisotropic graphene foam through the reduction of graphene oxide. Graphene dispersion liquid, and then destroy the original graphene stable system by heating, radiation or flocculation, and change graphene from hydrophilic to non-hydrophilic, thereby self-assembling into graphene foam, which has Large specific surface area (200-2000m 2 /g); during the assembly process of graphene, due to migration resistance and other reasons, it has anisotropic characteristics, and its thermal conductivity along the graphene growth direction and perpendicular to the production direction The difference is two orders of magnitude, which cannot be achieved by chemical vapor deposition. The thermal conductivity along the graphene growth direction can reach 200W/mk, while the thermal conductivity perpendicular to the production direction is only 0.5W/mk.
附图说明 Description of drawings
图1(a)为采用实例1制备的样品在合成液中的照片,图1(b)为实例1制备的样品取出后的照片。该石墨烯泡沫呈圆柱状,直径为3cm左右,高度为3.5cm,其比表面积为2012m2/g,沿石墨烯生长方向的导热系数为211W/m.k,垂直于生产方向的热导率为0.5W/m.k。Fig. 1(a) is a photo of the sample prepared in Example 1 in the synthesis solution, and Fig. 1(b) is a photo of the sample prepared in Example 1 after it is taken out. The graphene foam is cylindrical, with a diameter of about 3cm and a height of 3.5cm. Its specific surface area is 2012m 2 /g, the thermal conductivity along the graphene growth direction is 211W/mk, and the thermal conductivity perpendicular to the production direction is 0.5 W/mk.
图2(a)为采用实例2制备的样品照片,该石墨烯泡沫呈圆柱状,中部有凹陷,直径为2.8cm左右,高度约4cm。图2(b)为该样品的扫描电镜图,可以看出,该石墨烯泡沫呈明显的各向异性,其比表面积为536m2/g,沿石墨烯生长方向的导热系数为120W/m.k,垂直于生产方向的热导率为0.3W/m.k。Figure 2(a) is a photo of the sample prepared in Example 2. The graphene foam is cylindrical, with a depression in the middle, a diameter of about 2.8 cm, and a height of about 4 cm. Figure 2(b) is the scanning electron microscope image of the sample. It can be seen that the graphene foam is obviously anisotropic, its specific surface area is 536m 2 /g, and the thermal conductivity along the graphene growth direction is 120W/mk. The thermal conductivity perpendicular to the production direction is 0.3W/mk.
图3(a)为采用实例3制备的样品的扫描电镜图,从中可以看出,该石墨烯泡沫呈明显的层状结构,该石墨烯泡沫在干燥的过程中形成了裂痕,图3(b)为样品放大后的照片,可以明显看出该石墨烯向一个方向平铺,也呈现了明显的各向异性,其比表面积为365m2/g,沿石墨烯生长方向的导热系数为63W/m.k,垂直于生产方向的热导率为0.8W/m.k。Fig. 3 (a) is the scanning electron micrograph of the sample prepared by adopting example 3, as can be seen therefrom, this graphene foam is obvious lamellar structure, and this graphene foam has formed crack in the drying process, Fig. 3 (b ) is an enlarged photo of the sample. It can be clearly seen that the graphene is tiled in one direction and also presents obvious anisotropy. Its specific surface area is 365m 2 /g, and the thermal conductivity along the graphene growth direction is 63W/ mk, the thermal conductivity perpendicular to the production direction is 0.8W/mk.
图4(a)为采用实例4制备的样品的扫描电镜图,从中可以看出,该样品呈长条状。由于该石墨烯泡沫的前驱体浓度比较低,所以制备所得的石墨烯泡沫比较小。图4(b)为该样品端面的扫描电镜图,可以看出石墨烯泡沫各向异性特征非常显著,其比表面积为536m2/g,沿石墨烯生长方向的导热系数为870W/m.k,垂直于生产方向的热导率为0.7W/m.k。Fig. 4(a) is a scanning electron micrograph of the sample prepared in Example 4, from which it can be seen that the sample is in the shape of a strip. Since the precursor concentration of the graphene foam is relatively low, the prepared graphene foam is relatively small. Figure 4(b) is the scanning electron microscope image of the end face of the sample. It can be seen that the anisotropy of the graphene foam is very significant, its specific surface area is 536m 2 /g, and the thermal conductivity along the graphene growth direction is 870W/mk, and the vertical The thermal conductivity in the production direction is 0.7W/mk.
图5(a)、(b)为采用实例5制备的石墨烯泡沫不同角度的扫描电镜图,从中可以看出,(a)为石墨烯平铺方向,而(b)为平铺方向的侧面图,可以看出该石墨烯泡沫有呈明显的层状结构,具有各向异性特征,其比表面积为1036m2/g,沿石墨烯生长方向的导热系数为96W/m.k,垂直于生产方向的热导率为0.5W/m.k。Fig. 5 (a), (b) is the scanning electron micrograph of the different angles of the graphene foam that adopts example 5 to prepare, can find out therefrom, (a) is graphene tiling direction, and (b) is the side of tiling direction It can be seen that the graphene foam has an obvious layered structure and anisotropic characteristics. Its specific surface area is 1036m 2 /g, and its thermal conductivity along the graphene growth direction is 96W/mk. The thermal conductivity is 0.5W/mk.
具体实施方式 Detailed ways
下面结合具体实施例,进一步说明本发明。Below in conjunction with specific embodiment, further illustrate the present invention.
实施例1Example 1
采用Hummers法制备氧化石墨:在冰浴中,将10g石墨粉和5g硝酸钠与230mL浓硫酸混合均匀,搅拌中缓慢加入30g KMnO4;将其转移至35°C水浴中反应30分钟,再逐步加入460mL去离子水,当温度升至98℃后继续反应40分钟,混合物由棕褐色变成亮黄色,进一步加水稀释,并用质量分数为30%的H2O2溶液处理,中和未反应的高锰酸,离心过滤并反复洗涤滤饼,最后将其真空干燥即得到氧化石墨;将氧化石墨研碎,在水中配制2mg/mL悬浮液100mL,超声处理30min,得到均质稳定的氧化石墨烯胶状悬浮液;加入表面活性剂聚乙烯吡咯烷酮(PVP-K30)0.2g,超声溶解,加入1g L-半胱氨酸,得到稳定的石墨烯分散液;将该分散液加热到95℃继续反应2小时,冷却后,即可得到石墨烯泡沫。Adopt Hummers method to prepare graphite oxide: in ice bath, 10g graphite powder and 5g sodium nitrate are mixed with 230mL concentrated sulfuric acid, slowly add 30g KMnO in stirring; Add 460mL of deionized water, and continue to react for 40 minutes when the temperature rises to 98°C, the mixture turns from brown to bright yellow, further dilute with water, and treat with 30% H 2 O 2 solution to neutralize unreacted Permanganic acid, centrifugal filtration and repeated washing of the filter cake, and finally vacuum drying to obtain graphite oxide; grind graphite oxide, prepare 100 mL of 2 mg/mL suspension in water, and ultrasonically treat for 30 minutes to obtain homogeneous and stable graphene oxide Colloidal suspension; add 0.2g of surfactant polyvinylpyrrolidone (PVP-K30), ultrasonically dissolve, add 1g of L-cysteine to obtain a stable graphene dispersion; heat the dispersion to 95°C to continue the reaction 2 hours, after cooling, the graphene foam can be obtained.
实施例2Example 2
采用Staudenmaier法制备氧化石墨:首先在三口烧瓶中配制发烟硝酸(27ml)和浓硫酸(87.5ml)的混合液,然后将该三口烧瓶置在冰浴中冷却,随后的将5g石墨粉在搅拌下缓慢入(注意:需要一直将该三口烧瓶放于冰浴中,以减缓反应速度,避免爆炸),将55g氯酸钠加入上述反应体系中,继续搅拌反应96小时,反应结束后,将反应混合液过滤洗涤得到氧化石墨;将氧化石墨研碎,在水中配制2mg/mL悬浮液100mL,超声处理30min,得到均质稳定的氧化石墨烯胶状悬浮液;加入表面活性剂聚丙烯酸钠0.2g,超声溶解,加入2g柠檬酸钠;将该分散液加热到95℃反应4小时后,迅速冷却后,即可得到石墨烯泡沫。Adopt the Staudenmaier method to prepare graphite oxide: first prepare the mixed solution of fuming nitric acid (27ml) and the vitriol oil (87.5ml) in the three-necked flask, then place the three-necked flask to cool in an ice bath, then 5g graphite powder is stirred (note: the three-neck flask needs to be placed in an ice bath all the time to slow down the reaction speed and avoid explosion), add 55g of sodium chlorate to the above reaction system, and continue stirring for 96 hours. After the reaction is over, the reaction The mixture was filtered and washed to obtain graphite oxide; grind the graphite oxide, prepare 100 mL of a 2 mg/mL suspension in water, and ultrasonicate for 30 minutes to obtain a homogeneous and stable graphene oxide colloidal suspension; add 0.2 g of surfactant sodium polyacrylate , ultrasonically dissolved, and 2 g of sodium citrate was added; the dispersion was heated to 95° C. for 4 hours, and then rapidly cooled to obtain a graphene foam.
实施例3Example 3
采用改良的Brodie方法制备氧化石墨:在冰浴中,将10g石墨粉和85g氯酸钠与200mL发烟硝酸混合均匀,室温下搅拌24小时。反应结束后,离心过滤并反复洗涤滤饼,纯化,最后将其真空干燥即得到氧化石墨。将氧化石墨研碎,在水中配制2mg/mL悬浮液100mL,超声处理30min,得到均质稳定的氧化石墨烯胶状悬浮液。加入抗坏血酸2g,超声溶解,得到稳定的石墨烯分散液。将该石墨烯分散液微波辐射反应15min,冷却后12小时即可得到石墨烯泡沫。Graphite oxide was prepared by the modified Brodie method: 10 g of graphite powder and 85 g of sodium chlorate were mixed with 200 mL of fuming nitric acid in an ice bath, and stirred at room temperature for 24 hours. After the reaction is finished, centrifugally filter and repeatedly wash the filter cake, purify, and finally vacuum-dry it to obtain graphite oxide. Grind graphite oxide, prepare 100 mL of a 2 mg/mL suspension in water, and ultrasonically treat it for 30 min to obtain a homogeneous and stable graphene oxide colloidal suspension. Add 2 g of ascorbic acid, ultrasonically dissolve to obtain a stable graphene dispersion. The graphene dispersion was irradiated with microwaves for 15 minutes, and the graphene foam could be obtained in 12 hours after cooling.
实施例4Example 4
采用Hummers法制备氧化石墨:在冰浴中,将10g石墨粉和5g硝酸钠与230mL浓硫酸混合均匀,搅拌中缓慢加入30g KMnO4,将其转移至35°C水浴中反应30分钟,再逐步加入460mL去离子水,当温度升至98℃后继续反应40分钟,混合物由棕褐色变成亮黄色,进一步加水稀释,并用质量分数为30%的H2O2溶液处理,中和未反应的高锰酸,离心过滤并反复洗涤滤饼,最后将其真空干燥即得到氧化石墨;将氧化石墨研碎,在乙醇中配制0.5mg/mL悬浮液100mL,超声处理30min,得到均质稳定的氧化石墨烯胶状悬浮液;加入表面活性剂聚乙烯吡咯烷酮(PVP-K30)0.2g,超声溶解,加入1g L-半胱氨酸,得到稳定的石墨烯分散液;将该分散液加入絮凝剂氯化铝0.1g,12小时后即可得到石墨烯泡沫。Graphite oxide was prepared by the Hummers method: In an ice bath, mix 10g of graphite powder and 5g of sodium nitrate with 230mL of concentrated sulfuric acid, slowly add 30g of KMnO 4 while stirring, transfer it to a 35°C water bath for 30 minutes, and then gradually Add 460mL of deionized water, and continue to react for 40 minutes when the temperature rises to 98°C, the mixture turns from brown to bright yellow, further dilute with water, and treat with 30% H 2 O 2 solution to neutralize unreacted Permanganic acid, centrifugal filtration and repeated washing of the filter cake, and finally vacuum drying to obtain graphite oxide; grind graphite oxide, prepare 100 mL of 0.5 mg/mL suspension in ethanol, and ultrasonicate for 30 minutes to obtain homogeneous and stable oxide Graphene colloidal suspension; add surfactant polyvinylpyrrolidone (PVP-K30) 0.2g, ultrasonically dissolve, add 1g L-cysteine to obtain a stable graphene dispersion; add flocculant chlorine to the dispersion Aluminum chloride 0.1g, graphene foam can be obtained after 12 hours.
实施例5Example 5
采用Staudenmaier法制备氧化石墨:首先在三口烧瓶中配制发烟硝酸(27ml)和浓硫酸(87.5ml)的混合液,然后将该三口烧瓶置在冰浴中冷却,随后的将5g石墨粉在搅拌下缓慢入(注意:需要一直将该三口烧瓶放于冰浴中,以减缓反应速度,避免爆炸),将55g氯酸钠加入上述反应体系中,继续搅拌反应96小时,反应结束后,将反应混合液过滤洗涤得到氧化石墨;将氧化石墨研碎,在水中配制2mg/mL悬浮液100mL,超声兼搅拌处理60min,得到均质稳定的氧化石墨烯胶状悬浮液;加入表面活性剂聚乙二醇0.2g,超声溶解,加入2g L-半胱氨酸,得到稳定的石墨烯分散液;将该分散液微波辐射反应30min,缓慢冷却后,即可得到石墨烯泡沫。Adopt the Staudenmaier method to prepare graphite oxide: first prepare the mixed solution of fuming nitric acid (27ml) and the vitriol oil (87.5ml) in the three-necked flask, then place the three-necked flask to cool in an ice bath, then 5g graphite powder is stirred (note: the three-neck flask needs to be placed in an ice bath all the time to slow down the reaction speed and avoid explosion), add 55g of sodium chlorate to the above reaction system, and continue stirring for 96 hours. After the reaction is over, the reaction The mixed solution was filtered and washed to obtain graphite oxide; the graphite oxide was ground, and 100 mL of a 2 mg/mL suspension was prepared in water, and ultrasonic and stirred for 60 minutes to obtain a homogeneous and stable graphene oxide colloidal suspension; the surfactant polyethylene glycol was added Alcohol 0.2g, ultrasonically dissolved, adding 2g L-cysteine, to obtain a stable graphene dispersion; react the dispersion with microwave radiation for 30min, after slow cooling, the graphene foam can be obtained.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210171707.XA CN102659099B (en) | 2012-05-29 | 2012-05-29 | Preparation method of anisotropic graphene foam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210171707.XA CN102659099B (en) | 2012-05-29 | 2012-05-29 | Preparation method of anisotropic graphene foam |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102659099A true CN102659099A (en) | 2012-09-12 |
CN102659099B CN102659099B (en) | 2015-04-08 |
Family
ID=46768721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210171707.XA Expired - Fee Related CN102659099B (en) | 2012-05-29 | 2012-05-29 | Preparation method of anisotropic graphene foam |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102659099B (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102826543A (en) * | 2012-09-19 | 2012-12-19 | 北京理工大学 | Preparation method of foamable three-dimensional graphene |
CN103072981A (en) * | 2013-02-26 | 2013-05-01 | 武汉大学 | Preparation method for graphene |
CN103342827A (en) * | 2013-06-28 | 2013-10-09 | 上海大学 | Preparation method of hydrophobic/lipophilic polyurethane sponge |
CN103407994A (en) * | 2013-07-17 | 2013-11-27 | 苏州艾特斯环保材料有限公司 | Method for reducing graphene oxide |
CN103613097A (en) * | 2013-12-04 | 2014-03-05 | 天津大学 | Environment-friendly method for preparing sulfonated graphene |
CN103663433A (en) * | 2012-09-26 | 2014-03-26 | 海洋王照明科技股份有限公司 | Graphene as well as preparation method and application thereof |
CN104069815A (en) * | 2014-07-22 | 2014-10-01 | 西南民族大学 | Sulfur doped grapheme foam, preparation method thereof and sewage treatment method employing same |
CN104211053A (en) * | 2014-09-04 | 2014-12-17 | 济宁利特纳米技术有限责任公司 | Preparation method of modified graphene aqueous dispersion |
CN104451828A (en) * | 2014-11-14 | 2015-03-25 | 东南大学 | Method for preparing vertically aligned graphene oxide film |
CN104807861A (en) * | 2015-04-09 | 2015-07-29 | 山东师范大学 | Preparation method of spongy graphene-based stretchable gas sensor |
CN104894692A (en) * | 2015-06-03 | 2015-09-09 | 东华大学 | Preparation method of high-strength graphene fibers |
CN105271185A (en) * | 2014-06-25 | 2016-01-27 | 中国科学院苏州纳米技术与纳米仿生研究所 | Two-dimensional lamellar structure stable dispersion liquid and gel, and preparation method and application thereof |
CN106517160A (en) * | 2016-11-22 | 2017-03-22 | 青岛科技大学 | Method for preparing isotropic superelastic graphene aerogel |
CN106629681A (en) * | 2016-12-27 | 2017-05-10 | 东南大学 | A kind of preparation method of graphene foam |
CN107032337A (en) * | 2017-06-15 | 2017-08-11 | 山东海迈新材料有限公司 | The method that commercial graphites alkene is produced with oxidation-reduction method |
CN108624389A (en) * | 2018-04-04 | 2018-10-09 | 浙江工业大学 | A kind of graphene oxide water-based nano lubricant and preparation method thereof |
CN109594068A (en) * | 2018-12-26 | 2019-04-09 | 郑州师范学院 | A kind of preparation method of noble-metal-supported grapheme material |
CN109796011A (en) * | 2019-03-31 | 2019-05-24 | 任国峰 | A kind of grapheme material and preparation method thereof prepared by oxidation-reduction method |
CN113120892A (en) * | 2021-04-22 | 2021-07-16 | 江苏江南烯元石墨烯科技有限公司 | Preparation method of high-quality thin-layer graphene oriented foam |
CN115010494A (en) * | 2022-06-01 | 2022-09-06 | 星途(常州)碳材料有限责任公司 | Preparation method of graphene heat conducting sheet for reinforcing longitudinal heat flux transmission |
CN115196632A (en) * | 2022-07-14 | 2022-10-18 | 南昌大学 | A kind of preparation method of graphene-based photothermal conversion material and application thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101941693A (en) * | 2010-08-25 | 2011-01-12 | 北京理工大学 | Graphene aerogel and preparation method thereof |
-
2012
- 2012-05-29 CN CN201210171707.XA patent/CN102659099B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101941693A (en) * | 2010-08-25 | 2011-01-12 | 北京理工大学 | Graphene aerogel and preparation method thereof |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102826543A (en) * | 2012-09-19 | 2012-12-19 | 北京理工大学 | Preparation method of foamable three-dimensional graphene |
CN102826543B (en) * | 2012-09-19 | 2014-05-28 | 北京理工大学 | Preparation method of foamable three-dimensional graphene |
CN103663433A (en) * | 2012-09-26 | 2014-03-26 | 海洋王照明科技股份有限公司 | Graphene as well as preparation method and application thereof |
CN103072981A (en) * | 2013-02-26 | 2013-05-01 | 武汉大学 | Preparation method for graphene |
CN103342827A (en) * | 2013-06-28 | 2013-10-09 | 上海大学 | Preparation method of hydrophobic/lipophilic polyurethane sponge |
CN103407994A (en) * | 2013-07-17 | 2013-11-27 | 苏州艾特斯环保材料有限公司 | Method for reducing graphene oxide |
CN103613097A (en) * | 2013-12-04 | 2014-03-05 | 天津大学 | Environment-friendly method for preparing sulfonated graphene |
CN105271185A (en) * | 2014-06-25 | 2016-01-27 | 中国科学院苏州纳米技术与纳米仿生研究所 | Two-dimensional lamellar structure stable dispersion liquid and gel, and preparation method and application thereof |
CN104069815A (en) * | 2014-07-22 | 2014-10-01 | 西南民族大学 | Sulfur doped grapheme foam, preparation method thereof and sewage treatment method employing same |
CN104211053A (en) * | 2014-09-04 | 2014-12-17 | 济宁利特纳米技术有限责任公司 | Preparation method of modified graphene aqueous dispersion |
CN104451828A (en) * | 2014-11-14 | 2015-03-25 | 东南大学 | Method for preparing vertically aligned graphene oxide film |
CN104807861A (en) * | 2015-04-09 | 2015-07-29 | 山东师范大学 | Preparation method of spongy graphene-based stretchable gas sensor |
CN104807861B (en) * | 2015-04-09 | 2017-05-24 | 山东师范大学 | Preparation method of spongy graphene-based stretchable gas sensor |
CN104894692A (en) * | 2015-06-03 | 2015-09-09 | 东华大学 | Preparation method of high-strength graphene fibers |
CN106517160A (en) * | 2016-11-22 | 2017-03-22 | 青岛科技大学 | Method for preparing isotropic superelastic graphene aerogel |
CN106629681A (en) * | 2016-12-27 | 2017-05-10 | 东南大学 | A kind of preparation method of graphene foam |
CN107032337A (en) * | 2017-06-15 | 2017-08-11 | 山东海迈新材料有限公司 | The method that commercial graphites alkene is produced with oxidation-reduction method |
CN108624389A (en) * | 2018-04-04 | 2018-10-09 | 浙江工业大学 | A kind of graphene oxide water-based nano lubricant and preparation method thereof |
CN108624389B (en) * | 2018-04-04 | 2021-10-08 | 浙江工业大学 | A kind of graphene oxide water-based nano lubricant and preparation method thereof |
CN109594068A (en) * | 2018-12-26 | 2019-04-09 | 郑州师范学院 | A kind of preparation method of noble-metal-supported grapheme material |
CN109796011A (en) * | 2019-03-31 | 2019-05-24 | 任国峰 | A kind of grapheme material and preparation method thereof prepared by oxidation-reduction method |
CN113120892A (en) * | 2021-04-22 | 2021-07-16 | 江苏江南烯元石墨烯科技有限公司 | Preparation method of high-quality thin-layer graphene oriented foam |
CN115010494A (en) * | 2022-06-01 | 2022-09-06 | 星途(常州)碳材料有限责任公司 | Preparation method of graphene heat conducting sheet for reinforcing longitudinal heat flux transmission |
CN115010494B (en) * | 2022-06-01 | 2023-01-24 | 星途(常州)碳材料有限责任公司 | Preparation method of graphene heat conducting sheet for strengthening longitudinal heat flux transmission |
CN115196632A (en) * | 2022-07-14 | 2022-10-18 | 南昌大学 | A kind of preparation method of graphene-based photothermal conversion material and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN102659099B (en) | 2015-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102659099B (en) | Preparation method of anisotropic graphene foam | |
Gu et al. | Method of ultrasound-assisted liquid-phase exfoliation to prepare graphene | |
CN102020270B (en) | Macro-preparation for big size graphene | |
Lu et al. | Synthesis of ultrathin silicon nanosheets by using graphene oxide as template | |
CN104445167B (en) | A kind of preparation method of water-soluble graphene | |
CN101993064B (en) | Method for preparing hydrophilic graphene | |
CN108698849B (en) | Production of graphene-based composite nanostructures obtained by growing ZnO nanorods or microrods on suspended unsupported graphene nanosheets | |
CN106882796B (en) | A kind of preparation method of three-dimensional graphene structure/high-quality graphene | |
CN106517171B (en) | A kind of preparation method of graphene aerogel | |
CN104174422B (en) | High nitrogen doped Graphene and fullerene selenizing molybdenum hollow ball nano composite material and preparation method thereof | |
CN101602504A (en) | Graphene preparation method based on ascorbic acid | |
CN105032354A (en) | Silver nanowire/graphene composite elastic aerogel, and preparation method and application thereof | |
CN102874796A (en) | Nitrogen mixed grapheme hydrogel or aerogel and preparation method thereof | |
CN102153077A (en) | Method for preparing single-layer graphene with high carbon-oxygen ratio | |
CN104973591A (en) | High-quality graphene and preparation method thereof | |
CN102690426B (en) | Method for preparing graphene/polymer composite material based on infrared irradiation | |
Chai et al. | Ultrahigh photothermal temperature in a graphene/conducting polymer system enables contact thermochemical reaction | |
CN102698666B (en) | Based on the preparation method of the graphene/nanometer particle composite material of infrared irridiation | |
CN109181654B (en) | Graphene-based composite heat-conducting film and preparation method and application thereof | |
CN101973543B (en) | Preparation method of monolayer graphene | |
CN103449429A (en) | Preparation method of Janus graphene sheet layer | |
CN103570010A (en) | Preparation method of graphene powder material | |
Li et al. | Ultrasonic-assisted preparation of graphene oxide carboxylic acid polyvinyl alcohol polymer film and studies of thermal stability and surface resistivity | |
CN103736993A (en) | Preparation method of graphene/copper composite material | |
CN107442044B (en) | A kind of graphene/black phosphorus nanosheet/phosphorus ionic liquid composite aerogel and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20120912 Assignee: Jiangsu Yueda New Material Technology Co., Ltd. Assignor: Shanghai No.2 Polytechnic Univ. Contract record no.: 2013320000263 Denomination of invention: Preparation method of anisotropic graphene foam License type: Exclusive License Record date: 20130326 |
|
LICC | Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model | ||
ASS | Succession or assignment of patent right |
Owner name: SHANGHAI SECOND POLYTECHNIC UNIVERSITY ASSET MANAG Free format text: FORMER OWNER: SHANGHAI NO.2 POLYTECHNIC UNIV. Effective date: 20141209 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 201209 PUDONG NEW AREA, SHANGHAI TO: 200041 JING'AN, SHANGHAI |
|
TA01 | Transfer of patent application right |
Effective date of registration: 20141209 Address after: 200041 No. 80, Jingan District, Shanghai, North Shaanxi Road Applicant after: SHANGHAI SECOND POLYTECHNIC UNIVERSITY, ASSETS MANAGEMENT CO., LTD. Address before: 201209 Shanghai City, Pudong New Area Jinhai Road No. 2360 Applicant before: Shanghai No.2 Polytechnic Univ. |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
EC01 | Cancellation of recordation of patent licensing contract |
Assignee: Jiangsu Yueda New Material Technology Co., Ltd. Assignor: Shanghai No.2 Polytechnic Univ. Contract record no.: 2013320000263 Date of cancellation: 20170612 |
|
EC01 | Cancellation of recordation of patent licensing contract | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150408 Termination date: 20160529 |