CN102651408A - Solar energy base plate for improving fracture strength - Google Patents

Solar energy base plate for improving fracture strength Download PDF

Info

Publication number
CN102651408A
CN102651408A CN 201110045897 CN201110045897A CN102651408A CN 102651408 A CN102651408 A CN 102651408A CN 201110045897 CN201110045897 CN 201110045897 CN 201110045897 A CN201110045897 A CN 201110045897A CN 102651408 A CN102651408 A CN 102651408A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
solar
substrate
plurality
surface
formed
Prior art date
Application number
CN 201110045897
Other languages
Chinese (zh)
Inventor
叶哲良
Original Assignee
叶哲良
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

The invention discloses a solar energy base plate for improving the fracture strength, which includes a first upper surface, a plurality of first convex structures and a plurality of first concave zones, wherein the first convex structures are formed on the upper surface; and the first concave zones are formed on the peripheries of the first convex structures. According to the invention, the combination of the first convex structures and the first concave zones improves the fracture strength of the solar energy base plate, thereby resisting high tension deflexion.

Description

—种用以提高破裂强度的太阳能基板 - Solar kind of the substrate to increase the rupture strength

技术领域 FIELD

[0001] 本发明关于一种太阳能基板,且特别是有关于一种用以提高破裂强度(fracturestrength)的太阳能基板。 [0001] The present invention relates to a solar substrate, and more particularly relates to a solar substrate to increase the rupture strength (fracturestrength) a. 背景技术 Background technique

[0002] 一般来说,习知的太阳能电池大多以硅等半导体晶圆作为基板。 [0002] In general, most of the conventional solar cell semiconductor wafer as a substrate such as silicon. 然而,由于硅等半导体晶圆属于硬脆性材料,因此容易受外力的冲击,尤其是太阳能电池组装过程所引发的外力冲击,而造成硅等半导体晶圆的破裂。 However, since the silicon semiconductor wafer belonging to hard and brittle material, and therefore vulnerable to external shocks, especially assembly process of the solar cell caused by external shocks, causing breakage of the semiconductor wafer such as silicon. 除了太阳能电池之外,硅晶圆大量应用在许多半导体组件的制造上。 In addition to solar cells, a large number of silicon wafers used in the manufacture of many semiconductor components. 另外,由于半导体组件的需求的增加而导致硅原料的吃紧,因此如何避免硅原料不当的浪费(例如因受外力的冲击而破裂)及提高制程的良率,实为亟待解决的问题。 Further, due to the increased demand for semiconductor components caused by strained silicon material, and therefore how to avoid undue waste of silicon feedstock (e.g. broken by impact of external forces) to improve the yield and manufacturing process, in fact, problems to be solved. 以太阳能电池为例,若太阳能电池能够制作在具有高破裂强度的基板上,则可降低太阳能电池在后续组装过程中发生基板破裂的可能性。 In solar cells, for example, when the solar cells can be fabricated on a substrate having a high burst strength, can reduce the likelihood of cracking of the solar cell substrate in a subsequent assembly process.

[0003] 请参阅图IA及图1B。 [0003] Referring to FIG. IA and FIG. 1B. 图IA至图IB习知的硅晶圆试片于测试破裂强度的过程中拍摄的图片。 FIGS. IA to IB conventional silicon wafer specimen taken in the process of breaking strength test images. 硅晶圆试片由单晶硅所制成。 Test pieces made of silicon single-crystal silicon. 在试片受力的过程中,应力会集中在试片局部的区域,并且当应力逐渐增加时,这些区域上(尤其是受张力的区域)会开始产生裂痕。 In the test piece the force of the process, the stress will be concentrated in localized areas test piece, and when the stress is gradually increased, the area (in particular in tension zone) will start cracking. 随着荷重的增加,裂痕延伸(crack propagation)的现象趋于明显,最后则导致试片断成数块,如图IB所示。 With increasing load, the crack extension (crack propagation) phenomenon tends to be significant, and finally result in the test fragment into several pieces, as shown in Figure IB.

[0004] 由于习知的硅晶圆试片在受力时会发生应力集中在试片局部的区域的现象,因此若能使得硅晶圆试片在受力时,应力平均地分布在整个试片上,则硅晶圆试片的破裂强度势必能获得提升。 [0004] Since the conventional silicon wafer specimen test piece localized stress concentration region phenomenon occurs when a force, so that if the silicon wafer specimen when a force, stress evenly distributed throughout the sample the on-chip, the breaking strength of the silicon wafer test chip is bound to get promoted. 因此,本发明的主要目的在于提供一种太阳能基板,以解决上述问题。 Therefore, a primary object of the present invention is to provide a solar substrate, in order to solve the above problems.

发明内容 SUMMARY

[0005] 本发明的一目的在于提供一种用以提升破裂强度的太阳能基板,于其上表面形成第一凸起结构与第一凹陷区域,以提升太阳能基板的破裂强度。 [0005] The object of the present invention is to provide a solar burst strength for lifting the substrate, a first projection is formed on the surface thereof and a first recessed region structure, to enhance the burst strength of the solar substrate.

[0006] 根据本发明的一具体实施例,本发明提供一种具有高破裂强度的太阳能基板,其包含有一上表面、复数个第一凸起结构以及复数个第一凹陷区域。 [0006] According to one embodiment of the present invention, the present invention provides a solar substrate having a high burst strength, which comprises an upper surface, a plurality of first projections and a plurality of first recess structure region. 该等第一凸起结构形成于上表面。 Such structures are formed on a first projection surface. 每一第一凹陷区域形成于该等第一凸起结构的周围。 Each of the first recessed region formed around the first of these raised structures. 本发明藉由第一凸起结构与第一凹陷区域的组合,使得太阳能基板的破裂强度被提升,藉以抵抗高张力的绕曲。 The present invention by combination of the first protrusion structure of the first recessed area such that the rupture strength of the solar substrate is lifted, thereby flexing resistance high tension. 此夕卜,上表面为太阳能基板的受张力面。 Bu this evening, the tension of the upper surface of the solar substrate. 另外,太阳能基板非晶基板、单晶基板或多晶基板,详细来说,单晶基板单晶硅基板。 Further, an amorphous solar substrate substrate, a single crystal substrate or a crystal substrate, in detail, the single crystal substrate is a monocrystalline silicon substrate. 并且,第一凸起结构可以是复数个纳米柱或复数个纳米针,其中两相邻的纳米柱或纳米针各别的顶端间的间距在数十纳米至数百纳米之间。 And, a first plurality of raised structures may be a plurality of nano-pillars or nanoneedle, wherein the spacing between two adjacent nanopillar or respective needle tip between several tens of nanometers to hundreds of nanometers.

[0007] 根据本发明的另一具体实施例,本发明的具有高破裂强度的太阳能基板更具有一下表面,所述下表面具有复数个第二凸起结构与复数个第二凹陷区域,每一第二凹陷区域形成于该等第二凸起结构的周围。 [0007] According to another embodiment of the present invention, the solar substrate having a high fracture strength of the present invention further has a lower surface, said lower surface having a plurality of second projection structure and a plurality of second recessed regions, each a second recessed region formed around the second protrusion such structures.

[0008] 综上所述,本发明提供一种用以提升破裂强度的太阳能基板,该基板具有第一凸起结构与第一凹陷区域的组合,使得基板可以承受的应力强度得以提升,同时也提升了太阳能基板的破裂强度,此举可降低太阳能基板在后续制作太阳能电池过程中发生破裂的可能性。 [0008] In summary, the present invention provides a solar one kind of the substrate for raising burst strength, the substrate having a first composition and a first recessed area protrusion structure, so that the substrate can withstand the stress intensity can be improved, but also enhance the burst strength of the solar substrate, this can reduce the likelihood of rupture in a subsequent solar substrate solar cell production process.

[0009] 关于本发明的优点与精神可以藉由以下的发明详述及所附图式得到进一步的了解。 [0009] The advantage and spirit of the present invention may be further understood by the following detailed description and the accompanying drawings.

附图说明 BRIEF DESCRIPTION

[0010] 图IA及图IB为习知的硅晶圆试片在测试破裂强度的过程中拍摄的图片。 [0010] FIG IA and FIG IB is a conventional silicon wafer specimen captured during testing of the breaking strength of the image.

[0011] 图2A绘示根据本发明的一具体实施例的太阳能基板的剖面图。 [0011] FIG 2A illustrates a cross-sectional view of a solar substrate one embodiment of the present invention.

[0012] 图2B绘示根据本发明的另一具体实施例的太阳能基板的剖面图。 [0012] FIG 2B illustrates a cross-sectional view showing a specific embodiment of the solar substrate according to another embodiment of the present invention. [0013] 图2C绘示根据本发明的另一具体实施例的太阳能基板的剖面图。 [0013] FIG 2C illustrates a cross-sectional view showing a specific embodiment of the solar substrate according to another embodiment of the present invention.

[0014] 图2D绘示根据本发明的另一具体实施例的太阳能基板的剖面图。 [0014] FIG. 2D illustrates a cross-sectional view showing a specific embodiment of the solar substrate according to another embodiment of the present invention.

[0015] 图3根据本发明的太阳能基板的第一凸起结构的外观图片。 [0015] FIG. 3 according to the appearance of the first image projection configuration of the solar substrate of the present invention.

[0016] 图4A及图4B根据本发明的太阳能基板在测试破裂强度的过程中拍摄的图片。 [0016] FIGS. 4A and 4B according to the present invention, the substrate is a solar captured during testing of the breaking strength of the image.

[0017] 图5A及图5B根据本发明的太阳能基板在破裂强度测试中的测试数据。 [0017] FIGS. 5A and 5B breaking strength test data in the test in accordance with the present invention the solar substrate.

[0018] 图6A绘示根据本发明的太阳能基板于弯曲时的剖面图。 [0018] FIG. 6A illustrates a cross-sectional view at the time of bending of the solar substrate of the invention.

[0019] 图6B说明凸起结构对于太阳能基板所能承受的最大应力的实际数据。 [0019] Figure 6B illustrates the structure of the actual projection data for the maximum stress of the solar substrate can withstand.

[0020] 附图标记说明: [0020] REFERENCE NUMERALS:

I :太阳能基板 I: solar substrate

IOa :上表面 IOb :下表面 IOa: upper surface IOb: lower surface

102 :第一凸起结构 122 :第二凸起结构 102: first protrusion 122 Structure: second protruding structures

104 :第一凹陷区域 124 :第二凹陷区域 104: a first recessed area 124: second recessed area

102a :纳米针 102b :纳米柱 102a: nanoneedle 102b: nanocolumn

102a' :纳米针群体 102b' :纳米柱群体。 102a ': nanoneedle groups 102b': nanocolumn groups.

具体实施方式 detailed description

[0021] 请参见图2A,图2A绘示根据本发明的一具体实施例的太阳能基板的剖面图。 [0021] Referring to FIG. 2A, FIG. 2A illustrates a cross-sectional view of a solar substrate one embodiment of the present invention. 如图所示,本发明太阳能基板I包含一上表面10a、复数个第一凸起结构102以及复数个第一凹陷区域104。 As shown, the solar substrate I of the invention comprises an upper surface 10a, a plurality of first raised structure 102 and a plurality of first recessed region 104. 每一第一凸起结构102形成于上表面10a。 Each first projection structure formed on a surface 10a 102. 每一第一凹陷区域104形成于该等第一凸起结构102的周围。 Each of the first recessed region 104 formed around the first projection such structure 102. 以下分别就上述组件作详细的说明。 Hereinafter described in detail on the above components.

[0022] 本发明太阳能基板I 一非晶基板、一单晶基板或一多晶基板。 [0022] substrate of the present invention, a solar I an amorphous substrate, a single crystal substrate or a polycrystalline substrate. 在实务中,太阳能基板I常以硅等半导体晶圆作为基础,也就是说,太阳能基板I可为非晶硅基板、单晶硅基板、多晶硅基板。 In practice, I often solar substrate silicon semiconductor wafer as a base, that is, an amorphous silicon solar substrate I may be a substrate, a monocrystalline silicon substrate, polycrystalline silicon substrate. 在此,本发明并不以硅材的太阳能基板I为限,只要太阳能基板I可应用于太阳能电池的半导体制程并可进行后续的加工处理,都应属于本发明的目的。 Here, the present invention is not material to the silicon substrate of the solar I is limited, so long as the substrate of the solar cell I can be applied to a solar semiconductor process and subsequent processing, it should belong to the object of the present invention. 举例来说,本发明太阳能基板I可以由玻璃(SiO2)、娃(Si)、锗(Ge)、碳(C)、招(Al)、氮化镓(GaN)、砷化镓(GaAs)、磷化镓(GaP)、氮化招(AlN)、蓝宝石(sapphire)、尖晶石(spinnel)、三氧化二铝(Al2O3)、碳化硅(SiC)、氧化锌(ZnO)、氧化镁(MgO)、二氧化锂铝(LiAlO2)、二氧化锂镓(LiGaO2)或四氧化镁二铝(MgAl2O4)所制成,但不以此为限。 For example, the substrate according to the present invention is a solar I may be formed of glass (SiO2), Wa (Si), germanium (Ge), carbon (C), strokes (Al), gallium nitride (GaN), gallium arsenide (GaAs), gallium phosphide (GaP), strokes nitride (AlN), sapphire (sapphire), spinel (spinnel), aluminum oxide (Al2O3), silicon carbide (SiC), zinc oxide (ZnO), magnesium oxide (MgO ), lithium aluminum oxide (LiAlO2), lithium gallium oxide (LiGaO2) aluminum hydroxide or tetra (of MgAl2O4) made of, but not limited thereto. 此外,本发明太阳能基板I可以是一P型半导体层,一N型半导体层可以形成于太阳能基板I上,藉以后续制作一太阳能电池。 In addition, the solar substrate I of the invention may be a P-type semiconductor layer, an N-type semiconductor layer may be formed on the substrate of the solar I, thereby making a subsequent solar cell. [0023] 此外,太阳能基板I的上表面IOa可进一步定义为太阳能基板I的受张力面。 [0023] Further, the upper surface of the substrate of the solar IOa I can be further defined as a substrate of the solar surface tension of I. 在此,当压力施加于太阳能基板I 一侧表面上时,直接承受压力的表面为受压力面,所述受压力面因压力而向内缩形变;相对的,太阳能基板I上受压力面的背面即为受张力面,所述受张力面因压力而向外伸展形变。 Here, when pressure is applied on the surface of the solar substrate I side directly receives pressure receiving surface for the pressure surface, the pressure receiving surface inward contraction deformation due to stress; opposed, the pressure receiving surface of the solar substrate I on is the surface tension of the back surface by the surface tension by the outward deformation due to the pressure extended. 于实务中,由于本发明藉由太阳能基板I的结构,使其搭配后续制作太阳能电池时,可提高太阳能电池的破裂强度。 In practice, since the present invention by the configuration of the solar substrate I so when fabricating the solar cell with a subsequent, improved burst strength of the solar cell. 因此,在此本发明对上表面IOa并不特别限定,只要能够提高太阳能基板I的破裂强度,该太阳能基板I的任一适当表面皆可为上表面10a。 Thus, in this invention the upper surface IOa not particularly limited as long as possible to improve the burst strength of the solar substrate I, a suitable surface of any of the solar substrate I can serve as the upper surface 10a.

[0024] 请参见图2B,图2B绘示根据本发明的另一具体实施例的太阳能基板的剖面图。 [0024] Referring to FIG. 2B, FIG 2B shows a sectional view of a solar substrate according to another embodiment of the present invention are described embodiment. 如图所示,本发明太阳能基板I另具有一下表面10b、复数个第二凸起结构122以及复数个凹陷区域124。 As shown, the solar substrate I of the present invention further has a lower surface 10b, a plurality of second protruding structures 122 and a plurality of recessed region 124. 每一第二凹陷区域124形成于该等第二凸起结构122的周围。 Each of the second recessed region 124 formed around the second protrusion structure 122 of these. 本发明太阳能基板I的下表面IOb可进一步定义为太阳能基板I的受压力面。 The lower surface of the substrate of the invention the solar IOb I can be further defined as the pressure receiving surface of the solar substrate I. 于实务中,第一凸起结构102与第二凸起结构122可使用相同制程,使得太阳能基板I两侧的表面上的结构厚度大致相等。 In practice, the first structure 102 and the second protrusion protruding structures 122 may use the same process, so that the solar thickness on the surface of the substrate structure I is substantially equal on both sides. [0025] 从微观的角度来看,第一凸起结构102的中更包含许多的纳米结构,而这些纳米结构搭配凹陷区域104,可提升太阳能基板I的破裂强度。 [0025] from a microscopic point of view, the first protrusions 102 of the structure further comprising a plurality of nanostructures, the nanostructures with which the recessed region 104, can improve the burst strength of the solar substrate I.

[0026] 请参阅图2A至图2D。 [0026] Please refer to FIGS. 2A to 2D. 图2C绘示根据本发明的另一具体实施例的太阳能基板的剖面图。 FIG 2C illustrates a cross-sectional view of a solar substrate according to another embodiment of the present invention are described embodiment. 图2D绘示根据本发明的另一具体实施例的太阳能基板的剖面图。 FIG 2D illustrates a cross-sectional view of a solar substrate according to another embodiment of the present invention are described embodiment. 如图所示,本发明太阳能基板I的上表面IOa中,第一凸起结构102可以是复数个纳米结构,而所述纳米结构外形可以形成如图2k中的纳米针(nanotip) 102a或如图2C中的纳米柱(nanorod或nanopillar) 102b。 As shown, the upper surface of the substrate according to the present invention, the solar IOa I, a first plurality of raised structures 102 may be a nanostructure, and the nanostructure may be formed in the shape of the nanoneedle (nanotip) 102a in FIG. 2k or as nano-pillars (Nanorod or nanopillar) 102b in FIG. 2C. 值得注意的是,本发明太阳能基板I具有一上表面IOa,而纳米针102a或纳米柱102b由太阳能基板I的上表面IOa向下蚀刻而形成。 It is worth noting that the present invention is a solar substrate having an upper surface IOa I, nano or nano-pillars 102b needle 102a is formed by the upper surface of the substrate of the solar IOa I is etched down. 前述的蚀刻可为任何适用于太阳能电池的基板的蚀刻制程,举例来说,所述蚀刻制程可为电化学蚀刻制程。 The etching may be applied to any solar cell substrate etching process, for example, the etching process may be an electrochemical etching process. 然而,太阳能基板I的上表面IOa经蚀刻并不限定只能产生纳米针102a或只能产生纳米柱102b ;相反的,纳米针102a与纳米柱102b更可同时出现在上表面10a。 However, the upper surface of the solar substrate I IOa etched is not limited to only produce nanoneedle 102a or 102b can produce nano-pillars; the contrary, nanoneedle nano-pillars 102a and 102b may further occur simultaneously on the surface 10a.

[0027] 另外,纳米针102a与纳米柱102b除了可单独形成于太阳能基板I的上表面IOa上外,复数个纳米针102a或复数个纳米柱102b亦可以彼此相连以构成一纳米针群体102a'或者纳米柱群体102b'。 [0027] Further, nanoneedle 102a and nano-pillars 102b in addition to the upper surface IOa may be formed in the solar substrate I alone, the plurality of nano-needles 102a or a plurality of nano-pillars 102b can also be connected to each other to form a nanoneedle groups 102a ' nanocolumn groups or 102b '. 其中,两个相邻的纳米针102a与纳米柱102b各别的顶端间的间距可以在数十纳米至数百纳米之间,而每一个纳米针102a与纳米柱102b可以具有一微米等级的高度。 Wherein two adjacent pins 102a and nano spacing between the top of the respective nano-pillars 102b may be between several tens of nanometers to hundreds of nanometers, and each nano-pillar nanoneedle 102a and 102b may have a height of a micron level . 在此,可定义两个相邻的纳米针102a或纳米柱102b顶端间的间距对比于纳米针102a或纳米柱102b的高度为一深宽比Rl,所述深宽比Rl可以由蚀刻制程的蚀刻参数所决定,例如蚀刻时间及蚀刻温度等。 Here, two adjacent nanoneedle define the spacing between the top 102a or 102b in contrast to the height of the nanocolumns nanoneedle 102a or 102b is a nano-pillars aspect ratio Rl, Rl may be the aspect ratio of the etch process the determined etch parameters such as etching time and etching temperature and the like. 据实验结果,深宽比Rl可大于I. 5。 According to experimental results, the aspect ratio may be greater than Rl I. 5. 于一较佳具体实施例中,深宽比Rl可以介于2〜4的范围内。 In one preferred embodiment, the aspect ratio of Rl may be in the range of 2 ~ 4.

[0028] 换言之,本发明太阳能基板I本身在其上表面IOa形成复数个纳米针102a或纳米柱102b,因此纳米针102a或纳米柱102b可与太阳能基板I为同质材料。 [0028] In other words, the present invention is a solar substrate itself IOa I forming a plurality of nano-pillars nanoneedle 102a or 102b on its surface, so nanoneedle nano-pillars 102a or 102b may be a substrate of the solar I homogenous material. 于一具体实施例中,若太阳能基板I为一单晶硅基板,则单晶硅基板的上表面IOa可以具有[100]或[111]的结晶取向。 In one particular embodiment, if the solar substrate I is a single crystal silicon substrate, the single crystal silicon substrate may have an upper surface IOa [100] or [111] crystalline orientation. 藉由纳米针102a或纳米柱102b的形成,太阳能基板I本身的破裂强度获得提升。 Nanoneedle by forming nano-pillars 102a or 102b, the breaking strength of the solar substrate I itself promoted. 值得一提的是,若太阳能基板I由多层不同材料组合而成,纳米针102a或纳米柱102b更可为其它适用于太阳能电池I的基板的任何适当的材料。 It is worth mentioning that, when the solar substrate I made of a combination of layers of different materials, nano-pillars nanoneedle 102a or 102b may be more applicable to any other suitable material I of the solar cell substrate.

[0029] 另一方面,同样可从微观的角度来看形成于太阳能基板10两侧表面的纳米结构。 [0029] On the other hand, it may be likewise formed from a microscopic point of view in both nanostructured surface 10 of the solar substrate. 请参阅图2B及图2D。 See Figure 2B and 2D. 如图所示,本发明太阳能基板I的下表面IOb中,第二凸起结构122可以是复数个纳米结构,而所述纳米结构外形可以形成相同于图2A中的纳米针(nanotip) 102a或如图2C中的纳米柱(nanorod或nanopillar) 102b,在此不加以赘述。 As shown, the lower surface of the substrate according to the present invention, the solar IOb I, a second plurality of raised structures 122 may be a nanostructure, and the nanostructure may be formed in the same shape in the nanoneedle FIG 2A (nanotip) 102a or 2C in FIG nano-pillars (Nanorod or nanopillar) 102b, here not be repeated. 在此,相较于图2A与图2C,图2B与图2D所揭露的两侧表面皆具有纳米结构的实施例能更进一步提升本发明太阳能基板I的破裂强度约百分之15。 Here, compared to FIG. 2A and FIG. 2C, 2B and FIG. 2D both surfaces are disclosed having a nanostructure embodiment can further enhance the burst strength of the solar substrate I of the present invention is about 15 percent. 换言之,若太阳能基板I的两侧表面皆具有纳米结构,则所述基板I的表面能够承受更大的外力而不致破裂。 In other words, if both surfaces are of the solar substrate I having a nanostructure, the surface of the substrate I can withstand greater external force without breaking.

[0030] 另外,请参阅图3。 [0030] Further, see Figure 3. 图3根据本发明太阳能基板的第一凸起结构的外观图片。 FIG 3 Exterior first protrusion structure according to the present invention a solar substrate. 本发明的复数个第一凸起结构102可以是纳米针102a与纳米柱102b密集地形成于太阳能基板I的上表面IOa上。 A plurality of first raised structure 102 of the present invention may be a nano-pillar nanoneedle 102a and 102b are densely formed on the upper surface of the solar substrate I of IOa. 需注意的是,纳米针102a与纳米柱102b可以规则地或不规则地形成于太阳能基板I的上表面IOa上。 It should be noted that the nano-pillars nanoneedle 102a and 102b may be regularly or irregularly formed on the upper surface of the substrate I of the solar IOa. 于实际应用中,纳米针102a与纳米柱102b可经由前述的电化学蚀刻制程而形成。 In practical applications, nanoneedle nano-pillars 102a and 102b may be formed through the electrochemical etching process.

[0031] 再者,本发明太阳能基板I可另包含有一第一微米结构层以及一第二微米结构层(未显示于图中),该第一微米结构层可以形成于上表面IOa与第一凸起结构102之间,而该第二微米结构层是形成于下表面IOb与第二凸起结构122之间。 [0031] Further, the present invention is a solar substrate I may further comprise a first micro structure layer, and a second micro structure layer (not shown in the drawing), the first layer may be formed microstructures on the surface of the first IOa between the raised structures 102, and the second layer is a micro structure is formed between the lower surface of the second protrusion structure 122 IOb.

[0032] 本发明太阳能基板I的破裂强度可以透过三点弯曲强度(three-point bendingstrength)的测试来得知。 Bursting strength [0032] I in the present invention the solar substrate may be learned through three-point bending strength (three-point bendingstrength) test. 请参阅图4A及图4B。 See Figures 4A and 4B. 图4A及图4B根据本发明太阳能基板I于测试破裂强度的过程中拍摄的图片。 4A and 4B according to the image photographing process of the solar substrate I of the invention in the breaking strength test. 于此测试过程中,试片以一单晶硅晶圆的试片为例说明,并且受测试的单晶硅晶圆的表面具有[100]或[111]的结晶取向。 In this test, a test strip to test strip a monocrystalline silicon wafer as an example, and a single crystal silicon wafer surface under test has a [100] or [111] crystalline orientation.

[0033] 如图4A至图4B所示,当试片所承受的荷重超过极限时,试片会发生粉碎性的破裂。 [0033] FIG. 4A to 4B, when the specimen is subjected exceeds the limit load, crushing test piece rupture occurred. 这个现象说明试片是在吸收大量的能量后才发生破裂。 This phenomenon indicates that the specimen is absorbed before rupture occurred in a lot of energy. 如同比较防弹玻璃和一般的玻璃的破裂情形可推测得知,图4A至图4B中的试片所具有的破裂强度确实大于图IA至图IB中的试片。 As with the case of Comparative bulletproof glass and broken glass it is generally presumed that the test pieces in FIGS. 4A-4B has a breaking strength greater than does FIG IA to IB of the test strip of FIG.

[0034] 请参阅图5A及图5B。 [0034] Please refer to FIGS. 5A and 5B. 图5A及图5B根据本发明太阳能基板于破裂强度测试中的测试数据。 FIGS. 5A and 5B to test data burst strength test in accordance with the present invention the solar substrate. 本发明以测试分别具有[100]及[111]的结晶取向的太阳能基板为例说明。 Solar substrate of the present invention to test each having [100] and [111] crystal orientation as an example. 需注意的是,由于试片在承受荷重时,通常是在受张力面产生裂痕并向其它地方延伸,故本发明针对纳米结构形成于受张力面的基板测试其破裂强度。 It is noted that, due to the test strip when subjected to a load, usually cracks in the surface and extending under tension elsewhere, so the present invention for forming nanostructures on the substrate surface in tension rupture strength test.

[0035] 如图5A及图5B所示,无论结晶取向为[100]或[111]的硅晶圆,所测得的破裂强度皆获得大幅地提升,证明图4A至图4B中试片的粉碎性破裂确实代表根据本发明的太阳能基板较习知的单晶硅晶圆具有较大的破裂强度。 [0035] As shown in FIGS. 5A and 5B, the crystal orientation regardless of [100] or [111] silicon wafer, measured burst strength obtained are significantly improved, demonstrated in FIG. 4A-4B test piece crush fractures are indeed represents a burst strength of greater solar substrate of the invention than conventional single crystal silicon wafers. 另外,两种表面类型的硅晶圆大致上具有相同的杨氏系数,说明根据本发明太阳能基板毋须改变材料的本质,仅对硅晶圆做表面处理形成纳米结构即可提升其破裂强度。 Further, two kinds of types of silicon wafer surface having substantially the same Young's modulus, explaining the essence of the present invention without changing the solar substrate material, only the silicon wafer surface treatment for forming a nanostructure made to improve its breaking strength.

[0036] 本发明太阳能基板的上表面或下表面形成第一凸起结构或第二凸起结构与第一凹陷区域或第二凹陷区域,进而使本发明太阳能基板的破裂强度能够被大幅地提升的可能原因在于,当太阳能基板承受荷重时,应力可以平均地分布在所述凹陷区域之中,而不是像传统上分布在局部的区域。 A first surface or a second protrusion structure protruding structures of the first region or the second recess recessed region [0036] surface of the solar upper or lower substrate of the present invention, thereby enabling the breaking strength of the solar substrate of the present invention can be significantly enhance the possible reason is that when the solar substrate subjected to load, stress can be evenly distributed among the recessed region, rather than conventionally distributed in partial areas.

[0037] 举例来说,传统6吋200微米厚的太阳能基板,一般都无法弯曲,然而本发明藉由第一或第二凸起结构与第一或第二凹陷区域的设计,使得本发明太阳能基板可以产生一定程度的形变。 [0037] For example, the traditional solar substrate 6 inch 200 microns thick, are generally unable to bend, but the present invention is designed by a first or a second protrusion structure of the first or second recessed area, so that the solar present invention the substrate may be a certain degree of deformation. 请参阅图6A。 See Figure 6A. 图6A绘示根据本发明的太阳能基板于弯曲时的剖面图。 FIG 6A illustrates a cross-sectional view at the time of bending of the solar substrate of the invention. 如图6A所示,当本发明太阳能基板受外力时,由于第一或第二凸起结构与第一或第二凹陷区域可以分散所受的应力,进而使本发明太阳能基板可弯曲变形。 6A, the substrate of the present invention, when the solar external force, since the first or second protrusion structure of the first or second recessed area suffered stress can be dispersed, thereby enabling the solar substrate of the present invention to be bent. 此外,本发明更可整合太阳能电池制程,使得太阳能电池具有更大的产业利用价值。 Further, the present invention may be further integrated solar cell manufacturing process, the solar cell has a greater industrial utility value.

[0038] 请参阅图6B。 [0038] Referring to FIG. 6B. 图6B说明凸起结构对于太阳能基板所能承受的最大应力的实际数据。 6B illustrates the actual data of the maximum stress to the convex configuration of the solar substrate can withstand. 如图6B所示,类型一表示太阳能基板为单晶硅且不具有第一凸起结构;类型二表示太阳能基板为单晶硅且受张力面与受压力面皆具有第一及第二凸起结构;类型三表示太阳能基板为单晶硅且受压力面具有第二凸起结构;类型四表示太阳能基板为单晶硅且受张力面具有第一凸起结构。 6B, the type represents a single crystal silicon solar substrate having a first raised structure does not; represents two types of single crystal silicon solar substrate and the surface tension by the pressure receiving surface having a first and second protrusion are structure; represents three types of single crystal silicon solar substrate having a pressure surface and a second projection receiving structure; type represented four single crystal silicon solar substrate having a first surface in tension and protruding structures. 从上述图表可得知,当太阳能基板的受张力面具有第一凸起结构时,太阳能基板所能承受的应力强度可被大幅提升,而当太阳能基板的受张力面以及受压力面都具有第一及第二凸起结构时,更能减少外界应力对太阳能基板所产生的负面影响。 Can be learned from the graph, when the surface tension by the solar substrate having a first protrusion structure, solar substrate can withstand the stress intensity can be significantly improved, and when under tension and the receiving surface of the solar substrate having a first pressure surface when a convex structure and the second, more external reduce the negative impact of stress on the solar substrate produced.

[0039] 综上所述,根据本发明的太阳能基板相较于习知的太阳能基板能够承受较大的负载及具有优异的破裂强度。 [0039] As described above, the solar substrate of the invention compared to conventional solar substrate can withstand a large load and having an excellent burst strength. 因此,相较于先前技术,根据本发明太阳能基板具有高度的破裂强度,因此较能抵抗外力的冲击而不致发生破裂。 Therefore, compared to the prior art, the solar substrate of the invention has high breaking strength, it is more resistant to the impact of external forces without rupture. 藉此,根据本发明的太阳能基板能够充分地提高制程的良率,并避免其中因为不当的撞击而造成不必要的原料浪费。 Thereby, it is possible to sufficiently enhance the yield of the process according to the present invention the solar substrate, and to avoid improper wherein impact causing unnecessary waste of raw materials.

[0040] 藉由以上较佳具体实施例的详述,希望能更加清楚描述本发明的特征与精神,而并非以上述所揭露的较佳具体实施例来对本发明的范畴加以限制。 [0040] With the above detailed description of the preferred embodiment specific embodiments, hoping to more clearly describe the characteristics and spirit of the invention, rather than to particular preferred embodiments disclosed above to be limiting the scope of the present invention. 相反地,其目的是希望能涵盖各种改变及具相等性的安排于本发明所欲申请的专利范围的范畴内。 Conversely, its purpose is to be able to cover various modifications within the scope of the patent and with equal scope of the present invention arranged in the desired application. 因此,本发明所申请的专利范围的范畴应该根据上述的说明作最宽广的解释,以致使其涵盖所有可能的改变以及具相等性的安排。 Accordingly, the scope of the scope of the patent application of the present invention should be the broadest interpretation of the above description, so as to encompass all the possible changes and arrangements with equality.

Claims (13)

  1. 1. 一种用以提高破裂强度的太阳能基板,包含有: 一上表面; 复数个第一凸起结构,形成于该上表面;以及复数个第一凹陷区域,每一第一凹陷区域形成于该等第一凸起结构的周围; 其中,该太阳能基板具有抵抗高张力的绕曲。 A solar to increase the rupture strength of the substrate, comprising: an upper surface; a plurality of first raised structure formed on the upper surface; and a plurality of first recessed regions, each recessed region is formed in a first such structure around the first protrusion; wherein the solar substrate having a high resistance to tension flexing.
  2. 2.如权利要求I所述的太阳能基板,其中该上表面为该太阳能基板的一受张力面。 2. The solar substrate according to claim I, wherein the surface tension on a surface for receiving solar substrate.
  3. 3.如权利要求I所述的太阳能基板,其中该太阳能基板一非晶基板、一单晶基板或一多晶基板。 I solar substrate, wherein the substrate is a solar amorphous substrate, a single crystal substrate or a polycrystalline substrate as claimed in claim.
  4. 4.如权利要求3所述的太阳能基板,其中该单晶基板一单晶硅基板。 4. The solar substrate according to claim 3, wherein the single crystal substrate is a monocrystalline silicon substrate.
  5. 5.如权利要求I所述的太阳能基板,其中该等第一凸起结构可以是复数个纳米柱或复数个纳米针。 The solar substrate according to claim I, wherein the plurality of first protruding structures may be a plurality of nano-pillars or a plurality of nano-needles.
  6. 6.如权利要求5所述的太阳能基板,其中两相邻的该纳米柱或该纳米针各别的顶端间的间距在数十纳米至数百纳米之间。 The solar substrate according to claim 5, wherein the spacing between two adjacent nano-pillars or the nanoneedle the respective top between several tens of nanometers to hundreds of nanometers.
  7. 7.如权利要求5所述的太阳能基板,其中该复数个纳米柱或该复数个纳米针藉由一电化学蚀刻制程所形成。 The solar substrate according to claim 5, wherein the plurality of the plurality of nano-pillars or nanoneedle by an electrochemical etching process is formed.
  8. 8.如权利要求3所述的太阳能基板,其中该太阳能基板由选自由玻璃、硅、锗、碳、铝、氮化镓、砷化镓、磷化镓、氮化铝、蓝宝石、尖晶石、三氧化二铝、碳化硅、氧化锌、氧化镁、二氧化锂铝、二氧化锂镓以及四氧化镁二铝所组成的一群组中的其一所制成。 8. The solar substrate according to claim 3, wherein the substrate is selected from the group consisting of solar glass, silicon, germanium, carbon, aluminum, gallium nitride, gallium arsenide, gallium phosphide, aluminum nitride, sapphire, spinel , a group of aluminum oxide, silicon carbide, zinc oxide, magnesium oxide, lithium aluminum oxide, lithium oxide gallium, and aluminum hydroxide consisting of four in one made.
  9. 9.如权利要求I所述的太阳能基板,其中该太阳能基板更具有一下表面,该下表面具有复数个第二凸起结构与复数个第二凹陷区域,每一第二凹陷区域形成于该等第二凸起结构的周围。 9. The solar substrate according to claim I, wherein the substrate further has a lower surface of the solar, the lower surface having a plurality of second protruding structures and a plurality of second recessed regions, each recessed region is formed in such second around the second projection structure.
  10. 10.如权利要求9所述的太阳能基板,其中该下表面为该太阳能基板的一受压力面。 10. The solar substrate according to claim 9, wherein the lower surface of the pressure receiving surface of the solar that a substrate.
  11. 11.如权利要求I所述的太阳能基板,其中该太阳能基板可以是一 P型半导体层,一N型半导体层可以形成于该太阳能基板上。 I as claimed in claim 11. The solar substrate, wherein the solar energy substrate may be a P-type semiconductor layer, an N-type semiconductor layer may be formed on the solar substrate.
  12. 12.如权利要求I所述的太阳能基板,其中该太阳能基板另包含有一第一微米结构层,该第一微米结构层形成于该上表面与该等第一凸起结构之间。 12. The solar substrate according to claim I, wherein the solar substrate further includes a first layer of microstructures, the microstructures of the first layer is formed between the upper surface of the first protrusion with such structures.
  13. 13.如权利要求9所述的太阳能基板,其中该太阳能基板另包含有一第二微米结构层,该第二微米结构层形成于该下表面与该等第二凸起结构之间。 13. The solar substrate according to claim 9, wherein the solar substrate further includes a second micro structure layer, the second layer is formed between the microstructures and the surface of the structure such that the second protrusion.
CN 201110045897 2011-02-25 2011-02-25 Solar energy base plate for improving fracture strength CN102651408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110045897 CN102651408A (en) 2011-02-25 2011-02-25 Solar energy base plate for improving fracture strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110045897 CN102651408A (en) 2011-02-25 2011-02-25 Solar energy base plate for improving fracture strength

Publications (1)

Publication Number Publication Date
CN102651408A true true CN102651408A (en) 2012-08-29

Family

ID=46693367

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110045897 CN102651408A (en) 2011-02-25 2011-02-25 Solar energy base plate for improving fracture strength

Country Status (1)

Country Link
CN (1) CN102651408A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0933822A2 (en) * 1998-01-20 1999-08-04 Sharp Corporation Substrate for forming high-strenght thin semiconductor element and method for manufacturing high-strength thin semiconductor element
US20010029977A1 (en) * 2000-01-21 2001-10-18 Murata Manufacturing Co., Ltd. Conductive paste and solar cell using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0933822A2 (en) * 1998-01-20 1999-08-04 Sharp Corporation Substrate for forming high-strenght thin semiconductor element and method for manufacturing high-strength thin semiconductor element
US20010029977A1 (en) * 2000-01-21 2001-10-18 Murata Manufacturing Co., Ltd. Conductive paste and solar cell using the same

Similar Documents

Publication Publication Date Title
US20070249140A1 (en) Method for the production of thin substrates
US20150048380A1 (en) Optical substrate, semiconductor light-emitting element and method of manufacturing semiconductor light-emitting element
US20090146142A1 (en) Light-emitting device including nanorod and method of manufacturing the same
JP2007305909A (en) Production method of gallium nitride-based compound semiconductor, and production method of light-emitting element
CN101582479A (en) Light emitting diode chip structure and manufacturing method thereof
KR100855682B1 (en) Method for texturing silicon surface in solar cell
US20130032815A1 (en) Light emitting diode array and method for manufacturing the same
US20090253245A1 (en) Wafer Bonding method and wafer structure
JP2002324758A (en) Nitride semiconductor substrate and nitride semiconductor element manufacturing method using the same
US20080105297A1 (en) Solar Cell
JP2010165817A (en) Inside modified substrate for epitaxial growth and crystal film formation body fabricated using the same, device, bulk substrate, and fabricating methods thereof
CN101789476A (en) Method for manufacturing light-emitting diode chip
CN101826573A (en) Method for preparing semiconductor secondary grid-metal primary grid crystalline silicon solar battery
CN102064088A (en) Method for preparing sapphire-graph substrate by dry method and wet method
US8247822B2 (en) Semiconductor light-emitting device
US8629424B2 (en) Light emitting diode with three-dimensional nano-structures
CN101515625A (en) Method for preparing LED chip substrate structure
CN101877330A (en) Sapphire substrate with period structure
US20070062575A1 (en) Solar Cell and Process for Producing the Same
JPH1140832A (en) Thin-film solar cell and manufacture therefor
CN101604718A (en) Laterally inclined LED chip and preparation method thereof
US8013354B2 (en) Light emitting device having multi-pattern structure and method of manufacturing same
US20090290355A1 (en) Light-emitting device including reflective layer formed with curved surface and manufacturing method thereof
CN101814565A (en) Structure of light emitting diode chip and manufacture method thereof
US20120080691A1 (en) Light emitting diode and making method thereof

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination