CN102643914A - Method for detecting depression sheep fecundity - Google Patents
Method for detecting depression sheep fecundity Download PDFInfo
- Publication number
- CN102643914A CN102643914A CN2012101118552A CN201210111855A CN102643914A CN 102643914 A CN102643914 A CN 102643914A CN 2012101118552 A CN2012101118552 A CN 2012101118552A CN 201210111855 A CN201210111855 A CN 201210111855A CN 102643914 A CN102643914 A CN 102643914A
- Authority
- CN
- China
- Prior art keywords
- sheep
- genotype
- wadi
- fecundity
- gene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000035558 fertility Effects 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims abstract description 44
- 241001494479 Pecora Species 0.000 title claims abstract 28
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 48
- 239000002773 nucleotide Substances 0.000 claims abstract description 29
- 125000003729 nucleotide group Chemical group 0.000 claims abstract description 29
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 claims abstract description 17
- 239000012634 fragment Substances 0.000 claims description 17
- 101000829171 Hypocrea virens (strain Gv29-8 / FGSC 10586) Effector TSP1 Proteins 0.000 claims description 10
- 230000035772 mutation Effects 0.000 claims description 8
- 238000001962 electrophoresis Methods 0.000 claims description 6
- 108091026890 Coding region Proteins 0.000 claims description 4
- 241000283903 Ovis aries Species 0.000 claims description 4
- 230000003321 amplification Effects 0.000 claims description 4
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 4
- 230000002068 genetic effect Effects 0.000 abstract description 6
- 238000009395 breeding Methods 0.000 abstract description 4
- 230000001488 breeding effect Effects 0.000 abstract description 4
- 239000003550 marker Substances 0.000 abstract description 4
- 241000283898 Ovis Species 0.000 description 87
- 238000004458 analytical method Methods 0.000 description 14
- 108020004414 DNA Proteins 0.000 description 13
- 108091092878 Microsatellite Proteins 0.000 description 12
- 108700028369 Alleles Proteins 0.000 description 9
- 238000001514 detection method Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 238000012408 PCR amplification Methods 0.000 description 7
- 210000000349 chromosome Anatomy 0.000 description 7
- 230000016087 ovulation Effects 0.000 description 6
- 102000054765 polymorphisms of proteins Human genes 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 102000009024 Epidermal Growth Factor Human genes 0.000 description 4
- 101800003838 Epidermal growth factor Proteins 0.000 description 4
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 229940116977 epidermal growth factor Drugs 0.000 description 4
- 210000003917 human chromosome Anatomy 0.000 description 4
- 108091008146 restriction endonucleases Proteins 0.000 description 4
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 101001024425 Mus musculus Ig gamma-2A chain C region secreted form Proteins 0.000 description 3
- IKHKJYWPWWBSFZ-UHFFFAOYSA-N 4-[[4-(diethylamino)phenyl]-(4-diethylazaniumylidenecyclohexa-2,5-dien-1-ylidene)methyl]benzene-1,3-disulfonate;hydron Chemical compound C1=CC(N(CC)CC)=CC=C1C(C=1C(=CC(=CC=1)S([O-])(=O)=O)S(O)(=O)=O)=C1C=CC(=[N+](CC)CC)C=C1 IKHKJYWPWWBSFZ-UHFFFAOYSA-N 0.000 description 2
- 208000002109 Argyria Diseases 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 108010081689 Osteopontin Proteins 0.000 description 2
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000009182 swimming Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 102100038920 Alpha-S1-casein Human genes 0.000 description 1
- 108050000244 Alpha-s1 casein Proteins 0.000 description 1
- 102000001893 Bone Morphogenetic Protein Receptors Human genes 0.000 description 1
- 108010040422 Bone Morphogenetic Protein Receptors Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 101000741048 Homo sapiens Alpha-S1-casein Proteins 0.000 description 1
- 101100256651 Homo sapiens SENP6 gene Proteins 0.000 description 1
- 235000019687 Lamb Nutrition 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 102000004264 Osteopontin Human genes 0.000 description 1
- 102100030485 Platelet-derived growth factor receptor alpha Human genes 0.000 description 1
- 101710148465 Platelet-derived growth factor receptor alpha Proteins 0.000 description 1
- 101150038317 SSP1 gene Proteins 0.000 description 1
- 101100125020 Schizosaccharomyces pombe (strain 972 / ATCC 24843) pss1 gene Proteins 0.000 description 1
- 101100018019 Schizosaccharomyces pombe (strain 972 / ATCC 24843) ssc1 gene Proteins 0.000 description 1
- 102100023713 Sentrin-specific protease 6 Human genes 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 241001303561 Tetragonuridae Species 0.000 description 1
- JDZJVWAHZYIHFA-UHFFFAOYSA-N [Br].C1(=CC=CC=C1)O Chemical compound [Br].C1(=CC=CC=C1)O JDZJVWAHZYIHFA-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000012098 association analyses Methods 0.000 description 1
- 230000037237 body shape Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 239000013578 denaturing buffer Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 230000012173 estrus Effects 0.000 description 1
- 244000144992 flock Species 0.000 description 1
- 238000003205 genotyping method Methods 0.000 description 1
- 210000000003 hoof Anatomy 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000012160 loading buffer Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000009304 pastoral farming Methods 0.000 description 1
- 208000022821 personality disease Diseases 0.000 description 1
- 238000002205 phenol-chloroform extraction Methods 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003307 slaughter Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- NLIVDORGVGAOOJ-MAHBNPEESA-M xylene cyanol Chemical compound [Na+].C1=C(C)C(NCC)=CC=C1C(\C=1C(=CC(OS([O-])=O)=CC=1)OS([O-])=O)=C\1C=C(C)\C(=[NH+]/CC)\C=C/1 NLIVDORGVGAOOJ-MAHBNPEESA-M 0.000 description 1
Images
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了利用FecB基因预测洼地绵羊繁殖力的方法,是检测待测洼地绵羊基因组中的FecB基因的第746位核苷酸,从而确定洼地绵羊的基因型,然后通过基因型确定洼地绵羊繁殖力;如果洼地绵羊基因组中的FecB基因的第746位核苷酸为A时,其纯合体的基因型为++,洼地绵羊基因组中的FecB基因的第746位核苷酸为G时,其纯合体的基因型为BB;杂合体基因型为B+;BB基因型的繁殖力高于B+基因型,B+基因型的繁殖力高于++型。本发明利用PCR-SSCP和PCR-RFLP遗传标记多态性确定洼地绵羊的繁殖力,可以迅速、简便的检测洼地绵羊的繁殖力,为洼地绵羊的育种提供了一个准确简便的检测其繁殖力的方法。
The invention discloses a method for predicting the fecundity of Wadi sheep by using the Fec B gene, which is to detect the 746th nucleotide of the Fec B gene in the Wadi sheep genome to be tested, thereby determining the genotype of the Wadi sheep, and then determining the Wadi sheep through the genotype Sheep fecundity; if the 746th nucleotide of the Fec B gene in the Wadi sheep genome is A, the genotype of its homozygote is ++, and the 746th nucleotide of the Fec B gene in the Wadi sheep genome is When G, the genotype of the homozygote is BB; the genotype of the heterozygote is B+; the fecundity of the BB genotype is higher than that of the B+ genotype, and the fecundity of the B+ genotype is higher than that of the ++ genotype. The invention utilizes PCR-SSCP and PCR-RFLP genetic marker polymorphism to determine the fecundity of Wadi sheep, can quickly and easily detect the fecundity of Wadi sheep, and provides an accurate and convenient method for detecting the fecundity of Wadi sheep for breeding of Wadi sheep method.
Description
技术领域 technical field
一种检测洼地绵羊繁殖力的方法。A method for testing the fecundity of lowland sheep.
背景技术 Background technique
FecB基因1985年在澳大利亚的Booroola Merino绵羊品种中发现,是被形容为影响绵羊排卵率和繁殖力的第一个主效基因。Booroola突变,即BMPR-IB位点编码区的点突变,已经通过杂交进入其他的绵羊品种中,并且在自然状态下也发现了除Booroola Merino绵羊以外的其他的多产的绵羊品种。FecB基因定位在绵羊6号染色体6q23~q31的狭窄区域内,位于骨桥蛋白和表皮生长因子之间。FecB位点的基因型分配,开始是基于检测排卵率和产羔记录上,后来用于遗传标记与Booroola基因的联系,如今可以通过在BMPR-IB位点的个体的分子基因分型来得到。一个FecB拷贝增加排卵数1.3枚-1.6枚,两个FecB拷贝增加排卵数2.7枚-3.0枚,携带一个FecB拷贝的母羊繁殖力增加0.9只-1.2只,携带两个FecB拷贝的母羊繁殖力增加1.1只-1.7只(储明星,狄冉,叶素成,方丽,刘忠慧,彭志兰,张跟喜,贾丽华,孙洁,冯涛.绵羊多胎主效基因FecB分子检测方法的建立与应用[J].农业生物技术学报,2009,17(1):52-58)。The Fec B gene was discovered in the Booroola Merino sheep breed in Australia in 1985, and is the first major gene described as affecting the ovulation rate and fecundity of sheep. Booroola mutations, point mutations in the coding region of the BMPR-IB locus, have been crossed into other sheep breeds, and other productive sheep breeds other than Booroola Merino sheep have also been found in the natural state. The Fec B gene is located in the narrow region of
洼地绵羊(简称洼羊),是分布于鲁北盐碱洼地滨海地区的优良地方绵羊品种。经考证,洼地绵羊是从明朝时期经400多年驯化、适应、选育,在滨海地区逐渐形成的独具特色的优良地方品种。洼地绵羊一年四季均可发情,春秋两季尤为明显。头胎产羔率与小尾寒羊无明显差异,属于多胎绵羊品种。洼地绵羊具有耐粗饲,生长较快的特点。从体型看,洼地绵羊无角,四肢短而结实,方尾,而且性格温顺不好斗,使得洼地绵羊屠宰率高、生长发育快。经过长期选育,洼地绵羊适应了当地贫瘠的草场,常年放牧锻炼了羊群体质。尤其当地滨海湿地盐碱严重,对羊蹄的腐蚀性很强,其他品种羊很难适应。而洼地羊很好适应了当地环境,具有抗腐蹄能力。Lowland sheep (abbreviated as lowland sheep) is an excellent local sheep breed distributed in the coastal areas of the saline-alkaline depressions in northern Shandong. After textual research, the lowland sheep is a unique and excellent local breed gradually formed in the coastal area after more than 400 years of domestication, adaptation, and breeding since the Ming Dynasty. Lowland sheep can be in oestrus all year round, especially in spring and autumn. The lambing rate of the first litter is not significantly different from that of the Small-tailed Han sheep, which belongs to the multiparity sheep breed. Lowland sheep are resistant to rough feeding and grow faster. In terms of body shape, lowland sheep have no horns, short and strong limbs, square tails, and a docile and non-aggressive personality, which makes lowland sheep have a high slaughter rate and rapid growth and development. After long-term selection and breeding, the lowland sheep have adapted to the local barren pastures, and the perennial grazing has exercised the quality of the flock. In particular, the local coastal wetlands are severely saline-alkali, which is very corrosive to sheep's feet, and it is difficult for other breeds of sheep to adapt. The lowland sheep are well adapted to the local environment and have the ability to resist hoof rot.
Montgomery等(1993)首次发现FecB基因与微卫星标记OarAE101和OarHH55紧密连锁,距离分别为13cM和20cM,而此两个基因又与定位在人染色体HSA4q11~q12上的分泌型磷酸蛋白1基因(SSP1)的一个RFLP标记连锁。随后该研究组采用连锁分析法,对Booroola羊半同胞家系和17个全同胞家系进行了研究,发现血小板生长因子受体α基因(platelet-derived growth factorreceptor-alpha gene,PDGFRA)与αS1酪蛋白基因(alpha sl-caseingene,CSN1S1)及微卫星标记BM143和OarHH55连锁,遗传距离分别为12cM、29cM、33cM。Lord等用微卫星OarAE101和BM1329作标记来研究FecB基因时,发现FecB基因存在于OarAE101位点的97bp等位基因以及BM1329位点的162bp等位基因上,因此FecB基因被进一步定位于6号染色体的BM1329和OarAE101之间10cM连锁群中(Montgomery G W,et al.Nat Genet,1993,4(4):410-414)。Montgomery et al. (1993) found for the first time that the Fec B gene was closely linked to the microsatellite markers OarAE101 and OarHH55, with a distance of 13 cM and 20 cM, respectively, and these two genes were in turn linked to the secreted
Montgomory进一步的研究发现,FecB基因与EGF(表皮生长因子)基因连锁,其距离为26cM,而EGF定位于人染色体的4q25上,这是迈向FecB突变位置克隆的重要一步(Montgomery G W,et al.Genomics,1994,22(1):148-153)。Wilson等(2001)在前人的研究基础上,将FecB基因进一步定位在羊6号染色体6q23~q31,与人染色体4q21~q25同线性。另有报道,将绵羊6号染色体上的基因定位在猪的8号染色体上,同时在8号染色体发现了一个提高排卵率的位点(Wilson T,etal.Biol Reprod,2001,64(4):1225-1235)。Further research by Montgomory found that the Fec B gene is linked with the EGF (epidermal growth factor) gene at a distance of 26cM, and EGF is located on 4q25 of the human chromosome, which is an important step towards the cloning of the Fec B mutation position (Montgomery G W, et al. Genomics, 1994, 22(1): 148-153). Wilson et al. (2001) further located the Fec B gene on
Wilson等、Souza等、Mulsant等(2001)几乎同时发现,与FecB基因所在的绵羊6号染色体区域同线性的人4号染色体q22~q23上的骨形态发生蛋白受体IB基因(BMPR-IB)与Booroola Merino羊的排卵率相关联。Wilson et al., Souza et al., and Mulsant et al. (2001) discovered almost simultaneously that the bone morphogenetic protein receptor IB gene (BMPR-IB) on
[0007]Elisha Gootwine等(2008)通过对FecB位点的++和B+基因型繁殖力的调查,结果显示,B位点在繁殖力上具有乘法效应,因为B+基因型的繁殖力显著高于++基因型的繁殖力(P<0.05)(Elisha Gootwine,Shay Reicher,AlexanderRozov.Prolificacy and lamb survival at birth in Awassi and Assaf sheepcarrying the FecB(Booroola)mutation.[J].Animal Reproduction Science,2008,108(2):402-411)。(2008) by Elisha Gootwine etc. (2008) by the ++ of Fec B site and the investigation of B+ genotype fecundity, the result shows, B site has multiplicative effect on fecundity, because the fecundity of B+ genotype is significantly high Fecundity of ++ genotype (P<0.05) (Elisha Gootwine, Shay Reicher, Alexander Rozov. Prolificacy and lamb survival at birth in Awassi and Assaf sheepcarrying the FecB(Booroola) mutation. [J]. Animal Reproduction Science, 2008, 108(2):402-411).
A.K.Mishra等(2009)通过对51只Garole和Malpura的杂交绵羊的繁殖力分析,结果显示,累计一生的产仔数(CLS),累计羔羊的断奶数(CWL)和以及累计母羊的繁殖效率(CEPE)在杂交母羊上,B+基因型相对的比++基因型的母羊要高(A.K.Mishra,A.L.Arora,S.Kumar,L.L.L.Prince.Studies on effect ofBooroola(FecB)genotype on lifetime ewes productivity efficiency,littersize and number of weaned lambs in Garole×Malpura sheep[J].AnimalReproduction Science,2009,113(3):293-298);A.K.Mishra et al. (2009) analyzed the fecundity of 51 hybrid sheep of Garole and Malpura. The results showed that the cumulative litter size (CLS), the cumulative number of weaned lambs (CWL) and the cumulative reproductive efficiency of ewes (CEPE) On hybrid ewes, the B+ genotype is relatively higher than the ++ genotype ewes (A.K.Mishra, A.L.Arora, S.Kumar, L.L.L.Prince. Studies on effect of Booroola(FecB) genotype on lifetime ewes productivity efficiency, littersize and number of weaned lambs in Garole×Malpura sheep [J]. Animal Reproduction Science, 2009, 113(3): 293-298);
S.Kumar等(2008)通过PCR-RFLP的实验方法,在Kendrapada绵羊中发现FecB突变,在46个Kendrapada绵羊个体中,26个BB基因型,15个B+基因型,5个++基因型,B的基因型频率约为0.73,结果表明,尽管FecB突变频率很高,但该基因并不像在Garole绵羊中所报道的那样,在群体中是不固定的(S.Kumar,A.K.Mishra,A.P.Kolte,S.K.Dash,S.A.Karim.Screening for Booroola(FecB)and Galway(FecXG)mutations in Indian sheep[J].Small Ruminant Research,2008,80(4):57-61)。S.Kumar et al. (2008) found the Fec B mutation in Kendrapada sheep through the experimental method of PCR-RFLP. In 46 Kendrapada sheep individuals, 26 BB genotypes, 15 B+ genotypes, and 5 ++ genotypes , the genotype frequency of B was about 0.73, and the results showed that despite the high mutation frequency of Fec B , the gene was not fixed in the population as reported in Garole sheep (S. Kumar, AK Mishra, APKolte, SKDash, SA Karim. Screening for Booroola (FecB) and Galway (FecXG) mutations in Indian sheep [J]. Small Ruminant Research, 2008, 80(4): 57-61).
王根林等(2003)年利用限制性酶切片段多态性PCR技术,检测湖羊、小尾寒羊和新疆细毛羊的DNA样本,发现湖羊和小尾寒羊中存在FecB多胎基因,而新疆细毛羊均不携带Booroola基因(王根林,毛鑫智,George H Davis,赵宗胜,张利军,曾永庆.DNA分析发现我国湖羊和小尾寒羊存在Booroola(FecB)多胎基因[J].南京农业大学学报,2003,26(1):104-106)。Wang Genlin et al. (2003) detected the DNA samples of Hu sheep, Small-tailed Han sheep, and Xinjiang fine-wool sheep by using restriction enzyme polymorphic PCR technology, and found that there were Fec B multiple birth genes in Hu sheep and small-tailed Han sheep, while Xinjiang fine-haired sheep None of the sheep carry the Booroola gene (Wang Genlin, Mao Xinzhi, George H Davis, Zhao Zongsheng, Zhang Lijun, Zeng Yongqing. DNA analysis found that the Booroola (Fec B ) gene exists in Hu sheep and small-tailed Han sheep in China [J]. Journal of Nanjing Agricultural University, 2003, 26(1):104-106).
张利平(2004)对FecB基因的发现,定位,关联和应用等做了较为全面的分析表明,BMPR-IB基因的突变与FecB基因的行为完全一致,证明BMPR-IB基因是控制Booroola Merino羊高繁殖力特性的主效基因(张利平.Booroola羊多胎基因FecB的研究进展[A].2003-2004年全国养羊生产与学术研讨会议论文集,2004.)。Zhang Liping (2004) made a relatively comprehensive analysis on the discovery, location, association and application of the Fec B gene, and showed that the mutation of the BMPR-IB gene is completely consistent with the behavior of the Fec B gene, proving that the BMPR-IB gene controls the behavior of the Booroola Merino sheep. The main gene of high fecundity traits (Zhang Liping. Research progress of Booroola sheep multifetal gene Fec B [A]. 2003-2004 National Symposium on Sheep Production and Academic Proceedings, 2004.).
柳楠等(2010)证明了在小尾寒羊与萨福克和杜泊绵羊的杂交群体中,多胎基因FecB检测多态性效果显著,可以作为培育肉用绵羊新品系的有效候选基因(柳楠,柳晓晓,刘猛,曲绪仙,王金文,李晶.FecB和BMP15基因作为肉用绵羊育种候选基因的研究[J].黑龙江畜牧兽医,2010年1月(上):39-40)。Liu Nan et al. (2010) proved that in the hybrid population of Small-tailed Han sheep and Suffolk and Dorper sheep, the multifetal gene Fec B has a significant polymorphism detection effect, and can be used as an effective candidate gene for breeding new breeds of meat sheep (Liu Nan, Liu et al., 2010). Nan, Liu Xiaoxiao, Liu Meng, Qu Xuxian, Wang Jinwen, Li Jing. Fec B and BMP15 genes as candidate genes for meat sheep breeding[J]. Heilongjiang Animal Husbandry and Veterinary Medicine, January 2010 (Part 1): 39-40) .
崔绪奎等(2010)利用绵羊多胎基因FecB分子检测技术,检测分析了杜寒杂交肉羊基因型及对繁殖力和羔羊生长发育的影响。发现FecB基因不仅是影响杜寒杂交肉羊繁殖力的主效基因,而且在一定时期内页影响羔羊的生长发育(崔绪奎,王金文,王德芹,张果平,王可,黄庆华,孟宪锋.FecB基因对杜×寒杂交肉羊繁殖力及羔羊生长发育的影响[J].山东农业科学,2010,8:98-100)。Cui Xukui et al. (2010) used the Fec B molecular detection technology of sheep multifetal gene to detect and analyze the genotype of Duhan hybrid mutton sheep and its influence on fecundity and lamb growth and development. It was found that the Fec B gene is not only the main gene affecting the fecundity of Duhan hybrid mutton sheep, but also affects the growth and development of lambs within a certain period of time (Cui Xukui, Wang Jinwen, Wang Deqin, Zhang Guoping, Wang Ke, Huang Qinghua, Meng Xianfeng. ×The influence of cold hybrid mutton sheep on fecundity and lamb growth and development [J]. Shandong Agricultural Science, 2010, 8: 98-100).
王金文等(2010)证明了FecB基因可能是控制鲁西肉羊多高性状的主效基因,该记过为培育鲁西肉羊多胎品系奠定了理论基础(王金文,崔绪奎,张果平,王德芹,王可,黄庆华,孟宪锋.利用FecB基因选育鲁西肉羊多胎品系研究[J].家畜生态学报,2010,31(5):23-25)。Wang Jinwen et al. (2010) proved that the Fec B gene may be the main gene controlling the multi-height traits of Luxi mutton sheep. , Meng Xianfeng. Using Fec B gene to breed Luxi mutton sheep with multiple births [J]. Journal of Livestock Ecology, 2010, 31(5): 23-25).
李凤娥(2010)对FecB基因的提出、基因型判定、生理效应以及分离克隆等方面做了全面的综述(李凤娥,熊远著.绵羊FecB基因分离克隆的研究进展[J].Animal Science Abroad,2010,28(6):42-44)。Li Fenge (2010) made a comprehensive review on the proposal of Fec B gene, genotype determination, physiological effects and isolation and cloning (Li Fenge, Xiong Yuan. Research progress on isolation and cloning of sheep Fec B gene[J].Animal Science Abroad , 2010, 28(6): 42-44).
任艳玲等(2011)从分子水平上研究洼地绵羊的多羔机制,采用PCR-RFLP方法分析了洼地绵羊中FecB基因多态性及其繁殖力的关系,经统计分析,BB和B+基因型洼地绵羊的繁殖力显著高于++基因型,显示FecB基因可能是洼地绵羊多羔性能主效基因之一(任艳玲,沈志强,李敏等.洼地绵羊FecB基因多态性与繁殖力关系的研究.中国畜牧兽医,2011,38(7):159-162)。Ren Yanling et al. (2011) studied the multi-lamb mechanism of Wadi sheep from the molecular level, and analyzed the relationship between Fec B gene polymorphism and fecundity in Wadi sheep by using PCR-RFLP method. After statistical analysis, BB and B+ genotypes in Wadi sheep The fecundity of sheep is significantly higher than that of the ++ genotype, indicating that the Fec B gene may be one of the main genes for multiple lamb performance in Wadi sheep (Ren Yanling, Shen Zhiqiang, Li Min et al. Relationship between Fec B gene polymorphism and fecundity of Wadi sheep Research. Chinese Animal Husbandry and Veterinary Medicine, 2011, 38(7): 159-162).
很多的科学家还对绵羊微卫星基因与FecB基因的多态及连锁进行了大量的分析。张宝云等(2009)的研究结果表明微卫星座位300U只能在一定程度上反映FecB座位信息(张宝云,储明星,王凭青,方丽,狄冉.绵羊微卫星300U和FecB基因的多态及连锁分析[J].中国农业大学学报,2009,14(5):86-92)。李延璐等(2009)的研究表明,连锁不平衡分析显示小尾寒羊FecB基因B等位基因与BMS2508微卫星座位100bp等位基因之间存在一定的连锁不平衡,而+等位基因与BMS2508微卫星座位110bp和114bp等位基因均存在一定的连锁不平衡(李延璐,储明星,陈宏权,方丽,狄冉,马月辉,李奎.绵羊微卫星BMS2508和FecB基因的多态及连锁分析[J].遗传,2009,31(5):500-507)。储明星等(2009)的研究结果表明,OarJL36微卫星座位182bp等位基因与小尾寒羊FecB基因B等位基因之间存在较强的连锁关系,是与小尾寒羊多羔主效基因紧密连锁的一个遗传标记(储明星,张宝云,王凭青,方丽,狄冉,马月辉,李奎.绵羊微卫星OarJL36和FecB基因的多态及连锁分析[J].中国农业科学,2009,42(6):2133-2141)。张林等(2009)等的研究表明,LSCV043微卫星座位98bp等位基因与小尾寒羊FecB基因B等位基因之间存在一定的连锁不平衡关系,是与小尾寒羊多羔主效基因紧密连锁的一个遗传标记(张林,李春苗,储明星,陈宏权,李学伟,方丽,狄冉,马月辉,李奎.小尾寒羊微卫星座位LSCV043和FecB基因的连锁分析[J].农业生物技术学报,2009,17(4):621-628)。Many scientists have also conducted a lot of analysis on the polymorphism and linkage between sheep microsatellite gene and Fec B gene. The research results of Zhang Baoyun et al. (2009) showed that the microsatellite locus 300U can only reflect the Fec B locus information to a certain extent (Zhang Baoyun, Chu Mingxing, Wang Pingqing, Fang Li, Di Ran. The number of sheep microsatellite 300U and Fec B genes State and linkage analysis [J]. Journal of China Agricultural University, 2009, 14(5): 86-92). (2009) showed that linkage disequilibrium analysis showed that there was a certain linkage disequilibrium between the B allele of the Fec B gene of Small Tail Han sheep and the 100bp allele of the BMS2508 microsatellite locus, while the + allele was associated with the BMS2508 microsatellite locus. The 110bp and 114bp alleles of the satellite loci are in certain linkage disequilibrium (Li Yanlu, Chu Mingming, Chen Hongquan, Fang Li, Di Ran, Ma Yuehui, Li Kui. Polymorphism and linkage analysis of sheep microsatellite BMS2508 and Fec B genes[J ]. Heredity, 2009, 31(5): 500-507). (2009) showed that there is a strong linkage relationship between the 182bp allele of the OarJL36 microsatellite locus and the B allele of the Fec B gene of Small-tailed Han sheep, which is closely related to the main effect gene of multiple lambs in Small-tailed Han sheep. A genetic marker of linkage (Chu Mingxing, Zhang Baoyun, Wang Pingqing, Fang Li, Di Ran, Ma Yuehui, Li Kui. Polymorphism and linkage analysis of sheep microsatellite OarJL36 and Fec B genes [J]. Chinese Agricultural Sciences, 2009, 42(6):2133-2141). Research by Zhang Lin et al. (2009) showed that there is a certain linkage disequilibrium relationship between the 98bp allele of LSCV043 microsatellite locus and the B allele of the Fec B gene of Small-tailed Han sheep, which is the main effect gene for multiple lambs in Small-tailed Han sheep. A closely linked genetic marker (Zhang Lin, Li Chunmiao, Chu Mingming, Chen Hongquan, Li Xuewei, Fang Li, Di Ran, Ma Yuehui, Li Kui. Linkage analysis of microsatellite locus LSCV043 and Fec B gene in Small Tail Han sheep[J].Agrobiology Technical Journal, 2009, 17(4): 621-628).
据《中国羊品种志》记载(《中国羊品种志》编写组,1989),洼地绵羊平均产活羔数为2.80,为我国的多胎绵羊品种。According to the records of "Chinese Sheep Breeds" ("China Sheep Breeds" compilation group, 1989), the average number of live lambs of lowland sheep is 2.80, which is a breed of multiparous sheep in my country.
发明内容 Contents of the invention
本发明的目的是提供一种检测洼地绵羊繁殖力的方法。The purpose of the present invention is to provide a method for detecting the fecundity of swale sheep.
本发明所提供的检测洼地绵羊繁殖力的方法,是检测待测洼地绵羊基因组中的FecB基因的第746位核苷酸为A还是突变为G,从而确定洼地绵羊的基因型,然后通过基因型确定洼地绵羊繁殖力;所述FecB基因的核苷酸序列GENBANK ACCESSIONNUMBER为AF357007的第156bp至3255bp位核苷酸;The method for detecting the fecundity of Wadi sheep provided by the present invention is to detect whether the 746th nucleotide of the Fec B gene in the Wadi sheep genome to be tested is A or mutated to G, thereby determining the genotype of the Wadi sheep, and then passing the gene type to determine the fecundity of Wadi sheep; the nucleotide sequence GENBANK ACCESSIONNUMBER of the Fec B gene is the 156bp to 3255bp nucleotide of AF357007;
所述确定洼地绵羊的基因型的方法为:如果洼地绵羊基因组中的FecB基因的第746位核苷酸为A时,其纯合体的基因型为++;洼地绵羊基因组中的FecB基因的第746位核苷酸为G时,其纯合体的基因型为BB;它们的杂合体基因型为B+;The method for determining the genotype of Wadi sheep is: if the 746th nucleotide of the Fec B gene in the Wadi sheep genome is A, the genotype of its homozygote is ++; the Fec B gene in the Wadi sheep genome When the 746th nucleotide is G, their homozygous genotype is BB; their heterozygous genotype is B+;
通过基因型确定洼地绵羊繁殖力的方法为:所述BB基因型洼地绵羊的繁殖力高于B+基因型洼地绵羊,B+基因型洼地绵羊的繁殖力高于++型洼地绵羊。The method for determining the fecundity of the swale sheep by genotype is as follows: the fecundity of the swale sheep of the BB genotype is higher than that of the swale sheep of the B+ genotype, and the fecundity of the swale sheep of the B+ genotype is higher than that of the ++ genotype swale sheep.
所述检测洼地绵羊基因组中的FecB基因的第746位核苷酸为A还是突变G的方法有两种,第一种为利用PCR方法扩增洼地绵羊基因组中的核苷酸序列GENBANK ACCESSION NUMBER为AF357007的第626bp至813位核苷酸的片段,并将该扩增产物进行SSCP检测,均得到两条电泳条带,两条带距离最远,条带且较细的为++基因型,两条带距离最近,条带也较细的为BB基因型,两条带较粗,且相距距离为前两者之间的为B+基因型(如图2);第二种为利用PCR方法扩增洼地绵羊基因组中的核苷酸序列GENBANK ACCESSION NUMBER为AF357007的第638bp至778位核苷酸的片段,并将扩增产物进行RFLP检测,若能出现两个条带,且分别位于140bp和110bp,为B+基因型,若能出现一个条带,且位于140bp,为++基因型,若能出现一个条带,且位于110bp,为BB基因型(如图3)。There are two methods for detecting whether the 746th nucleotide of the FecB gene in the Wadi sheep genome is A or a mutation G. The first method is to use PCR to amplify the nucleotide sequence GENBANK ACCESSION NUMBER in the Wadi sheep genome. The 626bp to 813 nucleotide fragment of AF357007, and the amplified product was detected by SSCP, and two electrophoresis bands were obtained, the distance between the two bands was the farthest, and the thinner band was the ++ genotype. The two bands are the closest and the thinner bands are the BB genotype, and the two bands are thicker and the distance between the first two is the B+ genotype (as shown in Figure 2); the second is to use the PCR method Amplify the nucleotide sequence GENBANK ACCESSION NUMBER in the Wadi sheep genome from the 638bp to 778th nucleotide fragment of AF357007, and perform RFLP detection on the amplified product. If two bands can appear, and they are located at 140bp and 110bp, it is B+ genotype, if a band can appear, and it is located at 140bp, it is ++ genotype, if a band can appear, and it is located at 110bp, it is BB genotype (as shown in Figure 3).
所述方法中,所述PCR方法的扩增引物对为具有序列表中序列1、2、3、4所述的核苷酸。In the method, the amplification primer pair of the PCR method has the nucleotides described in the
所述方法中,所述繁殖力为每胎产羔数。In the method, the fecundity is the number of litters per litter.
本发明方法,采用单链构象多态性(single strand conformationpolymorphism,SSCP)和限制性内切酶片段多态性(restriction fragmentlength polymorphism,RFLP)方法对在FecB基因进行单核苷酸多态性(singlenucleotide polymorphism,SNP)检测,以比较FecB基因在洼地绵羊品种中的多态性,并对具有SSCP和RFLP多态性的DNA片段进行测序比较分析,寻找到与繁殖力(繁殖力)相关的遗传标记,数据统计结果表明,该遗传标记多态性可确定洼地绵羊繁殖力。本发明的方法即利用该遗传标记,建立SSCP和RFLP检测洼地绵羊的基因型,并利用该基因型确定其繁殖力的有效方法,实验证明,该方法可以迅速、简便的检测洼地绵羊的繁殖力。本发明的方法为绵羊的分子育种提供了一个准确简便的检测其繁殖力的方法。The method of the present invention adopts single strand conformation polymorphism (single strand conformation polymorphism, SSCP) and restriction endonuclease fragment polymorphism (restriction fragmentlength polymorphism, RFLP) method to carry out SNP in Fec B gene ( singlenucleotide polymorphism (SNP) detection to compare the polymorphisms of the Fec B gene in Wadi sheep breeds, and to conduct a comparative analysis of the DNA fragments with SSCP and RFLP polymorphisms, and to find out the factors related to fecundity (fecundity) Genetic markers, statistical results show that polymorphisms of the genetic markers can determine the fertility of Wadi sheep. The method of the present invention uses the genetic markers to establish SSCP and RFLP to detect the genotype of Wadi sheep, and utilizes the genotype to determine its effective method for fecundity. Experiments have proved that the method can quickly and easily detect the fecundity of Wadi sheep . The method of the invention provides an accurate and convenient method for detecting the fecundity of sheep molecular breeding.
附图说明 Description of drawings
图1为FecB基因的两对引物(P1、P2)的PCR产物。Fig. 1 is the PCR product of two pairs of primers (P1, P2) of Fec B gene.
图2为引物P1对洼地绵羊扩增片断的SSCP分析。Figure 2 is the SSCP analysis of primer P1 on the amplified fragment of Wadi sheep.
图3为引物P2对洼地绵羊扩增片段的RFLP分析。Figure 3 is the RFLP analysis of primer P2 on the amplified fragment of Wadi sheep.
具体实施方式 Detailed ways
下述实施例中提到的实验方法,如无特别说明均为常规方法。The experimental methods mentioned in the following examples are conventional methods unless otherwise specified.
下述实施例中所用主要试剂10PCR Buffer,dNTP,Taq DNA聚合酶,DNA MakerpBR322/Hae III,AvaII限制性内切酶PCR引物等均购自上海生物工程公司。The main reagents used in the following examples 10PCR Buffer, dNTP, Taq DNA polymerase, DNA MakerpBR322/Hae III, AvaII restriction endonuclease PCR primers, etc. were purchased from Shanghai Bioengineering Company.
实施例1、检测洼地绵羊繁殖力的方法的建立及其效果验证Example 1. Establishment of a method for detecting the fecundity of Wadi sheep and its effect verification
1、检测洼地绵羊繁殖力的方法的建立1. The establishment of a method for detecting the fecundity of lowland sheep
1)模板材料准备1) template material preparation
采集洼地绵羊的耳组织样并记录繁殖力和胎次,所采集洼地绵羊98只采自山东滨州地区。采用酚-氯仿法抽提绵羊的基因组DNA,灭菌TE溶解稀释后-20℃保存备用。The ear tissue samples of Wadi sheep were collected and the fecundity and parity were recorded. 98 Wadi sheep were collected from Binzhou, Shandong. Genomic DNA of sheep was extracted by phenol-chloroform method, dissolved and diluted in sterilized TE and stored at -20°C for later use.
2)引物设计2) Primer design
根据GenBank报道的绵羊FecB基因完全的编码序列(AF357007),用Oligo 7.0软件在编码区序列(GENBANK ACCESSION NUMBER为AF357007的第156bp至3255bp位核苷酸)处设计两对引物,引物由上海生工生物技术有限公司合成。引物序列和扩增片段大小如下:According to the complete coding sequence of the sheep Fec B gene (AF357007) reported by GenBank, two pairs of primers were designed at the coding region sequence (GENBANK ACCESSION NUMBER is the 156bp to 3255bp nucleotides of AF357007) with Oligo 7.0 software. Synthesized by Gongbio Technology Co., Ltd. Primer sequences and amplified fragment sizes are as follows:
引物1用于PCR-SSCP检测,F:5′-AGATTGGAAAAGGTCGCTATG-3′(SEQ IDNo.1);R:5′-ACCCTGAACATCGCTAATACA-3′(SEQ ID No.2),扩增187bp的片段(自GENBANK accession number为AF357007的第626bp至812位核苷酸序列,见SEQ ID No.5)。
引物2用于PCR-RFLP检测,F:5′-GTCGCTATGGGGAAGTTTGGATG-3′(SEQ IDNo.3);R:5′-CAAGATGTTTTCATGCCTCATCAACACGGTC-3′(SEQ ID No.4),扩增140bp的片段(自GENBANK accession number为AF357007的第638bp至777位核苷酸序列,见SEQ ID No.6)。
以步骤1得到的从洼地绵羊实验材料提取的基因组基因为模板,分别用上述引物进行PCR扩增。Using the genomic gene extracted from the Wadi sheep experimental material obtained in
PCR扩增体系如下:引物1和引物2的PCR扩增体系相同。PCR扩增体系的总体积为20μL,其中10×Buffer 2.5μL(含Mg2+),10mmol/LdNTP 2μL,10μmol/L上下游引物各1.0μL,100ng/μLDNA模版1μL,rTaq酶0.3μL,去离子水12.2μL。The PCR amplification system is as follows: the PCR amplification system of
PCR扩增条件如下:引物1为94℃预变性5min,94℃变性30s,55.2℃退火30s,72℃延伸30s,32个循环,72℃延伸10min,4℃保存。引物2为94℃预变性5min,94℃变性30s,64.6℃退火30s,72℃延伸30s,31个循环,72℃延伸10min,4℃保存。PCR amplification conditions were as follows:
将所设计的两对引物对洼地绵羊的基因组进行扩增得到的PCR产物用聚丙烯酰胺凝胶电泳检测,PCR产物检测:5μL扩增产物加2μL缓冲液(0.05%二甲苯兰;0.05%溴酚兰;0.02mol/L EDTA,加甲酰胺至10ml),DNA Marker用量为3μL。室温下120V电压2.5h,银染显色。结果表明扩增片段与目的片段大小一致且特异性好(图1),可直接进行SSCP和RFLP分析。图1中泳道1-6为引物2扩增得到的片段的电泳图,7-11为引物1扩增得到的片段的电泳图;图1中泳道M为pBR322marker。The PCR products obtained by amplifying the Wadi sheep genome with the two pairs of primers designed were detected by polyacrylamide gel electrophoresis. PCR product detection: 5 μL of amplification products plus 2 μL of buffer (0.05% xylene blue; 0.05% bromine Phenol blue; 0.02mol/L EDTA, add formamide to 10ml), the amount of DNA Marker is 3μL. 120V at room temperature for 2.5h, silver staining. The results showed that the amplified fragment was consistent with the target fragment in size and had good specificity (Figure 1), and could be directly analyzed by SSCP and RFLP. Lanes 1-6 in Figure 1 are the electrophoresis images of the fragments amplified by
3)SSCP分析和RFLP分析3) SSCP analysis and RFLP analysis
SSCP分析SSCP analysis
分别对步骤1)得到的两对引物在洼地绵羊中扩增的PCR产物分别进行SSCP分析,具体方法如下所述:吸取10μL PCR扩增产物与10μL变性缓冲液混合;置于基因扩增仪中,98℃变性10min,取出后置于冰盒放置-25℃冰箱5min完成变性;切断电源,将已变性的混合液用10μL的移液器点入每个胶孔中,接通电源,220V电压15min,观察到溴酚兰和二甲苯氰两条带分开后,120V恒压电泳10h,银染显色。用AlphaImagerTM2200 and 1220 Documentation and AnalysisSystems(Alpha Innotech Corporation,San Leandro,CA,USA)拍照和分析。The PCR products amplified by the two pairs of primers obtained in step 1) were respectively subjected to SSCP analysis in Wadi sheep, and the specific method was as follows: draw 10 μL of PCR amplification products and mix them with 10 μL of denaturing buffer; , denatured at 98°C for 10 minutes, took it out and placed it in an ice box and placed it in a refrigerator at -25°C for 5 minutes to complete the denaturation; cut off the power supply, put the denatured mixed solution into each gel hole with a 10μL pipette, turn on the power supply, and use 220V voltage After 15 minutes, the two bands of bromophenol blue and xylene cyanol were observed to separate, and then electrophoresed at a constant voltage of 120V for 10 hours, and the color was developed by silver staining. Images were taken and analyzed with AlphaImager ™ 2200 and 1220 Documentation and Analysis Systems (Alpha Innotech Corporation, San Leandro, CA, USA).
结果发现引物1扩增片段有3种基因型,命名为BB、B+、++(图2),即扩增产物非变性聚丙烯酰胺电泳均得到两条带。两条带距离最远,条带且较细的为++基因型(图2中泳道1,2,3),两条带距离最近,条带也较细的为BB基因型(图2中泳道7,8,9),两条带较粗,且相距距离为前两者之间的为B+基因型(图2中泳道4,5,6)。图2中,泳道1,2,3为++基因型;泳道4,5,6为B+基因型;泳道7,8,9为BB基因型。It was found that there were three genotypes in the fragment amplified by
RFLP分析RFLP analysis
分别对步骤1)得到的两对引物在洼地绵羊中扩增的PCR产物分别进行RFLP分析,具体方法如下所述:Respectively carry out RFLP analysis to the PCR product amplified in Wadi sheep by two pairs of primers that step 1) obtains respectively, and specific method is as follows:
PCR-RFLP酶切体系:引物2的PCR扩增产物用AvaII限制性内切酶进行酶切。酶切反应的总体积为15μL。其中PCR产物5μL,AvaII限制性内切酶1.0μL,10×Buffer1.5μL,去离子水7.5μL。振荡离心7500r/min 30s,酶切反应条件为37℃水浴4h。PCR-RFLP digestion system: the PCR amplification product of
PCR-RFLP产物检测:5μL酶切产物加2μL上样缓冲液(0.05%二甲苯兰;0.05%溴酚兰;0.02mol/L EDTA,加甲酰胺至10ml),DNA Marker用量为3μL。室温下120V电压3.5h,银染显色。用AlphaImagerTM2200 and 1220 Documentation andAnalysis Systems(Alpha Innotech Corporation,San Leandro,CA,USA)拍照和分析。Detection of PCR-RFLP products: 5 μL digested product plus 2 μL loading buffer (0.05% xylene blue; 0.05% bromophenol blue; 0.02mol/L EDTA, add formamide to 10 ml), the amount of DNA Marker is 3 μL. 120V at room temperature for 3.5h, silver staining. Images were taken and analyzed with AlphaImager ™ 2200 and 1220 Documentation and Analysis Systems (Alpha Innotech Corporation, San Leandro, CA, USA).
结果发现引物2扩增片段有3种基因型,命名为BB、B+、++(图3),若能出现两个条带,且分别位于140bp和110bp,为B+基因型(图3中泳道1、2、5、10、12-16、18-19),若能出现一个条带,且位于140bp,为++基因型(图3中泳道6、8、9),若能出现一个条带,且位于110bp,为BB基因型(图3中泳道3、4、7、17)。图3中,泳道6、8、9为++基因型;泳道1、2、5、10、12-16、18-19为B+基因型;泳道3、4、7、17为BB基因型。As a result, it was found that there were three genotypes in the amplified fragment of
实验结果表明上述两种方法均能准确判型,稳定可靠性良好,并且判断的结果一致。根据PCR-SSCP和PCR-RFLP的分析结果,选取不同的基因型的样品进行序列测定。PCR产物经电泳鉴定后,交由上海生物工程技术服务有限公司AB IPRISM 377 DNA自动测序仪完成序列测定。The experimental results show that the above two methods can judge the type accurately, have good stability and reliability, and the judgment results are consistent. According to the analysis results of PCR-SSCP and PCR-RFLP, samples of different genotypes were selected for sequence determination. After the PCR products were identified by electrophoresis, they were sequenced by the AB IPRISM 377 DNA automatic sequencer of Shanghai Bioengineering Technology Service Co., Ltd.
2、FecB基因型检测及其与繁殖力关系的统计分析2. Statistical analysis of Fec B genotype detection and its relationship with fecundity
按照步骤2)方法用引物1和引物2对洼地绵羊进行了FecB基因型检测,并计算了洼地绵羊的基因型频率和等位基因频率,统计结果如表1所示。According to the method of step 2), the Fec B genotype of Wadi sheep was detected with
表1FecB位点在洼地绵羊中的等位基因频率和基因型频率Table 1 Allele frequency and genotype frequency of FecB locus in Wadi sheep
注:括号内的数字是样本数。Note: Numbers in parentheses are sample sizes.
绵羊不同基因型与产羔性状之间的关联分析采用的最小二乘分析,构建以下广义线形模型(GLM):The least squares analysis was used for the association analysis between different genotypes of sheep and lambing traits, and the following generalized linear model (GLM) was constructed:
Yijk=μ+Gj+Ik+eijk Yi jk =μ+G j +I k +e ijk
(Yijk为性状观察值;μ为群体均值;Gj为基因型效应;Ik为家系效应;eijk为随机残差效应),采用SPSS生物分析软件分析基因型与洼地绵羊繁殖力的相关性。不同基因型的洼地绵羊繁殖力的最小二乘平均数及标准误见表2。(Y ijk is the observed value of traits; μ is the population mean; G j is the genotype effect; I k is the family effect; e ijk is the random residual effect), using SPSS biological analysis software to analyze the correlation between genotype and swale sheep fertility sex. Table 2 shows the least square mean and standard error of the fecundity of lowland sheep of different genotypes.
表2不同基因型与洼地绵羊繁殖力的最小二乘平均值及标准误Table 2 Least squares mean and standard error of different genotypes and lowland sheep fecundity
注:同一大写字母表示差异不显著(p>0.05);不同小写字母表示差异显著(0.01<p<0.05);不同大写字母表示差异极显著(p<0.01)。Note: The same uppercase letter indicates no significant difference (p>0.05); different lowercase letters indicate significant difference (0.01<p<0.05); different uppercase letters indicate extremely significant difference (p<0.01).
表2的结果表明:BB基因型在繁殖力上比++基因型高0.90837,这表明BB和++基因型对洼地绵羊的产羔性状有一定的影响,且此位点的不同基因型在繁殖力上差异达极显著水平(P<0.01);B+基因型在繁殖力上比++基因型高0.49581,这表明B+和++基因型对洼地绵羊的产羔性状有一定的影响,且此位点的不同基因型在繁殖力上差异未达显著水平(P>0.05);。BB基因型在繁殖力上比B+基因型高0.41256,这表明BB和B+基因型对洼地绵羊的产羔性状有一定的影响,且此位点的不同基因型在繁殖力上差异达极显著水平(P<0.01)。该结果表明,可利用该上述引物1和2基因型多态性检测洼地绵羊多态性。The results in Table 2 show that the fecundity of the BB genotype is 0.90837 higher than that of the ++ genotype, which indicates that the BB and ++ genotypes have certain effects on the lambing traits of Wadi sheep, and the different genotypes at this locus are in The difference in fecundity reached a very significant level (P<0.01); the fecundity of B+ genotype was 0.49581 higher than that of ++ genotype, which indicated that B+ and ++ genotypes had a certain influence on the lambing traits of Wadi sheep, and The difference in fecundity of different genotypes at this locus did not reach a significant level (P>0.05); The fecundity of BB genotype is 0.41256 higher than that of B+ genotype, which indicates that BB and B+ genotypes have a certain influence on the lambing traits of Wadi sheep, and the difference in fecundity of different genotypes at this locus is extremely significant (P<0.01). This result indicated that the polymorphisms of Wadi sheep could be detected by using the above-mentioned
SEQUENCE LISTING SEQUENCE LISTING
the
<110> 扬州大学 <110> Yangzhou University
the
<120> 一种检测洼地绵羊繁殖力的方法 <120> A method for testing the fecundity of Wadi sheep
the
<130> <130>
the
<160> 6 <160> 6
the
<170> PatentIn version 3.3 <170> PatentIn version 3.3
the
<210> 1 <210> 1
<211> 21 <211> 21
<212> DNA <212> DNA
<213> 人工序列 <213> Artificial sequence
the
<400> 1 <400> 1
agattggaaa aggtcgctat g 21 agattggaaa aggtcgctat g 21
the
the
<210> 2 <210> 2
<211> 21 <211> 21
<212> DNA <212> DNA
<213> 人工序列 <213> Artificial sequence
the
<400> 2 <400> 2
accctgaaca tcgctaatac a 21 accctgaaca tcgctaatac a 21
the
the
<210> 3 <210> 3
<211> 23 <211> 23
<212> DNA <212> DNA
<213> 人工序列 <213> Artificial sequence
the
<400> 3 <400> 3
gtcgctatgg ggaagtttgg atg 23 gtcgctatgg ggaagtttgg atg 23
the
the
<210> 4 <210> 4
<211> 31 <211> 31
<212> DNA <212> DNA
<213> 人工序列 <213> Artificial sequence
the
<400> 4 <400> 4
caagatgttt tcatgcctca tcaacacggt c 31 caagatgttt tcatgcctca tcaacacggt c 31
the
the
<210> 5 <210> 5
<211> 187 <211> 187
<212> DNA <212> DNA
<213> 绵羊属(ovis hircus) <213> Ovis hircus
the
<400> 5 <400> 5
agattggaaa aggtcgctat ggggaagttt ggatgggaaa gtggcgtggc gaaaaggtag 60 agattggaaa aggtcgctat ggggaagttt ggatgggaaa gtggcgtggc gaaaaggtag 60
the
ctgtgaaagt gttcttcact acagaggagg ccagctggtt ccgagagaca gaaatatatc 120 ctgtgaaagt gttcttcact acagaggagg ccagctggtt ccgagagaca gaaatatatc 120
the
agacggtgtt gatgaggcat gaaaacatct tgggcttcat tgctgcagat atcaaaggga 180 agacggtgtt gatgaggcat gaaaacatct tgggcttcat tgctgcagat atcaaaggga 180
the
cggggtc 187 cggggtc 187
the
the
<210> 6 <210> 6
<211> 140 <211> 140
<212> DNA <212> DNA
<213> 绵羊属(Ovis hircus) <213> Ovis hircus
the
<400> 6 <400> 6
gtcgctatgg ggaagtttgg atgggaaagt ggcgtggcga aaaggtagct gtgaaagtgt 60 gtcgctatgg ggaagttgg atgggaaagt ggcgtggcga aaaggtagct gtgaaagtgt 60
the
tcttcactac agaggaggcc agctggttcc gagagacaga aatatatcag acggtgttga 120 tcttcactac agaggaggcc agctggttcc gagagacaga aatatatcag acggtgttga 120
the
tgaggcatga aaacatcttg 140 tgaggcatga aaacatcttg 140
the
the
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101118552A CN102643914A (en) | 2012-04-17 | 2012-04-17 | Method for detecting depression sheep fecundity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101118552A CN102643914A (en) | 2012-04-17 | 2012-04-17 | Method for detecting depression sheep fecundity |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102643914A true CN102643914A (en) | 2012-08-22 |
Family
ID=46656989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012101118552A Pending CN102643914A (en) | 2012-04-17 | 2012-04-17 | Method for detecting depression sheep fecundity |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102643914A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104774836A (en) * | 2015-04-15 | 2015-07-15 | 兰州大学 | Polygene pyramiding early-breeding method for raising litter size of sheep |
CN107164482A (en) * | 2017-06-05 | 2017-09-15 | 西北农林科技大学 | A kind of detection method of goat CSN1S1 gene insertion/deletions and its application |
CN109837352A (en) * | 2019-04-17 | 2019-06-04 | 锡林郭勒职业学院 | Identify the primer and method of sheep FecB gene SNP genotype |
CN111560441A (en) * | 2020-05-28 | 2020-08-21 | 西北农林科技大学 | Method for rapidly identifying FecB gene by using sheep structural variation region |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1749416A (en) * | 2004-09-15 | 2006-03-22 | 中国农业科学院畜牧研究所 | A Method for Predicting the Average Litter Size of Sheep Litters Using Single Nucleotide Polymorphisms |
CN101979659A (en) * | 2010-11-16 | 2011-02-23 | 新疆农垦科学院 | A method for rapid detection of FecB gene in sheep with multiple births |
CN102162008A (en) * | 2011-02-06 | 2011-08-24 | 中国农业科学院兰州畜牧与兽药研究所 | Kit for detecting reproductive capacity of sheep and using method thereof |
-
2012
- 2012-04-17 CN CN2012101118552A patent/CN102643914A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1749416A (en) * | 2004-09-15 | 2006-03-22 | 中国农业科学院畜牧研究所 | A Method for Predicting the Average Litter Size of Sheep Litters Using Single Nucleotide Polymorphisms |
CN101979659A (en) * | 2010-11-16 | 2011-02-23 | 新疆农垦科学院 | A method for rapid detection of FecB gene in sheep with multiple births |
CN102162008A (en) * | 2011-02-06 | 2011-08-24 | 中国农业科学院兰州畜牧与兽药研究所 | Kit for detecting reproductive capacity of sheep and using method thereof |
Non-Patent Citations (4)
Title |
---|
任艳玲等: "洼地绵羊FecB 基因多态性与其产羔数关系的研究", 《中国畜牧兽医》 * |
储明星等: "绵羊多胎主效基因乃CB分子检测方法的建立与应用", 《农业生物技术学报》 * |
史洪才等: "新疆多浪羊Fec占突变检测及与产羔数的关系", 《农业生物技术学报》 * |
李达等: "绵羊FecB 基因遗传多样性及其产羔数的关联分析", 《畜牧兽医杂志》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104774836A (en) * | 2015-04-15 | 2015-07-15 | 兰州大学 | Polygene pyramiding early-breeding method for raising litter size of sheep |
CN107164482A (en) * | 2017-06-05 | 2017-09-15 | 西北农林科技大学 | A kind of detection method of goat CSN1S1 gene insertion/deletions and its application |
CN107164482B (en) * | 2017-06-05 | 2020-02-18 | 西北农林科技大学 | A method for detecting insertion/deletion of goat CSN1S1 gene and its application |
CN109837352A (en) * | 2019-04-17 | 2019-06-04 | 锡林郭勒职业学院 | Identify the primer and method of sheep FecB gene SNP genotype |
CN111560441A (en) * | 2020-05-28 | 2020-08-21 | 西北农林科技大学 | Method for rapidly identifying FecB gene by using sheep structural variation region |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111996264B (en) | Application of pig SNP molecular marker in pig breeding character screening and pig breeding | |
CN113215277B (en) | A SNP genetic marker associated with porcine semen quality traits and its application | |
CN108251539A (en) | A kind of and the relevant SNP marker of chicken Carcass Traits and its application, detection primer, detection kit | |
GURSEL et al. | Determination of BMP-15, BMPR-1B and GDF-9 gene mutations of the indigenous sheep breeds in Turkey | |
CN103421797B (en) | Genetic marker for character of litter size of pig utilizing SLA-11 gene | |
CN102168136B (en) | Application of LHCGR Gene as Molecular Marker in Chinese Holstein Dairy Cows | |
CN102643914A (en) | Method for detecting depression sheep fecundity | |
CN101955996B (en) | A detection method for single base Indel mutation | |
CN108611428A (en) | Genetic marker and application of the TGFB3 gene pleiomorphisms as pig body length and number of nipples | |
CN102816837B (en) | Method for identifying Chinese and foreign pig breeds | |
CN119842928A (en) | Application of SNP molecular marker combination in-vivo diagonal growth auxiliary breeding | |
CN113774154B (en) | Method for screening bovine body high mutation related molecular marker and application thereof | |
CN113736889B (en) | A kind of SNP molecular marker related to pig stillbirth number and live litter rate on pig No. 7 chromosome and its application | |
CN110714082A (en) | A SNP locus related to pig teat number and its detection method and application | |
CN101570789B (en) | Identification and Application of Porcine MHCⅡTA Gene as Immune Related Molecular Marker | |
EP3008206B1 (en) | Method for detecting the susceptibility of a dog to hip dysplasia | |
CN118895369A (en) | SNP molecular markers related to body size and weight traits in goats and their application | |
CN103421771B (en) | Genetic marker for character of litter size of pig utilizing WIF1 gene | |
CN113355427B (en) | SNP (single nucleotide polymorphism) marker related to pig backfat thickness and utilization method thereof | |
CN104651523A (en) | Applications of single-stranded nucleotide sequence of INHA gene as animal superovulation molecule marker, and detection method | |
CN111500742B (en) | Chicken growth trait gene diagnostic kit and application thereof | |
CN104745716B (en) | A kind of detection method of cattle AGPAT6 gene mononucleotide polymorphism | |
CN115044680B (en) | SNP molecular marker related to slaughter traits of meat rabbits as well as detection primer group, detection kit and application thereof | |
CN116397033A (en) | SNP molecular marker related to porcine reproductive trait gene NCK1, primer pair and application thereof | |
CN101812450B (en) | Auxiliary identification method of chickens with different weight characters and special primers thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120822 |
|
WD01 | Invention patent application deemed withdrawn after publication |