CN102629369A - 一种基于照度表面建模的单幅彩色图像阴影去除方法 - Google Patents

一种基于照度表面建模的单幅彩色图像阴影去除方法 Download PDF

Info

Publication number
CN102629369A
CN102629369A CN2012100460078A CN201210046007A CN102629369A CN 102629369 A CN102629369 A CN 102629369A CN 2012100460078 A CN2012100460078 A CN 2012100460078A CN 201210046007 A CN201210046007 A CN 201210046007A CN 102629369 A CN102629369 A CN 102629369A
Authority
CN
China
Prior art keywords
image
modeling
illumination
shadow
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012100460078A
Other languages
English (en)
Other versions
CN102629369B (zh
Inventor
何凯
张伟伟
孔祥文
孟春芝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TIANJIN BOHUA ANCHUANG TECHNOLOGY Co.,Ltd.
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201210046007.8A priority Critical patent/CN102629369B/zh
Publication of CN102629369A publication Critical patent/CN102629369A/zh
Application granted granted Critical
Publication of CN102629369B publication Critical patent/CN102629369B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)

Abstract

本发明属于计算机图像处理领域,涉及一种基于照度表面建模的单幅彩色图像阴影去除方法,包括:对原始彩色阴影图像进行结构和纹理的分解,分别获取其在RGB三个颜色通道内的结构图像以及对应的纹理图像;在图像非阴影区域内均匀选取中心点,计算任意两个中心点之间的径向距离;对三个颜色通道内的结构图像分别进行建模,获得3个颜色通道内阴影区域的照度分布;对3个颜色通道分别添加各自通道内的纹理图像,得到光照纠正后的图像。本发明自适应性强,无需过多的人工干预,照度建模和中心点选取均采用自适应算法,可用于实际图像阴影的自动去除。

Description

一种基于照度表面建模的单幅彩色图像阴影去除方法
技术领域
本发明属于计算机图像处理领域,涉及一种单幅彩色图像的阴影去除方法。
背景技术
单幅彩色图像的阴影去除是计算机视觉领域的重要研究内容,由于阴影的存在,使得局部光照情况发生变化,进而导致图像中的色彩发生变化,使得图像分割、目标识别、运动对象检测与跟踪等算法的准确率受到很大程度的限制。
归纳起来,目前单幅图像阴影去除方法大致可以分为3类:即基于物理模型的方法、基于特征的方法,以及基于图像提取的方法。其中,1)基于物理模型的方法主要是通过分析阴影产生的物理过程,并借助一些先验知识,建立阴影模型,并在此基础上对图像/视频中的特定区域进行匹配,以实现阴影区域的检测和自动去除。该方法理论性强,但需要假设阴影产生的光照条件或相机成像模型满足已有的模型,由于实际成像环境复杂,难以用准确的物理模型对阴影成像机理进行描述,因此上述方法在实际工程中往往会受到很大程度的限制,通常用于特定阴影去除。2)基于特征的方法是通过分析阴影区域与周围非阴影区域在视觉特征上的差别来实现阴影检测与消除。与前一种方法相比,该方法比较灵活,但效果往往不够理想。3)基于图像提取的方法通常需要进行人工干预,受主观因素影响,自适应性差,不适于实际图像阴影的自动检测与去除。
发明内容
本发明的目的是克服现有技术的上述不足,以提供一种通用性强、效果好的彩色图像阴影去除方法。本发明从照度纠正的角度入手,利用正常光照条件下的光照表面对具有相同纹理的阴影区域进行建模,从而获得阴影区域内正常光照条件下的能量分布,最后通过光照纠正实现单幅彩色图像的阴影去除。本发明的技术方案如下:
一种基于照度表面建模的单幅彩色图像阴影去除方法,主要包括以下几个步骤:
1)对原始彩色阴影图像进行结构和纹理的分解,分别获取其在RGB三个颜色通道内的
结构图像UR、UG和UB,以及对应的纹理图像VR、VG和VB
2)在图像非阴影区域内均匀选取中心点,计算任意两个中心点pi,pj之间的径向距离
Figure BDA0000138705350000011
1≤i,j≤M,其中||·||代表欧氏距离,M代表中心点总数;
3)对颜色通道R内的结构图像进行建模,方法如下:
计算该通道内结构图像UR在各中心点pi处的像素值Ui;根据公式
Figure BDA0000138705350000012
计算参数ci,1≤i≤M;计算阴影区域内待建模点(x,y)与各中心点pi之间的径向距离di,1≤i≤M,其中(x,y)为待建模点的图像坐标;根据公式
Figure BDA0000138705350000021
计算该点建模后的像素值;重复上述步骤,完成该颜色通道内阴影区域中所有点的建模,获得建模曲面U′R
4)对于其他两个颜色通道,按照步骤3)的方法,完成建模,从而获得3个颜色通道内阴影区域的照度分布U′R、U′G和U′B,分别用来替换原阴影区域内的结构图像函数值UR、UG和UB
5)对3个颜色通道分别添加各自通道内的纹理图像,得到光照纠正后的图像I′R=U′R+VR,I′G=U′G+VG,I′B=U′B+VB
6)将光照纠正后的3个颜色通道图像I′R、I′G和I′B进行整合,实现单幅彩色图像的阴影去除。
本发明的有益效果如下:与传统方法相比,本发明不需要建立复杂的物理模型,只需要在三个颜色通道内分别对简单的光照分布进行建模,即可实现阴影区域的去除,具有很强的适用性;在不同颜色通道内,分别利用正常光照条件下的光照分布,对阴影区域内具有相同纹理的照度表面进行建模,有效地克服了不同纹理光照反射率不同所引起的误差,当阴影区域包含多种纹理背景时,算法仍然有效,解决了复杂背景阴影去除的难题;同时,本发明自适应性强,无需过多的人工干预,照度建模和中心点选取均采用自适应算法,可用于实际图像阴影的自动去除。
附图说明:
图1为本发明提出的单幅彩色图像阴影去除结构框图。
图2给出了彩色图像阴影建模及去除效果。其中,图2(a)为原始彩色阴影图像;图2(b)为利用图像分解技术获得的结构图像;图2(c)为选取的相关中心点,其中“o”代表中心点所在位置;图2(d)和(e)分别为彩色阴影结构图像B分量建模前后的能量分布图;图2(f)为本发明阴影去除效果图。
具体实施方式:
众所周知,由于光照条件发生变化,阴影区域内的照度分布与其周围同纹理区域内的照度分布存在明显差异;而在正常光照条件下,相同纹理区域应该具有相同或渐近变化的光照分布。根据这一特点,本发明从照度纠正的角度入手,利用正常光照条件下的光照表面对具有相同纹理的阴影区域进行建模,从而获得阴影区域内正常光照条件下的能量分布,最后通过光照纠正实现单幅彩色图像的阴影去除。下面对本发明的技术方案进行说明:
1、彩色图像分解
彩色图像分解的目的是从原始彩色图像中提取出其结构图像和纹理图像,前者主要包括图像的低频信息,能够实现保边缘的平滑滤波,后者主要包括图像的细节等高频信息。即原始图像f可以分解为结构部分u和纹理部分v,且满足关系f=u+v。彩色图像分解可以采用多种方法,如文献[1](可参见Luminita A.Vese,Stanley J.Osher.“Color texture modeling and colorimage decomposition in a variational-PDE approach,”Proceedings of the Eighth InternationalSymposium on Symbolic and Numeric Algorithms for Scientific Computing(SYNASC′06),2006,pp.103-110.)指出,从原始图像f中提取其结构图像u,可以看作是一个具有固定边界的函数最小化问题,其能量泛函最小化模型可以表示为:
inf u , g 1 , g 2 { ∫ | ▿ u | + λ ∫ | f - u - ∂ x g 1 - ∂ x g 2 | 2 dxdy + μ [ ∫ ( g 1 2 + g 2 2 ) p dxdy ] 1 p } - - - ( 1 )
其中,λ,μ,p是事先选定的相关参数,inf{·}代表使函数{·}达到最小值,
Figure BDA0000138705350000032
Figure BDA0000138705350000033
是转换矢量,ux,uy分别代表结构图像对行列坐标的一阶偏导,代表结构图像的梯度。
将公式(1)分别对u,g1,g2求偏导,可以得到相关的Euler-Lagrange方程。利用迭代方法进行求解,就可以获得结构图像u。在RGB三个颜色空间重复上述操作,即可实现彩色图像的自动分解。
文献[2](可参见Jean-Francois Aujol,Sung Ha Kang.“Color image decomposition andrestoration.”Journal of Visual Communication and Image Representation,2006,17(4),pp:916-928.)是根据图像的亮度和色度进行图像分解,即将结构图像u分为色度uc和亮度ub两部分,且满足关系u=uc*ub;同理,有f=fc*fb,v=vc*vb,f=u+v,其中f,v分别代表原图像和纹理图像;可以根据最小化模型来求解结构图像u,其中
Figure BDA0000138705350000036
r,g,b分别代表图像的RGB通道,
Figure BDA0000138705350000037
代表结构图像的梯度;再利用关系v=f-u求解纹理图像v,即可实现彩色图像的自动分解。
本发明采用文献[1]提供的方法进行彩色渐晕图像的自动分解。在本发明中,迭代初始值分别设为u0=f,
Figure BDA0000138705350000038
Figure BDA0000138705350000039
其中f为原始图像,fx,fy分别代表图像对行列坐标的一阶偏导,
Figure BDA00001387053500000310
代表图像的梯度。
在本发明中,相关参数选择为λ=0.01,μ=0.2,p=1,发明人前期的研究表明,选取上述参数能够在很大程度上实现图像保边缘的平滑滤波,尽量减少噪声和附加干扰,提高建模效果。
2、图像照度表面建模方法
近年来,基于径向基函数的方法已经被广泛用于光流、能量分布、电磁场等光滑能量场或光滑曲面的三维建模,本发明将上述模型引入到图像处理领域,并进行了相应的改进。与传统的光流或能量场分布不同,实际图像表面照度曲面波动剧烈,无法满足建模所需的整体平滑性的要求,因此不能利用传统方法直接对图像进行建模。为了解决上述问题,在对图像照度表面进行建模之前,本发明首先利用彩色图像分解的方法[1]提取出原彩色图像的结构信息,实现保边缘的平滑滤波,使图像照度表面满足整体平滑性的要求。本发明前期的研究表明,此举可以有效降低求解矩阵的条件数,提高图像建模的准确性。
设图像建模区域为Ω,在Ω上均匀地选取N×N个点,除去位于阴影区域内的点,将其余的点构成中心点集合pk,1≤k≤M。利用选取的中心点,对图像表面照度进行建模,具体方法可参见([3]L.Ling and E.J.Kansa,“A least-squares preconditioner for radial basis functionscollocation methods,”Advances in Computational Mathematics,vol.23,pp.31-54,2005.)或([4]Y.Duan,P.F.Tang,T.Z.Huang and S.J.Lai,“Coupling projection domain decomposition methodand Kansa’s method in elcectrostatic problems,”Computer physics Communications,vol.180,pp.209-214,2009.)本发明采用文献[4]提供的方法计算建模后各点处的图像函数值。以灰度图像为例,具体步骤如下:
1)利用图像分解技术,实现原始图像结构和纹理的自动分解,获取其结构图像Iu,在其已知区域内,按照均匀性原则选取中心点;
2)计算任意两个中心点pi,pj之间的径向距离
Figure BDA0000138705350000041
1≤i,j≤M,其中||·||代表欧氏距离,M代表中心点总数;
3)计算结构图像Iu在各中心点pi处的像素值Ii;根据公式
Figure BDA0000138705350000042
计算参数ci,1≤i≤M;
4)计算待建模点(x,y)与各中心点pi之间的径向距离di,1≤i≤M,其中(x,y)为待建模点的图像坐标;根据公式
Figure BDA0000138705350000043
计算建模图像在点(x,y)处的像素值I′(x,y);
5)重复上述步骤,完成对所有点的建模,获得建模后的曲面I′。
3、光照纠正及阴影去除
在R、G、B三个颜色通道内对阴影区域内的照度分布进行建模,分别获得3个建模曲面U′R、U′G和U′B,将其作为阴影区域内三个颜色通道在正常光照条件下应该具有的照度分布,即利用U′R、I′G和U′B分别替换原阴影区域内的结构图像函数值UR、UG和UB,完成阴影区域内的照度纠正。分别添加3个颜色通道内各自的纹理图像,得到光照纠正后的图像I′R=U′R+VR,I′G=U′G+VG,I′B=U′B+VB。最后将光照纠正后的3个颜色通道图像I′R、I′G和I′B进行整合,即可实现整幅彩色图像的阴影去除。
从图2(b)中可以看出,经彩色图像分解处理后,图像在保持原有边缘的条件下实现了很大的平滑,确保了图像建模时对表面照度的平滑性要求,同时有效去除了噪声和干扰,提高了建模效果。
从图像2(d)中可以看出,由于光照条件发生了变化,阴影区域的光照分布与其周围具有相同纹理的非阴影区域发生了很大变化。然而,利用本发明方法对阴影区域光照分布进行建模后,阴影区域内的光照分布与其周围区域实现了平滑过渡,并保持了渐近变化的趋势,如图像2(e)所示。从图2(f)中可以看出,利用本发明所提供的方法,阴影效果得到了明显抑制。

Claims (1)

1.一种基于照度表面建模的单幅彩色图像阴影去除方法,主要包括以下几个步骤:
1)对原始彩色阴影图像进行结构和纹理的分解,分别获取其在RGB三个颜色通道内的结构图像UR、UG和UB,以及对应的纹理图像VR、VG和VB
2)在图像非阴影区域内均匀选取中心点,计算任意两个中心点pi,pj之间的径向距离
Figure FDA0000138705340000011
1≤i,j≤M,其中||·||代表欧氏距离,M代表中心点总数;
3)对颜色通道R内的结构图像进行建模,方法如下:
计算该通道内结构图像UR在各中心点pi处的像素值Ui;根据公式计算参数ci,1≤i≤M;计算阴影区域内待建模点(x,y)与各中心点pi之间的径向距离di,1≤i≤M;根据公式
Figure FDA0000138705340000013
计算该点建模后的像素值;重复上述步骤,完成该颜色通道内阴影区域中所有点的建模;
4)对于其他两个颜色通道,按照步骤3)的方法,完成建模,从而获得3个颜色通道内阴影区域的照度分布U′R、U′G和U′B,分别用来替换原阴影区域内的结构图像函数值UR、UG和UB
5)对3个颜色通道分别添加各自通道内的纹理图像,得到光照纠正后的图像I′R=U′R+VR,I′G=U′G+VG,I′B=U′B+VB
将光照纠正后的3个颜色通道图像I′R、I′G和I′B进行整合,实现单幅彩色图像的阴影去除。
CN201210046007.8A 2012-02-27 2012-02-27 一种基于照度表面建模的单幅彩色图像阴影去除方法 Active CN102629369B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210046007.8A CN102629369B (zh) 2012-02-27 2012-02-27 一种基于照度表面建模的单幅彩色图像阴影去除方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210046007.8A CN102629369B (zh) 2012-02-27 2012-02-27 一种基于照度表面建模的单幅彩色图像阴影去除方法

Publications (2)

Publication Number Publication Date
CN102629369A true CN102629369A (zh) 2012-08-08
CN102629369B CN102629369B (zh) 2014-02-05

Family

ID=46587627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210046007.8A Active CN102629369B (zh) 2012-02-27 2012-02-27 一种基于照度表面建模的单幅彩色图像阴影去除方法

Country Status (1)

Country Link
CN (1) CN102629369B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104240207A (zh) * 2014-10-10 2014-12-24 深圳市开立科技有限公司 一种图像去阴影方法及装置
CN107507146A (zh) * 2017-08-28 2017-12-22 武汉大学 一种自然图像软阴影消除方法
CN107808366A (zh) * 2017-10-21 2018-03-16 天津大学 一种基于块匹配的自适应光转移单幅阴影去除方法
CN110537119A (zh) * 2017-05-25 2019-12-03 富士胶片株式会社 色分解光学系统、摄像单元及摄像装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050212794A1 (en) * 2004-03-29 2005-09-29 Communications Research Laboratory, Independent Administrative Institution Method and apparatus for removing of shadows and shadings from texture images
CN102346854A (zh) * 2010-08-03 2012-02-08 株式会社理光 前景物体检测方法和设备
CN102360450A (zh) * 2011-09-26 2012-02-22 华中科技大学 基于团块的人数统计方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050212794A1 (en) * 2004-03-29 2005-09-29 Communications Research Laboratory, Independent Administrative Institution Method and apparatus for removing of shadows and shadings from texture images
CN102346854A (zh) * 2010-08-03 2012-02-08 株式会社理光 前景物体检测方法和设备
CN102360450A (zh) * 2011-09-26 2012-02-22 华中科技大学 基于团块的人数统计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LUMINITA A. VESE,STANLEY J. OSHER: "Color texture modeling and color image decomposition in a variational-PDE approach", 《PROCEEDINGS OF THE EIGHTH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC"06)》, 31 December 2006 (2006-12-31) *
Y. DUAN ET AL: "Coupling projection domain decomposition method and Kansa"s method in electrostatic problems", 《COMPUTER PHYSICS COMMUNICATIONS》, vol. 180, 31 December 2008 (2008-12-31), pages 209 - 214 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104240207A (zh) * 2014-10-10 2014-12-24 深圳市开立科技有限公司 一种图像去阴影方法及装置
CN104240207B (zh) * 2014-10-10 2017-12-19 深圳开立生物医疗科技股份有限公司 一种图像去阴影方法及装置
CN110537119A (zh) * 2017-05-25 2019-12-03 富士胶片株式会社 色分解光学系统、摄像单元及摄像装置
CN110537119B (zh) * 2017-05-25 2022-06-28 富士胶片株式会社 色分解光学系统、摄像单元及摄像装置
CN107507146A (zh) * 2017-08-28 2017-12-22 武汉大学 一种自然图像软阴影消除方法
CN107507146B (zh) * 2017-08-28 2021-04-16 武汉大学 一种自然图像软阴影消除方法
CN107808366A (zh) * 2017-10-21 2018-03-16 天津大学 一种基于块匹配的自适应光转移单幅阴影去除方法
CN107808366B (zh) * 2017-10-21 2020-07-10 天津大学 一种基于块匹配的自适应光转移单幅阴影去除方法

Also Published As

Publication number Publication date
CN102629369B (zh) 2014-02-05

Similar Documents

Publication Publication Date Title
CN108921176B (zh) 一种基于机器视觉的指针式仪表定位与识别方法
US10325151B1 (en) Method of extracting image of port wharf through multispectral interpretation
CN107704801B (zh) 基于分段直线加分段贝塞尔曲线的曲线车道线检测方法
CN102982513B (zh) 一种基于纹理的自适应图像去雾方法
CN107169475B (zh) 一种基于kinect相机的人脸三维点云优化处理方法
CN108564549B (zh) 一种基于多尺度稠密连接网络的图像去雾方法
CN103020913B (zh) 基于分段校正的遥感影像条带噪声去除方法
CN108876743A (zh) 一种图像快速去雾方法、系统、终端及存储介质
CN103914820B (zh) 一种基于图像分层增强的图像去雾方法及系统
CN109118446B (zh) 一种水下图像复原及去噪方法
CN103500440A (zh) 一种去除大气退化图像云雾的方法
CN103295010A (zh) 一种处理人脸图像的光照归一化方法
US8995730B2 (en) Image processing apparatus for analyzing and enhancing fingerprint images
CN108182671B (zh) 一种基于天空区域识别的单幅图像去雾方法
CN102629369B (zh) 一种基于照度表面建模的单幅彩色图像阴影去除方法
CN103927730B (zh) 基于Primal Sketch修正及矩阵填充的图像降噪方法
CN106327455A (zh) 一种改进的遥感多光谱与全色图像融合方法
CN110687122A (zh) 一种陶瓦表面裂纹检测方法及系统
CN105719275A (zh) 一种并行组合的图像缺陷分割方法
CN104881847A (zh) 一种基于小波分析和伪彩色处理的比赛视频图像增强方法
CN110136146B (zh) 基于正弦spf分布和水平集模型的sar图像水域分割方法
CN110728690A (zh) 一种利用小波变换对图像进行边缘平滑处理的抠图方法
CN108765355B (zh) 一种基于变分Retinex模型的雾天图像增强方法
CN112561919A (zh) 一种图像分割方法、设备和计算机可读存储介质
CN102629368B (zh) 一种基于照度表面建模的彩色图像渐晕复原方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210907

Address after: Room 109, no.1866, Bohai 12th Road, Port Economic Zone, Binhai New Area, Tianjin 300452

Patentee after: Tianjin Bohua Xinchuang Technology Co.,Ltd.

Address before: 300072 Tianjin City, Nankai District Wei Jin Road No. 92

Patentee before: Tianjin University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211019

Address after: 300452 room 121, No. 1866, Bohai 12th Road, Lingang Economic Zone, Binhai New Area, Tianjin

Patentee after: TIANJIN BOHUA ANCHUANG TECHNOLOGY Co.,Ltd.

Address before: Room 109, no.1866, Bohai 12th Road, Port Economic Zone, Binhai New Area, Tianjin 300452

Patentee before: Tianjin Bohua Xinchuang Technology Co.,Ltd.

TR01 Transfer of patent right