CN102624670B - Wireless OFDM (Orthogonal Frequency Division Multiplexing) signal peak to average power ratio inhibiting method based on amplitude distribution optimization - Google Patents

Wireless OFDM (Orthogonal Frequency Division Multiplexing) signal peak to average power ratio inhibiting method based on amplitude distribution optimization Download PDF

Info

Publication number
CN102624670B
CN102624670B CN201210120688.8A CN201210120688A CN102624670B CN 102624670 B CN102624670 B CN 102624670B CN 201210120688 A CN201210120688 A CN 201210120688A CN 102624670 B CN102624670 B CN 102624670B
Authority
CN
China
Prior art keywords
mrow
msup
mfrac
mtd
msub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210120688.8A
Other languages
Chinese (zh)
Other versions
CN102624670A (en
Inventor
王勇
王丽花
葛建华
李毅
宫丰奎
李靖
杨超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201210120688.8A priority Critical patent/CN102624670B/en
Publication of CN102624670A publication Critical patent/CN102624670A/en
Application granted granted Critical
Publication of CN102624670B publication Critical patent/CN102624670B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

The invention discloses a wireless OFDM (Orthogonal Frequency Division Multiplexing) signal peak to average power ratio inhibiting method based on amplitude distribution optimization, which mainly solves the problems of inconstant average power and larger influence on error code rate performance of the prior art. The wireless OFDM signal peak to average power ratio inhibiting method comprises the steps of: 1, carrying out OFDM modulation on an input bit stream, obtaining an original OFDM signal after up-sampling; 2, constructing a companding function based on an improvement target, carrying out companding conversion on the original OFDM signal by using the companding function; 3, sending a companding conversion signal; 4, calculating a de-companding function, carrying out de-companding conversion on a received signal; and 5, carrying out down-sampling on a de-companding conversion signal, and reducing to obtain an original bit stream after OFDM demodulation. The invention is capable of ensuring constancy of an average power after and behind signal companding, has little influence to the error code rate performance of the system while the OFDM signal peak to average power ratio is remarkably lowered, and can be widely applied to various kinds of new generation of broadband wireless OFDM communication systems.

Description

Wireless OFDM signal peak-to-average power ratio suppression method based on amplitude distribution optimization
Technical Field
The invention belongs to the technical field of wireless communication, relates to a peak-to-average power ratio (PAPR) suppression method for Orthogonal Frequency Division Multiplexing (OFDM) modulation wireless transmission signals, and can be widely applied to various new-generation broadband OFDM wireless communication systems.
Background
In recent years, orthogonal frequency division multiplexing, OFDM, has gained increasing attention, particularly in wireless applications. OFDM is a multi-carrier communication system that divides an input information sequence into N parallel sequences, each of which has a lower rate and a narrower bandwidth than the original sequence. Each parallel sequence modulates one subcarrier. If N is large enough, the bandwidth occupied by each modulated subcarrier is less than the associated bandwidth of the channel. Thus, the signal experiences a frequency non-selective channel. The frequency spacing between the subcarriers should be large enough to keep the modulated subcarriers orthogonal. These orthogonal modulated subcarriers are added together to form the OFDM signal.
The superposition of the modulated subcarriers may be advantageous and may be detrimental in that the OFDM signal may deviate significantly from the average power, depending on the phase of the modulated signal. Therefore, at a time when the average power of the OFDM signal is not large and the instantaneous power is large, a saturation region of the power amplifier may be reached. The ratio of the maximum instantaneous power to the average power of the OFDM signal is called the peak-to-average ratio PAPR.
There are many methods for reducing the PAPR of the OFDM signal, such as: mu-law companding, exponential companding, trapezoidal companding and the like. Xianbin Wang proposed a mu-law Companding method in the Reduction of Peak-to-Average Power Ratio of OFDM System Using A company Technique, which can reduce the PAPR of OFDM signals but at the cost of increasing the Average Power of the signals. Therefore, the mu-law companding method can enable the power of the companded signal to reach the saturation region of the power amplifier, so that the power amplification signal generates nonlinear distortion; therefore, Tao Jiang proposes an Exponential Companding method in 'explicit accompanying technology for PAPR Reduction in OFDM systems', and the basic idea is to convert the amplitude distribution of the original OFDM signal into uniform distribution, but the method can increase the distribution of small-amplitude signals and large-amplitude signals, thereby causing the performance Reduction of PAPR and BER; jun Hou proposes a Trapezoidal companding method in a 'Trapezoidal composite scheme for peak-to-average power ratio reduction of OFDM signals', and the basic idea is to convert the amplitude distribution of the original OFDM signals into Trapezoidal distribution, but the method has a great influence on the BER performance of the system.
Disclosure of Invention
The invention aims to provide a wireless OFDM signal peak-to-average ratio restraining method based on amplitude distribution optimization aiming at the defects of the existing method, so that the influence on the system bit error rate BER performance is reduced as much as possible on the premise of obviously reducing the PAPR of the OFDM signal peak-to-average ratio, and meanwhile, the constancy of the average power before and after signal companding is ensured.
The basic idea for realizing the invention is as follows: the method is characterized in that the probability density function of the amplitude of the small signal after companding is a power function, and the probability density function of the amplitude of the large signal is a linear function, and the technical scheme comprises the following steps:
(1) orthogonal Frequency Division Multiplexing (OFDM) modulation is carried out on input bit stream, and original OFDM signals are obtained through up-samplingxnWhere N is 0,1, …, JN-1, J denotes an upsampling factor, and N denotes the number of subcarriers included in the OFDM system;
(2) constructing a companding function:
<math> <mrow> <mi>z</mi> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>sign</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <msup> <mrow> <mo>{</mo> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <msup> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> </mrow> <mn>2</mn> </msup> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>]</mo> <mo>}</mo> </mrow> <mfrac> <mn>1</mn> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </msup> <mo>,</mo> </mtd> <mtd> <mo>|</mo> <mi>x</mi> <mo>|</mo> <mo>&le;</mo> <msqrt> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mi>ln</mi> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>]</mo> </msqrt> </mtd> </mtr> <mtr> <mtd> <mi>sign</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mi>k</mi> </mfrac> <mo>{</mo> <mo>-</mo> <mi>b</mi> <mo>+</mo> <msqrt> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <msup> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> </mrow> <mn>2</mn> </msup> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mi>bcA</mi> <mo>+</mo> <mfrac> <mrow> <mi>k</mi> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>]</mo> <mo>}</mo> <mo>,</mo> </msqrt> </mtd> <mtd> <mo>|</mo> <mi>x</mi> <mo>|</mo> <mo>></mo> <msqrt> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mi>ln</mi> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>]</mo> </msqrt> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein x is an input signal of the companding function, z is an output signal of the companding function, m > 0 is a power of a power function, k is a slope of a linear function, b is a longitudinal intercept of the linear function, c is a transition point factor, A is a peak amplitude of the output signal z, σ is a standard deviation of an original OFDM signal xn, exp (·) is a natural exponential function, ln (·) is a natural logarithmic function, sign (·) is a sign function,
Figure GDA0000444087200000022
is a root operator, | · | is a modulo operator,indicating that the input signal x satisfying this condition is a small signal,
Figure GDA0000444087200000024
indicating that the input signal x satisfying this condition is a large signal;
(3) according to the peak-to-average power ratio (PAPR) required by a system, selecting a conversion point factor c which minimizes the system Bit Error Rate (BER) in an interval (0,1), selecting a power m which minimizes the system Bit Error Rate (BER) in a positive integer range, and then sequentially solving a peak amplitude A, a slope k and a longitudinal intercept b of an output signal z according to the following formula:
fAm+3+gA22=0,
k = 2 [ 1 - c m A m + 1 ( 1 - mc m + 1 ) A 2 ( 1 - c ) 2 ,
b=(cA)m-kcA
wherein, f = [ g ( mc m + 1 - 1 ) + m + 3 - mc 3 3 ( m + 3 ) ] c m , g = c 4 - 4 c + 3 6 ( 1 - c ) 2 ;
(4) by expanding letterPairs of original OFDM signals xnPerforming companding conversion to obtain companding conversion signal yn
<math> <mrow> <msub> <mi>y</mi> <mi>n</mi> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>sign</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>{</mo> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <msup> <mrow> <mo>|</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>|</mo> </mrow> <mn>2</mn> </msup> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>]</mo> <mo>}</mo> </mrow> <mfrac> <mn>1</mn> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </msup> <mo>,</mo> </mtd> <mtd> <mo>|</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>|</mo> <mo>&le;</mo> <msqrt> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mi>ln</mi> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>]</mo> </msqrt> </mtd> </mtr> <mtr> <mtd> <mi>sign</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mi>k</mi> </mfrac> <mo>{</mo> <mo>-</mo> <mi>b</mi> <mo>+</mo> <msqrt> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <msup> <mrow> <mo>|</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>|</mo> </mrow> <mn>2</mn> </msup> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mi>bcA</mi> <mo>+</mo> <mfrac> <mrow> <mi>k</mi> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>]</mo> <mo>}</mo> <mo>,</mo> </msqrt> </mtd> <mtd> <mo>|</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>|</mo> <mo>></mo> <msqrt> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mi>ln</mi> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>]</mo> </msqrt> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
(5) Computing a companded transformed signal y from a peak-to-average ratio (PAPR) definitionnPAPR of;
(6) will companded the transformed signal ynSending to channel, and transmitting to obtain received signal rn
<math> <mrow> <msub> <mi>r</mi> <mi>n</mi> </msub> <mo>=</mo> <msub> <mi>y</mi> <mi>n</mi> </msub> <mo>&CircleTimes;</mo> <msub> <mi>h</mi> <mi>n</mi> </msub> <mo>+</mo> <msub> <mi>w</mi> <mi>n</mi> </msub> <mo>,</mo> </mrow> </math>
Wherein,
Figure GDA0000444087200000036
is the convolution operator, hnIs the channel impulse response, wnIs additive white gaussian noise;
(7) and (3) solving an inverse function of the companding function to obtain a companding function as follows:
<math> <mrow> <msup> <mi>x</mi> <mo>&prime;</mo> </msup> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>sign</mi> <mrow> <mo>(</mo> <msup> <mi>z</mi> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <msqrt> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mi>ln</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <msup> <mrow> <mo>|</mo> <msup> <mi>z</mi> <mo>&prime;</mo> </msup> <mo>|</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>)</mo> </mrow> </msqrt> <mo>,</mo> </mtd> <mtd> <mo>|</mo> <msup> <mi>z</mi> <mo>&prime;</mo> </msup> <mo>|</mo> <mo>&le;</mo> <mi>cA</mi> </mtd> </mtr> <mtr> <mtd> <mi>sign</mi> <mrow> <mo>(</mo> <msup> <mi>z</mi> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <msqrt> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mi>ln</mi> <mo>{</mo> <mo>-</mo> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> <msup> <mrow> <mo>|</mo> <msup> <mi>z</mi> <mo>&prime;</mo> </msup> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mi>b</mi> <mo>|</mo> <msup> <mi>z</mi> <mo>&prime;</mo> </msup> <mo>|</mo> <mo>+</mo> <mi>bcA</mi> <mo>+</mo> <mfrac> <mrow> <mi>k</mi> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>+</mo> <mn>1</mn> <mo>}</mo> </msqrt> <mo>,</mo> </mtd> <mtd> <mo>|</mo> <msup> <mi>z</mi> <mo>&prime;</mo> </msup> <mo>|</mo> <mo>></mo> <mi>cA</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein z 'is the input signal of the despreading function and x' is the output signal of the despreading function;
(8) using pairs of companding functionsReceived signal rnDecompression and expansion conversion is carried out to obtain a decompression and expansion conversion signal x'n
<math> <mrow> <msubsup> <mi>x</mi> <mi>n</mi> <mo>&prime;</mo> </msubsup> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>sign</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <msqrt> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mi>ln</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <msup> <mrow> <mo>|</mo> <msub> <mi>r</mi> <mi>n</mi> </msub> <mo>|</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>)</mo> </mrow> </msqrt> <mo>,</mo> </mtd> <mtd> <mo>|</mo> <msub> <mi>r</mi> <mi>n</mi> </msub> <mo>|</mo> <mo>&le;</mo> <mi>cA</mi> </mtd> </mtr> <mtr> <mtd> <mi>sign</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <msqrt> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mi>ln</mi> <mo>{</mo> <mo>-</mo> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> <msup> <mrow> <mo>|</mo> <msub> <mi>r</mi> <mi>n</mi> </msub> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mi>b</mi> <mo>|</mo> <msub> <mi>r</mi> <mi>n</mi> </msub> <mo>|</mo> <mo>+</mo> <mi>bcA</mi> <mo>+</mo> <mfrac> <mrow> <mi>k</mi> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>+</mo> <mn>1</mn> <mo>}</mo> </msqrt> <mo>,</mo> </mtd> <mtd> <mo>|</mo> <msub> <mi>r</mi> <mi>n</mi> </msub> <mo>|</mo> <mo>></mo> <mi>cA</mi> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
(9) To decompress and expand converted signal x'nDownsampling is carried out, and bit streams are restored through OFDM demodulation;
(10) and matching the restored bit stream with the input bit stream, and counting the BER of the system, wherein the BER is closer to the BER of the original OFDM system, and the BER performance of the peak-to-average ratio suppression method is better.
The invention constructs a companding function, optimizes the probability density function of small signal amplitude into power function and optimizes the probability density function of large signal amplitude into linear function, thus not only ensuring the constancy of average power before and after signal companding, but also obviously reducing the PAPR of OFDM signal and having little influence on the BER performance of system.
Drawings
FIG. 1 is a flow chart of the present invention for suppressing the peak-to-average ratio of an OFDM signal;
FIG. 2 is a graph comparing the peak-to-average ratio performance of the present invention and a prior art companding method;
FIG. 3 is a graph comparing the bit error rate performance under QPSK modulation with the prior art companding method;
fig. 4 is a graph comparing the bit error rate performance under 16QAM modulation of the present invention and the existing companding method.
Detailed Description
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. The present embodiment is implemented on the premise of the technical solution of the present invention, and a detailed implementation manner and a specific operation process are given, but the protection scope of the present invention is not limited to the following embodiments.
Referring to fig. 1, the specific implementation steps of the present invention are as follows:
the method comprises the following steps: OFDM modulation is carried out on input bit stream, and original OFDM signal x is obtained through up-samplingnWhere N is 0,1, …, JN-1, J denotes an upsampling factor, and N denotes the number of subcarriers included in the OFDM system.
Step two: and constructing a companding function.
2.1) the probability density function f (| z |) defining the companding function output signal amplitude | z |:
<math> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mo>|</mo> <mi>z</mi> <mo>|</mo> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msup> <mrow> <mo>|</mo> <mi>z</mi> <mo>|</mo> </mrow> <mi>m</mi> </msup> <mo>,</mo> </mtd> <mtd> <mn>0</mn> <mo>&le;</mo> <mo>|</mo> <mi>z</mi> <mo>|</mo> <mo>&le;</mo> <mi>cA</mi> </mtd> </mtr> <mtr> <mtd> <mi>k</mi> <mo>|</mo> <mi>z</mi> <mo>|</mo> <mo>+</mo> <mi>b</mi> <mo>,</mo> </mtd> <mtd> <mi>cA</mi> <mo>&lt;</mo> <mo>|</mo> <mi>z</mi> <mo>|</mo> <mo>&le;</mo> <mi>A</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein z is the output signal of the companding function, m > 0 is the power of the power function, k is the slope of the linear function, b is the longitudinal intercept of the linear function, c is the conversion point factor, a is the peak amplitude of the output signal z, | · | is the modulo operator;
2.2) determining the cumulative distribution function F (| z |) and its inverse F of the output signal amplitude | z |) of the companding function-1(|z|):
<math> <mrow> <mi>F</mi> <mrow> <mo>(</mo> <mo>|</mo> <mi>z</mi> <mo>|</mo> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mfrac> <msup> <mrow> <mo>|</mo> <mi>z</mi> <mo>|</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>,</mo> </mtd> <mtd> <mn>0</mn> <mo>&le;</mo> <mo>|</mo> <mi>z</mi> <mo>|</mo> <mo>&le;</mo> <mi>cA</mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> <msup> <mrow> <mo>|</mo> <mi>z</mi> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <mi>b</mi> <mo>|</mo> <mi>z</mi> <mo>|</mo> <mo>+</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <mi>k</mi> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mi>bcA</mi> <mo>,</mo> </mtd> <mtd> <mi>cA</mi> <mo>&lt;</mo> <mo>|</mo> <mi>z</mi> <mo>|</mo> <mo>&le;</mo> <mi>A</mi> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <mo>|</mo> <mi>z</mi> <mo>|</mo> <mo>></mo> <mi>A</mi> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math>
<math> <mrow> <msup> <mi>F</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mo>|</mo> <mi>z</mi> <mo>|</mo> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msup> <mrow> <mo>[</mo> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>|</mo> <mi>z</mi> <mo>|</mo> <mo>]</mo> </mrow> <mfrac> <mn>1</mn> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </msup> <mo>,</mo> </mtd> <mtd> <mo>|</mo> <mi>z</mi> <mo>|</mo> <mo>&le;</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mn>1</mn> <mi>k</mi> </mfrac> <mo>{</mo> <mo>-</mo> <mi>b</mi> <mo>+</mo> <msqrt> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mo>[</mo> <mo>|</mo> <mi>z</mi> <mo>|</mo> <mo>+</mo> <mi>bcA</mi> <mo>+</mo> <mfrac> <mrow> <mi>k</mi> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>]</mo> </msqrt> <mo>}</mo> <mo>,</mo> </mtd> <mtd> <mo>|</mo> <mi>z</mi> <mo>|</mo> <mo>></mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mtd> </mtr> </mtable> <mo>,</mo> </mfenced> </mrow> </math>
Wherein,
Figure GDA0000444087200000054
is the root operator;
2.3) F (| z |) and its inverse F-1Substituting the operation result of (| z |) into the solving formula g ═ sign (x) F of the companding function-1[F(|x|)]To obtain a companding function z:
<math> <mrow> <mi>z</mi> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>sign</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <msup> <mrow> <mo>{</mo> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <msup> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> </mrow> <mn>2</mn> </msup> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>]</mo> <mo>}</mo> </mrow> <mfrac> <mn>1</mn> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </msup> <mo>,</mo> </mtd> <mtd> <mo>|</mo> <mi>x</mi> <mo>|</mo> <mo>&le;</mo> <msqrt> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mi>ln</mi> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>]</mo> </msqrt> </mtd> </mtr> <mtr> <mtd> <mi>sign</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mi>k</mi> </mfrac> <mo>{</mo> <mo>-</mo> <mi>b</mi> <mo>+</mo> <msqrt> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <msup> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> </mrow> <mn>2</mn> </msup> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mi>bcA</mi> <mo>+</mo> <mfrac> <mrow> <mi>k</mi> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>]</mo> <mo>}</mo> <mo>,</mo> </msqrt> </mtd> <mtd> <mo>|</mo> <mi>x</mi> <mo>|</mo> <mo>></mo> <msqrt> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mi>ln</mi> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>]</mo> </msqrt> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math>
where x is the input signal of the companding function, z is the output signal of the companding function, and F (| x |) ═ 1-exp (— | x |), (y |)22) Is the cumulative distribution function of the companding function input signal amplitude x, sigma is the original OFDM signal xnExp (-) is a natural exponential function, ln (-) is a natural logarithmic function, sign (-) is a sign function,
Figure GDA0000444087200000056
is a root operator, | · | is a modulo operator,
Figure GDA0000444087200000057
indicating that the input signal x satisfying this condition is a small signal,
Figure GDA0000444087200000061
indicating that the input signal x satisfying this condition is a large signal.
Step three: the conversion point factor c, the power m, the peak amplitude a of the output signal z, the slope k and the vertical intercept b in the companding function are determined.
3.1) selecting a conversion point factor c which can minimize the BER of the system in an interval (0,1) according to the PAPR required by the system, and selecting a power m which can minimize the BER of the system in a positive integer range;
3.2) determining the peak amplitude A of the output signal z according to the fact that the average power of the input signal x and the average power of the output signal z of the companding function are equal, and the derivation process is as follows:
<math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <mi>E</mi> <mo>[</mo> <msup> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>]</mo> <mo>=</mo> <mi>E</mi> <mo>[</mo> <msup> <mrow> <mo>|</mo> <mi>z</mi> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>]</mo> </mtd> </mtr> <mtr> <mtd> <mo>&DoubleRightArrow;</mo> <msubsup> <mo>&Integral;</mo> <mn>0</mn> <mo>&infin;</mo> </msubsup> <msup> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mi>f</mi> <mrow> <mo>(</mo> <mo>|</mo> <mi>x</mi> <mo>|</mo> <mo>)</mo> </mrow> <mi>d</mi> <mrow> <mo>(</mo> <mo>|</mo> <mi>x</mi> <mo>|</mo> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>&Integral;</mo> <mn>0</mn> <mo>&infin;</mo> </msubsup> <msup> <mrow> <mo>|</mo> <mi>z</mi> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mi>f</mi> <mrow> <mo>(</mo> <mo>|</mo> <mi>z</mi> <mo>|</mo> <mo>)</mo> </mrow> <mi>d</mi> <mrow> <mo>(</mo> <mo>|</mo> <mi>z</mi> <mo>|</mo> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>&DoubleRightArrow;</mo> <msubsup> <mo>&Integral;</mo> <mn>0</mn> <mo>&infin;</mo> </msubsup> <msup> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mfrac> <mrow> <mn>2</mn> <mo>|</mo> <mi>x</mi> <mo>|</mo> </mrow> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msup> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> </mrow> <mn>2</mn> </msup> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mi>d</mi> <mrow> <mo>(</mo> <mo>|</mo> <mi>x</mi> <mo>|</mo> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>&Integral;</mo> <mn>0</mn> <mi>cA</mi> </msubsup> <msup> <mrow> <mo>|</mo> <mi>z</mi> <mo>|</mo> </mrow> <mn>2</mn> </msup> <msup> <mrow> <mo>|</mo> <mi>z</mi> <mo>|</mo> </mrow> <mi>m</mi> </msup> <mi>d</mi> <mrow> <mo>(</mo> <mo>|</mo> <mi>z</mi> <mo>|</mo> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mo>&Integral;</mo> <mi>cA</mi> <mi>A</mi> </msubsup> <msup> <mrow> <mo>|</mo> <mi>z</mi> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>k</mi> <mo>|</mo> <mi>z</mi> <mo>|</mo> <mo>+</mo> <mi>b</mi> <mo>)</mo> </mrow> <mi>d</mi> <mrow> <mo>(</mo> <mo>|</mo> <mi>z</mi> <mo>|</mo> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>&DoubleRightArrow;</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mo>=</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>3</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>3</mn> </mrow> </mfrac> <mo>+</mo> <mfrac> <mi>k</mi> <mn>4</mn> </mfrac> <msup> <mi>A</mi> <mn>4</mn> </msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>c</mi> <mn>4</mn> </msup> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mi>b</mi> <mn>3</mn> </mfrac> <msup> <mi>A</mi> <mn>3</mn> </msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msup> <mi>c</mi> <mn>3</mn> </msup> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>&DoubleRightArrow;</mo> <msup> <mi>fA</mi> <mrow> <mi>m</mi> <mo>+</mo> <mn>3</mn> </mrow> </msup> <mo>+</mo> <msup> <mi>gA</mi> <mn>2</mn> </msup> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </math>
wherein E [ | x-2]Is the average power of the input signal x, E [ | z $ -2]Is the average power of the output signal z, E [. cndot.)]Is a desired operator of the plurality of operators,
Figure GDA0000444087200000063
is a probability density function of the companding function input signal amplitude | x,
f = [ g ( mc m + 1 - 1 ) + m + 3 - mc 3 3 ( m + 3 ) ] c m , g = c 4 - 4 c + 3 6 ( 1 - c ) 2 ;
3.3) obtaining the slope k and the vertical intercept b of the companding function from the property F (a) of the cumulative distribution function F (| z |) 1 and the amplitude distribution optimization target:
k = 2 [ 1 - c m A m + 1 ( 1 - mc m + 1 ) A 2 ( 1 - c ) 2 ,
b=(cA)m-kcA。
step four: using companding function to original OFDM signal xnPerforming companding transform, namely optimizing the probability density function of small signal amplitude into a power function, and optimizing the probability density function of large signal amplitude into a linear function to obtain a companding transform signal yn
<math> <mrow> <msub> <mi>y</mi> <mi>n</mi> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>sign</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>{</mo> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <msup> <mrow> <mo>|</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>|</mo> </mrow> <mn>2</mn> </msup> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>]</mo> <mo>}</mo> </mrow> <mfrac> <mn>1</mn> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </msup> <mo>,</mo> </mtd> <mtd> <mo>|</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>|</mo> <mo>&le;</mo> <msqrt> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mi>ln</mi> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>]</mo> </msqrt> </mtd> </mtr> <mtr> <mtd> <mi>sign</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mi>k</mi> </mfrac> <mo>{</mo> <mo>-</mo> <mi>b</mi> <mo>+</mo> <msqrt> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <msup> <mrow> <mo>|</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>|</mo> </mrow> <mn>2</mn> </msup> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mi>bcA</mi> <mo>+</mo> <mfrac> <mrow> <mi>k</mi> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>]</mo> <mo>}</mo> <mo>,</mo> </msqrt> </mtd> <mtd> <mo>|</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>|</mo> <mo>></mo> <msqrt> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mi>ln</mi> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>]</mo> </msqrt> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow> </math>
Step five: calculating companding transform signal y according to defined formula of peak-to-average power ratio (PAPR)nPAPR (PAPR), i.e. signal PAPR = peak power of signal/average power of signal), and the calculation result is compared with the original OFDM signal xnThe PAPRs are compared, and the lower the PAPR is, the original OFDM signal x is indicated to be subjected to the comparison by the methodnThe better the suppression effect of the PAPR of the peak-to-average ratio,as shown in fig. 2.
Step six: will companded and expanded the converted signal rnSending to channel, and transmitting to obtain received signal rn
<math> <mrow> <msub> <mi>r</mi> <mi>n</mi> </msub> <mo>=</mo> <msub> <mi>y</mi> <mi>n</mi> </msub> <mo>&CircleTimes;</mo> <msub> <mi>h</mi> <mi>n</mi> </msub> <mo>+</mo> <msub> <mi>w</mi> <mi>n</mi> </msub> <mo>,</mo> </mrow> </math>
Wherein,
Figure GDA0000444087200000074
is the convolution operator, hnIs the channel impulse response, wnIs additive white gaussian noise.
Step seven: and (5) solving an inverse function of the companding function in the step (II) to obtain a decompanding function as follows:
<math> <mrow> <msup> <mi>x</mi> <mo>&prime;</mo> </msup> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>sign</mi> <mrow> <mo>(</mo> <msup> <mi>z</mi> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <msqrt> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mi>ln</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <msup> <mrow> <mo>|</mo> <msup> <mi>z</mi> <mo>&prime;</mo> </msup> <mo>|</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>)</mo> </mrow> </msqrt> <mo>,</mo> </mtd> <mtd> <mo>|</mo> <msup> <mi>z</mi> <mo>&prime;</mo> </msup> <mo>|</mo> <mo>&le;</mo> <mi>cA</mi> </mtd> </mtr> <mtr> <mtd> <mi>sign</mi> <mrow> <mo>(</mo> <msup> <mi>z</mi> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <msqrt> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mi>ln</mi> <mo>{</mo> <mo>-</mo> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> <msup> <mrow> <mo>|</mo> <msup> <mi>z</mi> <mo>&prime;</mo> </msup> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mi>b</mi> <mo>|</mo> <msup> <mi>z</mi> <mo>&prime;</mo> </msup> <mo>|</mo> <mo>+</mo> <mi>bcA</mi> <mo>+</mo> <mfrac> <mrow> <mi>k</mi> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>+</mo> <mn>1</mn> <mo>}</mo> </msqrt> <mo>,</mo> </mtd> <mtd> <mo>|</mo> <msup> <mi>z</mi> <mo>&prime;</mo> </msup> <mo>|</mo> <mo>></mo> <mi>cA</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
where z 'is the input signal of the despreading function and x' is the output signal of the despreading function.
Step eight: using a de-spreading function on the received signal rnPerforming a de-companding transformation, i.e. using the rnReplacing the input signal z 'of the decompression and expansion function to obtain a decompression and expansion conversion signal x'n
<math> <mrow> <msubsup> <mi>x</mi> <mi>n</mi> <mo>&prime;</mo> </msubsup> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>sign</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <msqrt> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mi>ln</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <msup> <mrow> <mo>|</mo> <msub> <mi>r</mi> <mi>n</mi> </msub> <mo>|</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>)</mo> </mrow> </msqrt> <mo>,</mo> </mtd> <mtd> <mo>|</mo> <msub> <mi>r</mi> <mi>n</mi> </msub> <mo>|</mo> <mo>&le;</mo> <mi>cA</mi> </mtd> </mtr> <mtr> <mtd> <mi>sign</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <msqrt> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mi>ln</mi> <mo>{</mo> <mo>-</mo> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> <msup> <mrow> <mo>|</mo> <msub> <mi>r</mi> <mi>n</mi> </msub> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mi>b</mi> <mo>|</mo> <msub> <mi>r</mi> <mi>n</mi> </msub> <mo>|</mo> <mo>+</mo> <mi>bcA</mi> <mo>+</mo> <mfrac> <mrow> <mi>k</mi> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>+</mo> <mn>1</mn> <mo>}</mo> </msqrt> <mo>,</mo> </mtd> <mtd> <mo>|</mo> <msub> <mi>r</mi> <mi>n</mi> </msub> <mo>|</mo> <mo>></mo> <mi>cA</mi> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow> </math>
Step eight: for decompressionTransform signal x'nAnd carrying out down-sampling and then restoring bit streams through OFDM demodulation.
Step nine: matching the restored bit stream with the input bit stream, namely judging the same bits in the restored bit stream and the input bit stream as correct and judging different bits as error codes, and counting the system bit error rate BER, wherein the more the BER is close to the BER of the original OFDM system, the better the BER performance of the PAPR suppression method is, as shown in FIG. 3 and FIG. 4.
The above steps describe the preferred embodiment of the present invention, and it is obvious that those skilled in the art can make various modifications and substitutions to the present invention with reference to the preferred embodiment of the present invention and the accompanying drawings, and those modifications and substitutions should fall within the protection scope of the present invention.
The effect of the present invention can be further illustrated by simulation.
1) Simulation conditions are as follows: in the OFDM modulation, the number of selected subcarriers is 1024, and the selected modulation modes are QPSK modulation and 16QAM modulation; the transmission channel does not carry out coding processing, and the noise in the channel adopts additive white Gaussian noise.
2) Simulation content and results:
simulation 1, the original OFDM signal is companded and transformed by the present invention and the existing μ law companding method, exponential companding method and trapezoidal companding method, and the obtained PAPR performance of the peak-to-average ratio is shown in fig. 2.
Simulation 2, the bit error rate BER performance obtained by decompressing and expanding the received signal by using the method of the present invention and the existing μ law companding method, exponential companding method and trapezoidal companding method is shown in fig. 3 and 4.
As can be seen from fig. 2 and fig. 3, when a QPSK modulation scheme is adopted in an additive white gaussian noise channel, the performance of the PAPR and BER of the present invention is significantly better than that of the existing companding method.
As can be seen from fig. 2 and 4, when a 16QAM modulation scheme is employed in an additive white gaussian noise channel, compared with the μ -law companding and trapezoidal companding methods, the present invention effectively reduces the PAPR and improves the BER performance to a certain extent; compared with the exponential companding method, the invention not only greatly reduces the PAPR of the signal, but also has little influence on the BER performance of the system.

Claims (2)

1. A wireless Orthogonal Frequency Division Multiplexing (OFDM) signal peak-to-average power ratio suppression method based on amplitude distribution optimization comprises the following steps:
(1) orthogonal Frequency Division Multiplexing (OFDM) modulation is carried out on input bit stream, and original OFDM signal x is obtained through up-samplingnWhere N is 0,1, …, JN-1, J denotes an upsampling factor, and N denotes the number of subcarriers included in the OFDM system;
(2) constructing a companding function:
<math> <mrow> <mi>z</mi> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>sign</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <msup> <mrow> <mo>{</mo> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <msup> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> </mrow> <mn>2</mn> </msup> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>]</mo> <mo>}</mo> </mrow> <mfrac> <mn>1</mn> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </msup> <mo>,</mo> </mtd> <mtd> <mo>|</mo> <mi>x</mi> <mo>|</mo> <mo>&le;</mo> <msqrt> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mi>ln</mi> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>]</mo> </msqrt> </mtd> </mtr> <mtr> <mtd> <mi>sign</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mi>k</mi> </mfrac> <mo>{</mo> <mo>-</mo> <mi>b</mi> <mo>+</mo> <msqrt> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <msup> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> </mrow> <mn>2</mn> </msup> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mi>bcA</mi> <mo>+</mo> <mfrac> <mrow> <mi>k</mi> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>]</mo> <mo>}</mo> <mo>,</mo> </msqrt> </mtd> <mtd> <mo>|</mo> <mi>x</mi> <mo>|</mo> <mo>></mo> <msqrt> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mi>ln</mi> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>]</mo> </msqrt> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
where x is the input signal of the companding function, z is the output signal of the companding function, m > 0 is the power of the power function, k is the slope of the linear function, b is the vertical intercept of the linear function, c is the conversion point factor, A is the peak amplitude of the output signal z, and σ is the original OFDM signal xnExp (-) is a natural exponential function, ln (-) is a natural logarithmic function, sign (-) is a sign function,is a root operator, | · | is a modulo operator,
Figure FDA0000444087190000013
indicating that the input signal x satisfying this condition is a small signal,
Figure FDA0000444087190000014
indicating that the input signal x satisfying this condition is a large signal;
(3) according to the peak-to-average power ratio (PAPR) required by a system, selecting a conversion point factor c which minimizes the system Bit Error Rate (BER) in an interval (0,1), selecting a power m which minimizes the system Bit Error Rate (BER) in a positive integer range, and then sequentially solving a peak amplitude A, a slope k and a longitudinal intercept b of an output signal z according to the following formula:
fAm+3+gA22=0,
k = 2 [ 1 - c m A m + 1 ( 1 - mc m + 1 ) A 2 ( 1 - c ) 2 ,
b=(cA)m-kcA
wherein, f = [ g ( mc m + 1 - 1 ) + m + 3 - mc 3 3 ( m + 3 ) ] c m , g = c 4 - 4 c + 3 6 ( 1 - c ) 2 ;
(4) using companding function to original OFDM signal xnPerforming companding conversion to obtain companding conversion signal yn
<math> <mrow> <msub> <mi>y</mi> <mi>n</mi> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>sign</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>{</mo> <mrow> <mo>(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <msup> <mrow> <mo>|</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>|</mo> </mrow> <mn>2</mn> </msup> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>]</mo> <mo>}</mo> </mrow> <mfrac> <mn>1</mn> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </msup> <mo>,</mo> </mtd> <mtd> <mo>|</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>|</mo> <mo>&le;</mo> <msqrt> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mi>ln</mi> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>]</mo> </msqrt> </mtd> </mtr> <mtr> <mtd> <mi>sign</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mi>k</mi> </mfrac> <mo>{</mo> <mo>-</mo> <mi>b</mi> <mo>+</mo> <msqrt> <msup> <mi>b</mi> <mn>2</mn> </msup> <mo>+</mo> <mn>2</mn> <mi>k</mi> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <msup> <mrow> <mo>|</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>|</mo> </mrow> <mn>2</mn> </msup> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mi>bcA</mi> <mo>+</mo> <mfrac> <mrow> <mi>k</mi> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>]</mo> <mo>}</mo> <mo>,</mo> </msqrt> </mtd> <mtd> <mo>|</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>|</mo> <mo>></mo> <msqrt> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mi>ln</mi> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>]</mo> </msqrt> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
(5) Computing a companded transformed signal y from a peak-to-average ratio (PAPR) definitionnPAPR of;
(6) will companded the transformed signal ynSending to channel, and transmitting to obtain received signal rn
<math> <mrow> <msub> <mi>r</mi> <mi>n</mi> </msub> <mo>=</mo> <msub> <mi>y</mi> <mi>n</mi> </msub> <mo>&CircleTimes;</mo> <msub> <mi>h</mi> <mi>n</mi> </msub> <mo>+</mo> <msub> <mi>w</mi> <mi>n</mi> </msub> <mo>,</mo> </mrow> </math>
Wherein,
Figure FDA0000444087190000026
is the convolution operator, hnIs the channel impulse response, wnIs additive white gaussian noise;
(7) and (3) solving an inverse function of the companding function to obtain a companding function as follows:
<math> <mrow> <msup> <mi>x</mi> <mo>&prime;</mo> </msup> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>sign</mi> <mrow> <mo>(</mo> <msup> <mi>z</mi> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <msqrt> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mi>ln</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <msup> <mrow> <mo>|</mo> <msup> <mi>z</mi> <mo>&prime;</mo> </msup> <mo>|</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>)</mo> </mrow> </msqrt> <mo>,</mo> </mtd> <mtd> <mo>|</mo> <msup> <mi>z</mi> <mo>&prime;</mo> </msup> <mo>|</mo> <mo>&le;</mo> <mi>cA</mi> </mtd> </mtr> <mtr> <mtd> <mi>sign</mi> <mrow> <mo>(</mo> <msup> <mi>z</mi> <mo>&prime;</mo> </msup> <mo>)</mo> </mrow> <msqrt> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mi>ln</mi> <mo>{</mo> <mo>-</mo> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> <msup> <mrow> <mo>|</mo> <msup> <mi>z</mi> <mo>&prime;</mo> </msup> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mi>b</mi> <mo>|</mo> <msup> <mi>z</mi> <mo>&prime;</mo> </msup> <mo>|</mo> <mo>+</mo> <mi>bcA</mi> <mo>+</mo> <mfrac> <mrow> <mi>k</mi> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>+</mo> <mn>1</mn> <mo>}</mo> </msqrt> <mo>,</mo> </mtd> <mtd> <mo>|</mo> <msup> <mi>z</mi> <mo>&prime;</mo> </msup> <mo>|</mo> <mo>></mo> <mi>cA</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein z 'is the input signal of the despreading function and x' is the output signal of the despreading function;
(8) using a de-spreading function on the received signal rnDecompression and expansion conversion is carried out to obtain a decompression and expansion conversion signal x'n
<math> <mrow> <msubsup> <mi>x</mi> <mi>n</mi> <mo>&prime;</mo> </msubsup> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>sign</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <msqrt> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mi>ln</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <msup> <mrow> <mo>|</mo> <msub> <mi>r</mi> <mi>n</mi> </msub> <mo>|</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>)</mo> </mrow> </msqrt> <mo>,</mo> </mtd> <mtd> <mo>|</mo> <msub> <mi>r</mi> <mi>n</mi> </msub> <mo>|</mo> <mo>&le;</mo> <mi>cA</mi> </mtd> </mtr> <mtr> <mtd> <mi>sign</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <msqrt> <mo>-</mo> <msup> <mi>&sigma;</mi> <mn>2</mn> </msup> <mi>ln</mi> <mo>{</mo> <mo>-</mo> <mfrac> <mi>k</mi> <mn>2</mn> </mfrac> <msup> <mrow> <mo>|</mo> <msub> <mi>r</mi> <mi>n</mi> </msub> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <mi>b</mi> <mo>|</mo> <msub> <mi>r</mi> <mi>n</mi> </msub> <mo>|</mo> <mo>+</mo> <mi>bcA</mi> <mo>+</mo> <mfrac> <mrow> <mi>k</mi> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>cA</mi> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>+</mo> <mn>1</mn> <mo>}</mo> </msqrt> <mo>,</mo> </mtd> <mtd> <mo>|</mo> <msub> <mi>r</mi> <mi>n</mi> </msub> <mo>|</mo> <mo>></mo> <mi>cA</mi> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
(9) To decompress and expand converted signal x'nDownsampling is carried out, and bit streams are restored through OFDM demodulation;
(10) and matching the restored bit stream with the input bit stream, and counting the BER of the system, wherein the BER is closer to the BER of the original OFDM system, and the BER performance of the peak-to-average ratio suppression method is better.
2. The method of claim 1, wherein the step (9) of matching the restored bitstream with the input bitstream is to judge the same bits in the restored bitstream and the input bitstream as correct and judge different bits as error codes.
CN201210120688.8A 2012-04-23 2012-04-23 Wireless OFDM (Orthogonal Frequency Division Multiplexing) signal peak to average power ratio inhibiting method based on amplitude distribution optimization Expired - Fee Related CN102624670B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210120688.8A CN102624670B (en) 2012-04-23 2012-04-23 Wireless OFDM (Orthogonal Frequency Division Multiplexing) signal peak to average power ratio inhibiting method based on amplitude distribution optimization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210120688.8A CN102624670B (en) 2012-04-23 2012-04-23 Wireless OFDM (Orthogonal Frequency Division Multiplexing) signal peak to average power ratio inhibiting method based on amplitude distribution optimization

Publications (2)

Publication Number Publication Date
CN102624670A CN102624670A (en) 2012-08-01
CN102624670B true CN102624670B (en) 2014-04-02

Family

ID=46564356

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210120688.8A Expired - Fee Related CN102624670B (en) 2012-04-23 2012-04-23 Wireless OFDM (Orthogonal Frequency Division Multiplexing) signal peak to average power ratio inhibiting method based on amplitude distribution optimization

Country Status (1)

Country Link
CN (1) CN102624670B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106230764A (en) * 2016-07-28 2016-12-14 长安大学 Ofdm signal method for inhibiting peak-to-average ratio based on truncation companding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1741517A (en) * 2005-08-23 2006-03-01 西安电子科技大学 Block clipping method for resolving nonlinear distortion question in OFDM system
CN1901524A (en) * 2005-07-20 2007-01-24 电子科技大学中山学院 Method for lowering peak-flat ratio of low complexity orthogonal frequency division duplex communication system
CN101313547A (en) * 2005-11-28 2008-11-26 三菱电机株式会社 Method and system for reducing peak-to-average power ratio in orthogonal frequency division multiplexed signal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1901524A (en) * 2005-07-20 2007-01-24 电子科技大学中山学院 Method for lowering peak-flat ratio of low complexity orthogonal frequency division duplex communication system
CN1741517A (en) * 2005-08-23 2006-03-01 西安电子科技大学 Block clipping method for resolving nonlinear distortion question in OFDM system
CN101313547A (en) * 2005-11-28 2008-11-26 三菱电机株式会社 Method and system for reducing peak-to-average power ratio in orthogonal frequency division multiplexed signal

Also Published As

Publication number Publication date
CN102624670A (en) 2012-08-01

Similar Documents

Publication Publication Date Title
CN102325118B (en) OFDM signal peak-to-average ratio inhibition method based on hyperbolic companding and combined amplitude limit
CN102510368B (en) Wireless orthogonal frequency division multiplexing (OFDM) signal peak-to-average ratio inhibition method based on amplitude distribution variation
KR100754621B1 (en) Method and apparatus for the papr reduction using pre-emphasis method in ofdm wireless communication system
EP1387543B1 (en) Reduction of PAPR in multicarrier signals
JP2006229438A (en) Transmission apparatus
US9806928B2 (en) Communication system and method for achieving low peak-to-average power ratio
CN102025681A (en) Sideband information transmission method of SLM (selective mapping method) and PTS (partial transmit sequences) in OFDM (orthogonal frequency division multiplexing) system reduce peak average ratio technology
CN103812817A (en) Peak-to-average power ratio inhibition method for orthogonal frequency division multiplexing (OFDM) signal
US20140161202A1 (en) Method, system and apparatus for reducing the peak-to-average ratio of a signal
CN101534282A (en) Low-complexity OFDM signal limitation companding method
CN103001913B (en) Companding method for reducing OFDM (orthogonal frequency division multiplexing) system peak-to-average ratio
Kotade et al. Peak-to-average power ratio reduction techniques in OFDM: A review and challenges
CN102624670B (en) Wireless OFDM (Orthogonal Frequency Division Multiplexing) signal peak to average power ratio inhibiting method based on amplitude distribution optimization
CN102404275B (en) Method for suppressing peak-to-average power ratio (PAPR) of wireless OFDM (orthogonal frequency division multiplexing) signal based on signal amplitude distribution correction
CN103731388A (en) Amplitude limiting method for reducing PAPR in OFDM system on basis of quantification theory
CN102664853B (en) Method for suppressing peak-to-average power ratio of wireless OFDM (Orthogonal Frequency Division Multiplexing) signal based on segmented distribution optimization
CN102404274A (en) Hyperbolic tangent companding conversion method for reducing peak-to-average power ratio of OFDM (orthogonal frequency division multiplexing) signal
CN102624669B (en) Mixed distribution optimization-based orthogonal frequency division multiplexing (OFDM) signal peak-to-average power ratio suppression method
KR20140048055A (en) Method for transmitting and receiving data in wireless communication and apparatus for the same
CN102523191B (en) OFDM (Orthogonal Frequency Division Multiplexing) signal peak-to-average ratio suppression method based on signal statistical distribution function optimization
CN102185823A (en) Sub-carrier remaining method for reducing peak-to-average power ratio and bit error rate in combined way
Abdullah et al. SELECTIVECODEWORD SHIFT (SCS) TECHNIQUE FOR PAPR REDUCTION OF OFDM SYSTEMS
CN108737315B (en) Reduce the additivity scrambling method and its emission system of ofdm system peak-to-average power ratio
CN102523190B (en) Compression and expansion transform method based on threshold and hyperbolic tangent function
Wael et al. PTS-based PAPR reduction in fixed WiMAX system with Grouping Phase Weighting (GPW)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140402

Termination date: 20200423