CN102624070B - 一种基于九相自耦移相变压器的对称式ups电源系统 - Google Patents

一种基于九相自耦移相变压器的对称式ups电源系统 Download PDF

Info

Publication number
CN102624070B
CN102624070B CN201210117736.8A CN201210117736A CN102624070B CN 102624070 B CN102624070 B CN 102624070B CN 201210117736 A CN201210117736 A CN 201210117736A CN 102624070 B CN102624070 B CN 102624070B
Authority
CN
China
Prior art keywords
phase
output
group
original set
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210117736.8A
Other languages
English (en)
Other versions
CN102624070A (zh
Inventor
徐海波
张胜发
汪家荣
唐朝阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East Group Co Ltd
Original Assignee
Guangdong East Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong East Power Co Ltd filed Critical Guangdong East Power Co Ltd
Priority to CN201210117736.8A priority Critical patent/CN102624070B/zh
Publication of CN102624070A publication Critical patent/CN102624070A/zh
Priority to EP12874540.3A priority patent/EP2701276B1/en
Priority to US14/395,123 priority patent/US9478353B2/en
Priority to PCT/CN2012/082210 priority patent/WO2013155819A1/zh
Application granted granted Critical
Publication of CN102624070B publication Critical patent/CN102624070B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/12Two-phase, three-phase or polyphase transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Ac-Ac Conversion (AREA)
  • Inverter Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明属于电源技术领域,特别涉及到大功率工频UPS电源技术领域,具体是指基于九相自耦移相变压器的对称式UPS电源系统;本发明包括电源三相交流输入端、电源三相交流输出端、九相自耦移相变压器、用于控制三相逆变器输出的同步控制装置、工频隔离变压器和三路输出装置,所述九相自耦移相变压器的三相交流输入端与电源三相交流输入端连接,每路输出装置包括依次连接的零序抑制换向电感、三相六脉波整流器、三相逆变器和滤波电感,每路的零序抑制换向电感与相自耦移相变压器的三相交流输出端连接,每路的滤波电感与工频隔离变压器的输入端连接;本发明结构体积小、成本低且使用效果好。

Description

一种基于九相自耦移相变压器的对称式UPS电源系统
技术领域
本发明属于电源技术领域,特别涉及到大功率工频UPS电源技术领域,具体是指基于九相自耦移相变压器的对称式UPS电源系统。
背景技术
全球工业化信息化经济建设对中大功率工频UPS电源的需求非常巨大。在中大功率领域,工频UPS电源具有对供电环境适应能力强、可靠性高、抗冲击负载能力强等优点,在各行业领域得到广泛应用。特别是工频UPS所特有的独立稳定的零地电位是大功率UPS供电设备的安全用电保障。但常规工频UPS电源的网侧电流谐波大,对电网产生非常严重的污染,目前大功率工频UPS电源需要配置电网补偿等相关装置才能满足电网使用要求。
为解决传统大功率工频UPS电源的输入侧整流导致的电力谐波污染问题,大功率系统输入一般采用基于“△/Y型和△/△型结构”的全隔离型移相变压器,和外加平衡电抗器的多脉波整流结构。例如,用移相30O的两个传统6脉波相控整流的并联来实现12脉波整流技术,抑制由三相六脉波整流产生的5、7次谐波。该种方式存在隔离移相变压器体积大、笨重和成本高的问题,而且不便于功率更大的AC-DC整流部分功率单元的扩展。用18脉波整流技术可以更进一步减小网侧电流谐波,但其9相移相电源通常是用隔离变压器来实现的,存在体积大,笨重,经济效益低的缺点。
发明内容
本发明解决了现有技术的不足,提供了基于九相自耦移相变压器的对称式UPS电源系统。该UPS电源系统有效降低了AC-DC整流部分的网侧输入电流谐波,有效抑制了5、7、11、13次谐波,并有效减小了17、19次谐波含量,且体积小,成本低。
为达到上述目的,本发明采用的技术方案为:
一种基于九相自耦移相变压器的对称式UPS电源系统,包括电源三相交流输入端、电源三相交流输出端、九相自耦移相变压器、用于控制三相逆变器输出的同步控制装置、工频隔离变压器和三路输出装置;所述九相自耦移相变压器为对称型九相自耦移相变压器,九相自耦移相变压器的三相交流输入端与电源三相交流输入端连接;九相自耦移相变压器设有三组三相交流输出端,分别为超前组输出端A1、B1和C1,和原始组输出端A0、B0和C0,以及滞后组输出端A2、B2和C2;所述工频隔离变压器设有三组三相交流输入端,分别为超前组输入端U1、V1和W1,原始组输入端U0、V0和W0,以及滞后组输入端U2、V2和W2;所述工频隔离变压器的输出端U、V和W与电源三相交流输出端连接;所述三路输出装置为超前组输出装置、原始组输出装置和滞后组输出装置;所述超前组输出装置包括依次连接的超前组零序抑制换向电感、超前组三相六脉波整流器、超前组三相逆变器和超前组滤波电感;超前组零序抑制换向电感的三相输入端与上述超前组输出端A1、B1和C1连接,超前组滤波电感的三相交流输出端与上述超前组输入端U1、V1和W1连接;所述原始组输出装置包括依次连接的原始组零序抑制换向电感、原始组三相六脉波整流器、原始组三相逆变器和原始组滤波电感,原始组零序抑制换向电感的三相输入端与上述原始组输出端A0、B0和C0连接,原始组滤波电感的三相交流输出端与上述原始组输入端U0、V0和W0连接;所述滞后组输出装置包括依次连接的滞后组零序抑制换向电感、滞后组三相六脉波整流器、滞后组三相逆变器和滞后组滤波电感,滞后组零序抑制换向电感的三相输入端与上述滞后组输出端A2、B2和C2连接,滞后组滤波电感的三相交流输出端与上述滞后组输入端U2、V2和W2连接;所述同步控制装置设有四组采样输入端,分别与电源三相交流输入端、和超前组三相逆变器的输出端、原始组三相逆变器的输出端以及滞后组三相逆变器的输出端连接;所述同步控制装置设有三组控制输出端,三组控制输出端分别与超前组三相逆变器的控制端、原始组三相逆变器的控制端以及滞后组三相逆变器的控制端连接。
进一步地,所述工频隔离变压器为工频四端口耦合隔离Y/Y连接三相变压器,该工频隔离变压器设有U相、V相和W相磁性柱;且该工频隔离变压器每相磁芯柱上设有三个独立的完全相同的输入绕组和一个输出绕组,构成初、次级绕组关系为“Y/Y”结构的四端口耦合隔离输出方式;U相磁芯柱上的输入绕组分别与超前组三相逆变器输出的U1相、原始组三相逆变器输出的U0相和滞后组三相逆变器输出的U2相连接,U相磁芯柱上的输出绕组为U相输出;V相磁芯柱上的输入绕组分别与超前组三相逆变器输出的V1相、原始组三相逆变器输出的V0相和滞后组三相逆变器输出的V2相连接,V相磁芯柱上的输出绕组为V相输出;W相磁芯柱上的输入绕组分别与超前组三相逆变器输出的W1相、原始组三相逆变器输出的W0相和滞后组三相逆变器输出的W2相连接,W相磁芯柱上的输出绕组输出绕组为W相输出。
进一步地,所述基于九相自耦移相变压器的对称式UPS电源系统,还包括储能装置,还包括储能装置;所述储能装置包括充电器、蓄电池组和控制电流定向移动的耦合单元;充电器的三相交流输入端与电源三相交流输入端连接,充电器的直流输出端与蓄电池组连接;所述耦合单元包括六个二极管,其中三个二极管的阳极均与蓄电池组的正极连接,且该三个二极管的阴极分别与超前组三相逆变器的直流输入端的正极、原始组三相逆变器的直流输入端的正极以及滞后组三相逆变器的直流输入端的正极连接;另三个二极管的阴极均与蓄电池组的负极连接,且该三个二极管的阳极分别与超前组三相逆变器的直流输入端的阴极、原始组三相逆变器的直流输入端的阴极以及滞后组三相逆变器的直流输入端的阴极连接;超前组三相逆变器的直流输入端的电压、原始组三相逆变器的直流输入端的电压以及滞后组三相逆变器的直流输入端的电压均大于蓄电池组的电压。
进一步地,所述储能装置还包括接触器JK1、JK2、JK3;分别与超前组三相逆变器的直流输入端的正极和负极连接的两个二极管D1、D2为超前组二极管;分别与原始组三相逆变器的直流输入端的正极和负极连接的两个二极管D3、D4为原始组二极管;分别与滞后组三相逆变器的直流输入端的正极和负极连接的两个二极管D5、D6为滞后组二极管;超前组二极管的两个二极管D1、D2分别并联接触器JK1的主触头,原始组二极管的两个二极管D3、D4分别并联接触器JK2的主触头,滞后组二极管的两个二极管D5、D6分别并联接触器JK3的主触头。
进一步地,所述基于九相自耦移相变压器的UPS电源系统,还包括旁路电路,旁路电路包括旁路静态开关装置,旁路静态开关装置的输出端与电源三相交流输出端连接。
进一步地,所述超前组三相六脉波整流器、原始组三相六脉波整流器和滞后组三相六脉波整流器的电路均为可控三相整流电路。所述可控三相整流电路包括三个电感组成的电感组、六个单向可控硅元件以及一个电容。六个单向可控硅元件中的单向可控硅元件两两同向串联形成三条支路,每条支路的两端均分别与电容的正极和负极连接并形成回路,三个电感的一端分别连接于三条支路的中间电势端,三个电感的另一端分别连接于可控三相整流电路的输入端。
进一步地,所述超前组三相逆变器的电路、原始组三相逆变器的电路和滞后组三相逆变器的电路均为三相全桥逆变电路;所述三相全桥逆变电路由三个单相全桥电路组成单相全桥电路包括上桥臂和下桥臂,且上桥臂和下桥臂分别由两个绝缘栅双极型晶体管组成,其中上桥臂的两个绝缘栅双极型晶体管的集电极均与三相全桥逆变电路的直流输入端的正极连接,且该两个绝缘栅双极型晶体管的发射极分别与下桥臂两个绝缘栅双极型晶体管的集电极连接,下桥臂的两个绝缘栅双极型晶体管的发射极分别与三相全桥逆变电路的直流输入端的负极连接;每个单相全桥电路的输出端的两个输出端口分别与该单相全桥电路的上桥臂和下桥臂的两个连接点连接。
进一步地,所述超前组滤波电感的电路、原始组滤波电感的电路和滞后组滤波电感的电路均为与单相全桥电路的输出端连接的LC低通滤波电路;LC低通滤波电路由三路滤波电路组成,每路的滤波电路主要由一个电感和一个电容组成,且每路滤波电路设有两个输入端和两个输出端;每路滤波电路的两个输入端分别与单相全桥结构的桥臂中点连接,为一个输入端口;每路滤波电路的两个输出端为一个输出端口,通过保险后分别与工频隔离变压器的三相交流输入端口对应连接。
进一步地,工频隔离变压器与电源三相交流输出端之间设有主路静态开关装置,主路静态开关装置主要由三个双向可控硅元件组成;三个双向可控硅元件的一端与工频隔离变压器的三相交流输出端连接,三个双向可控硅元件的另一端分别与电源三相交流输出端连接。
进一步地,所述旁路静态开关装置主要由三个双向可控硅元件组成;三个双向可控硅元件的一端与旁路电路输入端连接,三个双向可控硅元件的另一端分别与电源三相交流输出端连接。
本发明取得的有益效果为:一种基于九相自耦移相变压器的UPS电源系统,包括电源三相交流输入端、电源三相交流输出端、九相自耦移相变压器、用于控制三相逆变器输出的同步控制装置、工频隔离变压器和三路输出装置,所述九相自耦移相变压器的三相交流输入端与电源三相交流输入端连接,九相自耦移相变压器设有三组三相交流输出端分别为超前组输出端A1、B1、C1和原始组输出端A0、B0、C0以及滞后组输出端A2、B2、C2,所述工频隔离变压器设有三组三相交流输入端分别为超前组输入端U1、V1、W1、原始组U0、V0、W0以及滞后组U2、V2、W2;所述工频隔离变压器的输出端U、V、W与电源三相交流输出端连接;所述三路输出装置为超前组输出装置、原始组输出装置和滞后组输出装置;所述超前组输出装置包括依次连接的超前组零序抑制换向电感、超前组三相六脉波整流器、超前组三相逆变器和超前组滤波电感,超前组零序抑制换向电感的三相输入端与上述超前组输出端A1、B1、C1连接,超前组滤波电感的三相交流输出端与上述超前组输入端U1、V1、W1连接;所述原始组输出装置包括依次连接的原始组零序抑制换向电感、原始组三相六脉波整流器、原始组三相逆变器和原始组滤波电感,原始组零序抑制换向电感的三相输入端与上述原始组输出端A0、B0、C0连接,原始组滤波电感的三相交流输出端与上述原始组输入端U0、V0、W0连接;所述滞后组输出装置包括依次连接的滞后组零序抑制换向电感、滞后组三相六脉波整流器、滞后组三相逆变器和滞后组滤波电感,滞后组零序抑制换向电感的三相输入端与上述滞后组输出端A2、B2、C2连接,滞后组滤波电感的三相交流输出端与上述滞后组输入端U2、V2、W2连接;所述同步控制装置设有四组采样输入端,分别与电源三相交流输入端、和三路逆变的输出端连接;所述同步控制装置设有三组控制输出端,三组控制输出端分别与超前组三相逆变器的控制端、原始组三相逆变器的控制端以及滞后组三相逆变器的控制端连接。
本发明具有如下特点:
1)独特的对称结构九相自耦移相变压器,其本体的额定功率不超过系统总输出功率的17%。
(2)并列结构的系统拓扑保证三组相位互差20o的交流电源独立工作,向负载提供相同的功率,精确实现了整个电源系统的“18脉波整流”,有效降低了电网电流谐波。
(3)并列结构的DC/AC逆变单元既保证了三个并列通道的平衡,又构成了系统的冗余设计,整个系统可靠性高。
(4)独特设计的工频“四端口耦合隔离Y/Y连接三相变压器”,实现了三个独立并列通道交流输出的隔离耦合,并且使得变压器三相输出独立,适合不平衡负载运用场合。
(5)该工频电源系统无平衡电抗器,系统设计规范对称,冗余度高,其拓扑结构非常适合宽功率范围和500KVA级以上的UPS电源系统。
附图说明
图1 为本发明的结构框图;
        图2 本发明的九相自耦移相变压器的绕组结构示意图;
图3 本发明的工频隔离变压器的绕组结构示意图;
图4 本发明的三相逆变电路示意图;
图5 本发明的原理图。
附图标记说明:
1——九相自耦移相变压器          2——超前组零序抑制换向电感
3——原始组零序抑制换向电感    4——滞后组零序抑制换向电感
5——超前组三相六脉波整流器    6——原始组三相六脉波整流器   
7——滞后组三相六脉波整流器    8——超前组三相逆变器
9——原始组三相逆变器         10——滞后组三相逆变器
11——超前组滤波电感          12——原始组滤波电感
13——滞后组滤波电感          14——同步控制装置
15——工频隔离变压器          16——耦合单元
17——充电器                  18——电源三相交流输出端
19——旁路电路输入端                     20——蓄电池组。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步的说明。
实施例:如图1至图4所示,一种基于九相自耦移相变压器1的对称式UPS电源系统,包括电源三相交流输入端、电源三相交流输出端18、九相自耦移相变压器1、用于控制三相逆变器输出的同步控制装置14、工频隔离变压器15和三路输出装置。所述九相自耦移相变压器1为对称型九相自耦移相变压器1,九相自耦移相变压器1的三相交流输入端与电源三相交流输入端连接。九相自耦移相变压器1设有三组三相交流输出端分别为超前组输出端A1、B1和C1、原始组输出端A0、B0和C0以及滞后组输出端A2、B2和C2。所述工频隔离变压器15设有三组三相交流输入端,分别为超前组输入端U1、V1和W1、原始组U0、V0和W0以及滞后组U2、V2和W2。所述工频隔离变压器15的输出端U、V和W与电源三相交流输出端18连接;所述三路输出装置为超前组输出装置、原始组输出装置和滞后组输出装置。所述超前组输出装置包括依次连接的超前组零序抑制换向电感2、超前组三相六脉波整流器5、超前组三相逆变器8和超前组滤波电感11;超前组零序抑制换向电感2的三相输入端与上述超前组输出端A1、B1和C1连接;超前组滤波电感11的三相交流输出端与上述超前组输入端U1、V1和W1连接。所述原始组输出装置包括依次连接的原始组零序抑制换向电感3、原始组三相六脉波整流器6、原始组三相逆变器9和原始组滤波电感12;原始组零序抑制换向电感3的三相输入端与上述原始组输出端A0、B0和C0连接;原始组滤波电感12的三相交流输出端与上述原始组输入端U0、V0和W0连接。所述滞后组输出装置包括依次连接的滞后组零序抑制换向电感4、滞后组三相六脉波整流器7、滞后组三相逆变器10和滞后组滤波电感13;滞后组零序抑制换向电感4的三相输入端与上述滞后组输出端A2、B2和C2连接;滞后组滤波电感13的三相交流输出端与上述滞后组输入端U2、V2和W2连接。所述同步控制装置设有四组采样输入端,分别与电源三相交流输入端、和超前组三相逆变器的输出端、原始组三相逆变器的输出端以及滞后组三相逆变器的输出端连接;所述同步控制装置设有三组控制输出端,三组控制输出端分别与超前组三相逆变器的控制端、原始组三相逆变器的控制端以及滞后组三相逆变器的控制端连接。
九相自耦移相变压器1将输入对称三相交流电源(A,B,C)移相为三组相位对应互差200的对称三相交流电源:原始组(A0,B0,C0)、超前组(A1,B1,C1)和滞后组(A2,B2,C2)。原始组(A0,B0,C0)相位与输入三相交流电源(A,B,C)相同,超前组(A1,B1,C1)超前原始组(A0,B0,C0)相位200,滞后组(A2,B2,C2)滞后原始组(A0,B0,C0)相位200
如图1所示,原始组(A0,B0,C0)、超前组(A1,B1,C1)和滞后组(A2,B2,C2)信号分别经过各自连接的零序抑制换向电感、三相六脉波整流器分别实现六脉波整流,最后输入到各自连接的三相逆变器和滤波电感后,经过工频隔离变压器15,在输出时进行交流隔离并联和功率合成。零序抑制换向电感的作用是抑制各组的零序电流,且有利于三相六脉波整流器内电流换向。
如图2所示为本发明采用的18脉波±20O自耦移相变压器,即九相自耦移相变压器1的绕组结构和连接示意图。图2中原始组(A0,B0,C0)为变压器本体输入,接市电380V三相交流电源。图2中(A1,B1,C1)和(A2,B2,C2)分别为两组三相交流输出。(A1,B1,C1)各相对应超前原始组(A0,B0,C0)相位20O,(A2,B2,C2)各相对应滞后原始组(A0,B0,C0)相位20O。正常工作时,将变压器本体的原始组(A0,B0,C0)接电网电压(A,B,C)三相,这样在实现18脉波整流效果时,该九相自耦移相变压器1本体的功率容量不超过系统总输出功率的20%,该九相自耦移相变压器1本体的结构和重量都极大的小于常规隔离型工频移相变压器。
进一步地,所述工频隔离变压器15为工频四端口耦合隔离Y/Y连接三相变压器,该工频隔离变压器15设有三组交流输入端口和一组交流输出端口,工频隔离变压器15的每相磁芯柱上设有三段独立的绕组,且该三段独立的绕组形成一组三相交流输入端口,每段独立绕组的两个端部为一个三相交流输入端口的两个输入端,工频隔离变压器15的初、次级的绕组关系为“Y/Y”结构。
如图3所示为本发明采用的四端口耦合隔离Y/Y连接三相变压器结构和绕组示意图。图3中[U1,U0,U2]分别是三个通道DC/AC逆变部分的三相正弦输出中的初相角为00的基准相输出,它们被控制为相同的波形,且与三相电网电源输入对应同相。按图3中绕组配置,输入与输出是Y/Y型结构,输出电压U分别与三个输入电压的变比为w2/w1,输出电流是三相[U1,U0,U2]输入电流的并联叠加,既功率叠加。同理,该设计方法也运用于输出V相与输入三相[V1,V0,V2]的关系、输出W相与输入三相[W1,W0,W2]的关系。
进一步地,所述基于九相自耦移相变压器1的UPS电源系统,还包括储能装置,所述储能装置包括充电器17、蓄电池组20和控制电流定向移动的耦合单元16。充电器17的三相交流输入端与电源三相交流输入端连接,充电器17的直流输出端与蓄电池组20连接。所述耦合单元16包括六个二极管,其中三个二极管的阳极均与蓄电池组20的正极连接,且该三个二极管的阴极分别与超前组三相逆变器8的直流输入端的正极、原始组三相逆变器9的直流输入端的正极以及滞后组三相逆变器10的直流输入端的正极连接。另三个二极管的阴极均与蓄电池组20的负极连接,且该三个二极管的阳极分别与超前组三相逆变器8的直流输入端的负极、原始组三相逆变器9的直流输入端的负极以及滞后组三相逆变器10的直流输入端的负极连接。超前组三相逆变器8的直流输入端的电压、原始组三相逆变器9的直流输入端的电压以及滞后组三相逆变器10的直流输入端的电压均大于蓄电池组20的电压。
实际操作中,正常情况下蓄电池组20电压略低于各路的三相六脉波整流器输出的直流电压,对三相六脉波整流器的两直流输出端不产生影响。当电网断电时,蓄电池组20通过二极管单向通路给三路三相逆变器供电。
进一步地,所述储能装置还包括接触器JK1、JK2、JK3。分别与超前组三相逆变器8的直流输入端的正极和负极连接的两个二极管D1、D2为超前组二极管,分别与原始组三相逆变器9的直流输入端的正极和负极连接的两个二极管D3、D4为原始组二极管;分别与滞后组三相逆变器10的直流输入端的正极和负极连接的两个二极管D5、D6为滞后组二极管。超前组二极管的两个二极管D1、D2分别并联接触器JK1的主触头,原始组二极管的两个二极管D3、D4分别并联接触器JK2的主触头,滞后组二极管的两个二极管D5、D6分别并联接触器JK3的主触头。
设计接触器JK1、JK2、JK3,可以减少耦合单元16的能耗;如当系统正常工作时,接触器JK1、JK2、JK3处于断开状态,当电网断电时,接触器JK1、JK2、JK3处于闭合状态,蓄电池组20直接对各路的三相逆变器进行供电,耦合单元16处于短路状态;减少耦合单元16的二极管的能耗。
进一步地,所述基于九相自耦移相变压器1的UPS电源系统,还包括旁路电路,旁路电路包括旁路静态开关装置,旁路静态开关装置的输出端与电源三相交流输出端18连接。
设计旁路电路,增加系统的稳定性,当各路的三相逆变器出现故障时,旁路静态开关装置闭合,直接通过旁路电路进行供电;旁路电路输入端19可以直接与市电连接,也可以连接于其他供电设备。
进一步地,所述超前组三相六脉波整流器5、原始组三相六脉波整流器6和滞后组三相六脉波整流器7的电路均为可控三相整流电路。所述可控三相整流电路包括三个电感组成的电感组、六个单向可控硅元件以及一个电容。六个单向可控硅元件中的单向可控硅元件两两同向串联形成三条支路,每条支路的两端均分别与电容的正极和负极连接并形成回路,三个电感的一端分别连接于三条支路的中间电势端,三个电感的另一端分别连接于可控三相整流电路的输入端;
此处的可控三相整流电路的输入端相当于超前组三相六脉波整流器5或原始组三相六脉波整流器6或滞后组三相六脉波整流器7的输入端。
进一步地,所述超前组三相逆变器8的电路、原始组三相逆变器9的电路和滞后组三相逆变器10的电路均为三相全桥逆变电路。所述三相全桥逆变电路由三个单相全桥电路组成单相全桥电路包括上桥臂和下桥臂,且上桥臂和下桥臂分别由两个绝缘栅双极型晶体管组成,其中上桥臂的两个绝缘栅双极型晶体管的集电极均与三相全桥逆变电路的直流输入端的正极连接,且该两个绝缘栅双极型晶体管的发射极分别与下桥臂两个绝缘栅双极型晶体管的集电极连接,下桥臂两个绝缘栅双极型晶体管的发射极分别与三相全桥逆变电路的直流输入端的负极连接;每个单相全桥电路的输出端的两个输出端口分别与该单相全桥电路的上桥臂和下桥臂的两个连接点连接。
在常规情况下,需要利用大电感耦合的大电流平衡电抗器,才能实现三组六脉波整流器输出的直流侧并联,这样便抵消了18脉波整流带来的经济效益。本发明避开了使用笨重的平衡电抗器,分别采用三个主电路完全相同的并列独立逆变通道(参见附图1),这样三组六脉波整流就不能通过直流侧并联形成环流,从而使九相自耦移相变压器精确实现了18脉波整流,极大的减小了输入电流谐波。
图1中“同步控制装置14”是保证并列独立逆变通道按相同规律工作,输出各相频率、相位和幅值对应相同的三相电压,并使输出三相电压(U,V,W)与输入电网电压(A,B,C)同步。
本发明采用三相全桥结构,既提高系统可靠性和冗余能力,又使系统有更强的带不平衡负载能力,还利于系统进行模块化规范设计。
进一步地,所述超前组滤波电感11的电路、原始组滤波电感12的电路和滞后组滤波电感13的电路均为与单相全桥电路的输出端连接的LC低通滤波电路;LC低通滤波电路由三路滤波电路组成,每路的滤波电路主要由一个电感和一个电容组成,且每路滤波电路设有两个输入端和两个输出端;每路滤波电路的两个输入端分别与单相全桥结构的桥臂中点连接,为一个输入端口;每路滤波电路的两个输出端为一个输出端口,通过保险后分别与工频隔离变压器的三相交流输入端口对应连接。
进一步地,工频隔离变压器15与电源三相交流输出端18之间设有主路静态开关装置,主路静态开关装置主要由三个双向可控硅元件组成;三个双向可控硅元件的一端与工频隔离变压器15的三相交流输出端连接,三个双向可控硅元件的另一端分别与电源三相交流输出端18连接。
进一步地,所述旁路静态开关装置主要由三个双向可控硅元件组成;三个双向可控硅元件的一端与旁路电路输入端连接,三个双向可控硅元件的另一端分别与电源三相交流输出端18连接。
下面结合附图5对本发明的工作原理作进一步的详细说明。
如图5所示, T1为18脉波±20°自耦移相变压器。L1、SCR1、SCR3、SCR5、SCR4、SCR6、SCR2和C1组成超前组可控三相整流器;IGBT1~IGBT12组成超前组三相逆变器;L4、C4、L5、C5、L6、C6组成了超前组逆变器的3个单相逆变全桥的LC低通滤波电路。同样,L2、SCR1’、SCR3’、SCR5’、SCR4’、SCR6’、SCR2’和C2组成原始组三相六脉整流器;IGBT13~IGBT24组成原始组三相逆变器;L7、C7、L8、C8、L9、C9组成了原始组逆变器的3个单相逆变全桥的LC低通滤电路。L3、SCR1”、SCR3”、SCR5”、SCR4”、SCR6”、SCR2”和C3组成滞后组三相六脉整流器;IGBT25~IGBT36组成滞后组三相逆变器;L10、C10、L11、C11、L12、C12组成了滞后组逆变器的3个单相逆变全桥的LC低通滤波器。T2为四端口耦合隔离三相变压器,超前组、原始组、滞后组的各单相全桥逆变器输出通过该工频隔离变压器15将功率叠加在一起。SCR7-9为旁路静态开关,SCR10-12为逆变静态开关。
在整流输入三相电源正常的情况下,三相电经过整流器输入开关CB1、熔断器FUSE1-3和检测整流器输入电流的霍尔电流传感器HP1-3,送到18脉波±20°自耦移相变压器的输入端,自耦移相变压器将输入三相交流电源移相为三组相位对应互差20°的三相交流电源:超前组(U1,V1,W1)、原始组(U0,V0,W0)和滞后组(U2,V2,W2)。(图5中省略了各路的零序抑制换向电感)超前组(U1,V1,W1)三相交流电经过超前组可控三相整流器整流成直流,再经过超前组三相逆变器逆变成交流电,通过LC低通滤波电路输出纯净三相电。同理,原始组(U0,V0,W0)三相交流电经过原始组三相六脉整流器整流成直流,再经过原始组三相逆变器逆变成交流电,通过LC低通滤波电路输出纯净三相电。滞后组(U2,V2,W2)三相交流电经过滞后组三相六脉整流器整流成直流,再经过滞后组三相逆变器逆变成交流电,通过LC低通滤波电路输出纯净三相电。这三组输出的交流电在同步控制装置14(图5中未画出)的控制下,与旁路输入交流电源同频同相,幅值也相差很小,通过四端口耦合隔离三相变压器,将功率叠加在一起,经过逆变静态开关、输出断路器CB3给负载供电。同时,整流输入三相电源经过隔离型充电器17给蓄电池组20充电。
当整流输入三相电源不正常时,超前组三相六脉整流器、原始组三相六脉整流器和滞后组三相六脉整流器都停止工作。蓄电池通过二极管D1、D2、JK1给超前组三相逆变器供电,通过二极管D3、D4、JK2给原始组三相逆变器供电,通过二极管D5、D6、JK3给滞后组三相逆变器供电,保证三组逆变器能不间断的工作,给负载的供电也不会中断。如整流输入三相电源恢复正常,超前组三相六脉整流器、原始组三相六脉整流器和滞后组三相六脉整流器恢复工作,JK1、JK2、JK3断开,充电器17也恢复工作,进入正常工作模式。由于本UPS系统具有一定的冗余性,当其中任意一组三相六脉整流器或三相逆变器出现故障时,其他的都能正常工作。由于采用3个单相全桥组成三相全桥逆变电路,能适应负载100%不平衡。如当三组三相逆变器均不能正常工作时,逆变输出的三相静态开关SCR10-12会切断,旁路三相静态开关SCR7-9导通,由于此前逆变输出的三相电与旁路输入的交流电源同频、同相,因此UPS可不间断的切换到旁路工作,CB3为旁路输入断路器。当需要维护时,可通过UPS的维护旁路不间断给负载供电,CB4为维护旁路的断路器。
以上仅是本申请的较佳实施例,在此基础上的等同技术方案仍落入申请保护范围。

Claims (10)

1.一种基于九相自耦移相变压器的对称式UPS电源系统,其特征在于:其包括电源三相交流输入端、电源三相交流输出端、九相自耦移相变压器、用于控制三相逆变器输出的同步控制装置、工频隔离变压器和三路输出装置;所述九相自耦移相变压器为对称型九相自耦移相变压器,九相自耦移相变压器的三相交流输入端与电源三相交流输入端连接;九相自耦移相变压器设有三组三相交流输出端,分别为超前组输出端A1、B1和C1,和原始组输出端A0、B0和C0,以及滞后组输出端A2、B2和C2;所述工频隔离变压器设有三组三相交流输入端,分别为超前组输入端U1、V1和W1,原始组输入端U0、V0和W0,以及滞后组输入端U2、V2和W2;所述工频隔离变压器的输出端U、V和W与电源三相交流输出端连接;所述三路输出装置为超前组输出装置、原始组输出装置和滞后组输出装置;所述超前组输出装置包括依次连接的超前组零序抑制换向电感、超前组三相六脉波整流器、超前组三相逆变器和超前组滤波电感;超前组零序抑制换向电感的三相输入端与上述超前组输出端A1、B1和C1连接,超前组滤波电感的三相交流输出端与上述超前组输入端U1、V1和W1连接;所述原始组输出装置包括依次连接的原始组零序抑制换向电感、原始组三相六脉波整流器、原始组三相逆变器和原始组滤波电感,原始组零序抑制换向电感的三相输入端与上述原始组输出端A0、B0和C0连接,原始组滤波电感的三相交流输出端与上述原始组输入端U0、V0和W0连接;所述滞后组输出装置包括依次连接的滞后组零序抑制换向电感、滞后组三相六脉波整流器、滞后组三相逆变器和滞后组滤波电感,滞后组零序抑制换向电感的三相输入端与上述滞后组输出端A2、B2和C2连接,滞后组滤波电感的三相交流输出端与上述滞后组输入端U2、V2和W2连接;所述同步控制装置设有四组采样输入端,分别与电源三相交流输入端、和超前组三相逆变器的输出端、原始组三相逆变器的输出端以及滞后组三相逆变器的输出端连接;所述同步控制装置设有三组控制输出端,三组控制输出端分别与超前组三相逆变器的控制端、原始组三相逆变器的控制端以及滞后组三相逆变器的控制端连接。
2.根据权利要求1所述的一种基于九相自耦移相变压器的对称式UPS电源系统,其特征在于:所述工频隔离变压器为工频四端口耦合隔离Y/Y连接三相变压器,该工频隔离变压器设有U相、V相和W相磁性柱;且该工频隔离变压器每相磁芯柱上设有三个独立的完全相同的输入绕组和一个输出绕组,构成初、次级绕组关系为“Y/Y”结构的四端口耦合隔离输出方式;U相磁芯柱上的输入绕组分别与超前组三相逆变器输出的U1相、原始组三相逆变器输出的U0相和滞后组三相逆变器输出的U2相连接,U相磁芯柱上的输出绕组为U相输出;V相磁芯柱上的输入绕组分别与超前组三相逆变器输出的V1相、原始组三相逆变器输出的V0相和滞后组三相逆变器输出的V2相连接,V相磁芯柱上的输出绕组为V相输出;W相磁芯柱上的输入绕组分别与超前组三相逆变器输出的W1相、原始组三相逆变器输出的W0相和滞后组三相逆变器输出的W2相连接,W相磁芯柱上的输出绕组输出绕组为W相输出。
3.根据权利要求2所述的一种基于九相自耦移相变压器的对称式UPS电源系统,其特征在于:还包括储能装置;所述储能装置包括充电器、蓄电池组和控制电流定向移动的耦合单元;充电器的三相交流输入端与电源三相交流输入端连接,充电器的直流输出端与蓄电池组连接;所述耦合单元包括六个二极管,其中三个二极管的阳极均与蓄电池组的正极连接,且该三个二极管的阴极分别与超前组三相逆变器的直流输入端的正极、原始组三相逆变器的直流输入端的正极以及滞后组三相逆变器的直流输入端的正极连接;另三个二极管的阴极均与蓄电池组的负极连接,且该三个二极管的阳极分别与超前组三相逆变器的直流输入端的阴极、原始组三相逆变器的直流输入端的阴极以及滞后组三相逆变器的直流输入端的阴极连接;超前组三相逆变器的直流输入端的电压、原始组三相逆变器的直流输入端的电压以及滞后组三相逆变器的直流输入端的电压均大于蓄电池组的电压。
4.根据权利要求3所述的一种基于九相自耦移相变压器的对称式UPS电源系统,其特征在于:所述储能装置还包括接触器JK1、JK2、JK3;分别与超前组三相逆变器的直流输入端的正极和负极连接的两个二极管D1、D2为超前组二极管;分别与原始组三相逆变器的直流输入端的正极和负极连接的两个二极管D3、D4为原始组二极管;分别与滞后组三相逆变器的直流输入端的正极和负极连接的两个二极管D5、D6为滞后组二极管;超前组二极管的两个二极管D1、D2分别并联接触器JK1的主触头,原始组二极管的两个二极管D3、D4分别并联接触器JK2的主触头,滞后组二极管的两个二极管D5、D6分别并联接触器JK3的主触头。
5.根据权利要求4所述的一种基于九相自耦移相变压器的对称式UPS电源系统,其特征在于:还包括旁路电路,旁路电路包括旁路静态开关装置,旁路静态开关装置的输出端与电源三相交流输出端连接。
6.根据权利要求5所述的一种基于九相自耦移相变压器的对称式UPS电源系统,其特征在于:所述超前组三相六脉波整流器、原始组三相六脉波整流器和滞后组三相六脉波整流器的电路均为可控三相整流电路;所述可控三相整流电路包括三个电感组成的电感组、六个单向可控硅元件以及一个电容;六个单向可控硅元件中的单向可控硅元件两两同向串联形成三条支路,每条支路的两端均分别与电容的正极和负极连接并形成回路,三个电感的一端分别连接于三条支路的中间电势端,三个电感的另一端分别连接于可控三相整流电路的输入端。
7.根据权利要求6所述的一种基于九相自耦移相变压器的对称式UPS电源系统,其特征在于:所述超前组三相逆变器的电路、原始组三相逆变器的电路和滞后组三相逆变器的电路均为三相全桥逆变电路;所述三相全桥逆变电路由三个单相全桥电路组成单相全桥电路包括上桥臂和下桥臂,且上桥臂和下桥臂分别由两个绝缘栅双极型晶体管组成,其中上桥臂的两个绝缘栅双极型晶体管的集电极均与三相全桥逆变电路的直流输入端的正极连接,且该两个绝缘栅双极型晶体管的发射极分别与下桥臂两个绝缘栅双极型晶体管的集电极连接,下桥臂的两个绝缘栅双极型晶体管的发射极分别与三相全桥逆变电路的直流输入端的负极连接;每个单相全桥电路的输出端的两个输出端口分别与该单相全桥电路的上桥臂和下桥臂的两个连接点连接。
8.根据权利要求7所述的一种基于九相自耦移相变压器的对称式UPS电源系统,其特征在于:所述超前组滤波电感的电路、原始组滤波电感的电路和滞后组滤波电感的电路均为与单相全桥电路的输出端连接的LC低通滤波电路;LC低通滤波电路由三路滤波电路组成,每路的滤波电路主要由一个电感和一个电容组成,且每路滤波电路设有两个输入端和两个输出端;每路滤波电路的两个输入端分别与单相全桥结构的桥臂中点连接,为一个输入端口;每路滤波电路的两个输出端为一个输出端口,通过保险后分别与工频隔离变压器的三相交流输入端口对应连接。
9.根据权利要求8所述的一种基于九相自耦移相变压器的对称式UPS电源系统,其特征在于:工频隔离变压器与电源三相交流输出端之间设有主路静态开关装置,主路静态开关装置主要由三个双向可控硅元件组成;三个双向可控硅元件的一端与工频隔离变压器的三相交流输出端连接,三个双向可控硅元件的另一端分别与电源三相交流输出端连接。
10.根据权利要求9所述的一种基于九相自耦移相变压器的对称式UPS电源系统,其特征在于:所述旁路静态开关装置主要由三个双向可控硅元件组成;三个双向可控硅元件的一端与旁路电路输入端连接,三个双向可控硅元件的另一端分别与电源三相交流输出端连接。
CN201210117736.8A 2012-04-20 2012-04-20 一种基于九相自耦移相变压器的对称式ups电源系统 Active CN102624070B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201210117736.8A CN102624070B (zh) 2012-04-20 2012-04-20 一种基于九相自耦移相变压器的对称式ups电源系统
EP12874540.3A EP2701276B1 (en) 2012-04-20 2012-09-27 Symmetrical ups power system based on nine-phase self-coupling phase-shifting transformer
US14/395,123 US9478353B2 (en) 2012-04-20 2012-09-27 Symmetric-type UPS power system based on a nine-phase phase-shifting autotransformer
PCT/CN2012/082210 WO2013155819A1 (zh) 2012-04-20 2012-09-27 一种基于九相自耦移相变压器的对称式ups电源系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210117736.8A CN102624070B (zh) 2012-04-20 2012-04-20 一种基于九相自耦移相变压器的对称式ups电源系统

Publications (2)

Publication Number Publication Date
CN102624070A CN102624070A (zh) 2012-08-01
CN102624070B true CN102624070B (zh) 2014-05-07

Family

ID=46563806

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210117736.8A Active CN102624070B (zh) 2012-04-20 2012-04-20 一种基于九相自耦移相变压器的对称式ups电源系统

Country Status (4)

Country Link
US (1) US9478353B2 (zh)
EP (1) EP2701276B1 (zh)
CN (1) CN102624070B (zh)
WO (1) WO2013155819A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102624070B (zh) * 2012-04-20 2014-05-07 广东易事特电源股份有限公司 一种基于九相自耦移相变压器的对称式ups电源系统
CN104253464B (zh) * 2013-06-28 2017-05-03 比亚迪股份有限公司 电动汽车之间相互充电的系统及充电连接器
US9673658B2 (en) * 2014-03-06 2017-06-06 Samsung Electro-Mechanics Co., Ltd. Non-contact capacitive coupling type power charging apparatus and non-contact capacitive coupling type battery apparatus
CN104361982B (zh) * 2014-10-24 2016-12-07 南京航空航天大学 一种12脉波自耦移相整流变压器
US10049811B2 (en) * 2015-03-20 2018-08-14 The Boeing Company Multi-phase autotransformer
CN108054928A (zh) * 2015-06-23 2018-05-18 张琴 基于载波移相技术无滤波器大功率变频岸电电源装置
US10345831B2 (en) * 2016-09-30 2019-07-09 Rockwell Automation Technologies, Inc. Methods and systems for using a tapped transformer to generate voltage sags
RU2655922C1 (ru) * 2017-02-01 2018-05-30 Дмитрий Иванович Панфилов Фазоповоротное устройство
CN107134780A (zh) * 2017-06-29 2017-09-05 西安交通大学 一种模块化中压三端口柔性多状态开关拓扑
US10665384B2 (en) * 2017-07-31 2020-05-26 Thales Voltage step-up autotransformer, and AC-to-DC converter comprising such an autotransformer
CN108900136A (zh) * 2018-07-31 2018-11-27 中车永济电机有限公司 一种多相压裂机组电驱动控制系统
GB2579193B (en) * 2018-11-22 2021-12-15 Murata Manufacturing Co Multi-phase shift transformer based AC-DC converter
CN112737368A (zh) * 2020-12-09 2021-04-30 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种高性能整流电源装置
US20220302845A1 (en) * 2021-03-18 2022-09-22 Product Development Associates, Inc. Unit level isolated bus transfer device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201536325U (zh) * 2009-11-23 2010-07-28 杨义根 单相用电器具的三相交流供电装置
CN102029926A (zh) * 2010-12-08 2011-04-27 浙江省电力试验研究院 电动汽车及分布式电源的标准化换流装置
CN202535132U (zh) * 2012-04-20 2012-11-14 广东易事特电源股份有限公司 一种基于九相自耦移相变压器的对称式ups电源系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3769963B2 (ja) * 1999-02-12 2006-04-26 富士電機機器制御株式会社 12パルス電力変換装置
US6385064B1 (en) * 2001-05-07 2002-05-07 Rockwell Technologies, Llc Harmonic blocking reactor for nine-phase converter system
DE102005012371A1 (de) * 2005-03-09 2006-09-14 Siemens Ag Zwölfpuls-Hochspannungsgleichstromübertagung
CN100449923C (zh) * 2006-07-12 2009-01-07 哈尔滨九洲电气股份有限公司 失电时继续运行的变频器
US7535738B2 (en) * 2006-08-23 2009-05-19 Rockwell Automation Technologies, Inc. Method and apparatus including multi-drive configurations for medium voltage loads
KR100973546B1 (ko) * 2008-06-09 2010-08-02 한국전력공사 배전변압기 및 저압선로 무정전 교체시스템 및 배전변압기 및 저압선로 무정전 교체방법
CN201323531Y (zh) * 2008-12-29 2009-10-07 郑州电力机械厂 由三电平h桥功率单元模块直接构成的6kv高压变频器
US8299732B2 (en) * 2009-01-15 2012-10-30 Rockwell Automation Technologies, Inc. Power conversion system and method
US8339820B2 (en) * 2009-11-04 2012-12-25 Rockwell Automation Technologies, Inc. Thirty-six pulse power transformer and power converter incorporating same
US8730686B2 (en) * 2011-09-29 2014-05-20 Hamilton Sundstrand Corporation Dual-input nine-phase autotransformer for electric aircraft AC-DC converter
CN102624070B (zh) * 2012-04-20 2014-05-07 广东易事特电源股份有限公司 一种基于九相自耦移相变压器的对称式ups电源系统
US8737097B1 (en) * 2012-11-29 2014-05-27 Yaskawa America, Inc. Electronically isolated method for an auto transformer 12-pulse rectification scheme suitable for use with variable frequency drives

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201536325U (zh) * 2009-11-23 2010-07-28 杨义根 单相用电器具的三相交流供电装置
CN102029926A (zh) * 2010-12-08 2011-04-27 浙江省电力试验研究院 电动汽车及分布式电源的标准化换流装置
CN202535132U (zh) * 2012-04-20 2012-11-14 广东易事特电源股份有限公司 一种基于九相自耦移相变压器的对称式ups电源系统

Also Published As

Publication number Publication date
CN102624070A (zh) 2012-08-01
US9478353B2 (en) 2016-10-25
EP2701276A4 (en) 2015-11-04
WO2013155819A1 (zh) 2013-10-24
EP2701276B1 (en) 2016-11-09
EP2701276A1 (en) 2014-02-26
US20150069955A1 (en) 2015-03-12

Similar Documents

Publication Publication Date Title
CN102624070B (zh) 一种基于九相自耦移相变压器的对称式ups电源系统
CN102624258B (zh) 一种非隔离对称型自耦式18脉波整流电源系统
US9502991B2 (en) Hybrid converter and wind power generating system
CN111525826B (zh) 一种模块化电容换相换流器和方法
CN102624248B (zh) 基于自耦移相变压器和双六脉波整流的ups电源
CN103401462B (zh) 基于三电平h桥级联的单相链式静止同步补偿器
CN104685771A (zh) 电力变换装置
CN102983584B (zh) 一种用于不平衡系统的统一潮流控制器
WO2012010053A1 (zh) 基于模块化多电平逆变器(mmc)的无变压器静止同步补偿器(statc0m)拓扑结构
CN105470958A (zh) 一种模块化多电平结构的交直交牵引供电系统
CN104638940A (zh) 基于级联模块化多电平的电力电子变压器
CN101534063A (zh) 一种级联型多相变流器
CN103280829A (zh) 一种应用于大容量电池储能的隔离双级链式变流器
CN107359644B (zh) 一种微网接口拓扑装置
CN110739839B (zh) 一种特高压柔性直流全桥半桥混合换流器充电方法
CN202535279U (zh) 基于自耦移相变压器和双六脉波整流的ups电源
CN203399013U (zh) 基于三电平h桥级联的静止同步补偿器及电压源逆变模块
WO2023134225A1 (zh) 一种低频输电系统及其控制方式
CN206992699U (zh) 适用于超级电容储能自带预充电电路的电能质量治理装置
CN202535132U (zh) 一种基于九相自耦移相变压器的对称式ups电源系统
CN106100361B (zh) 一种交直流变换电路及电力电子变压器
CN209627231U (zh) 一种高压变频器制动电路拓扑结构
CN202930956U (zh) 一种用于不平衡系统的统一潮流控制器
CN202513840U (zh) 一种非隔离对称型自耦式18脉波整流电源系统
CN203026952U (zh) 具有不平衡电流补偿功能的星接链式statcom装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 523000 No. 6 industrial North Road, Songshan Lake Science and Technology Industrial Zone, Guangdong, Dongguan

Patentee after: EAST GROUP Co.,Ltd.

Address before: 523808 Guangdong EAST power Limited by Share Ltd, No. 6 industrial North Road, Songshan Lake Science and Technology Industrial Zone, Guangdong, Dongguan

Patentee before: GUANGDONG EAST POWER Co.,Ltd.