CN102610480B - 一种真空放电等离子体参数的测量装置及方法 - Google Patents

一种真空放电等离子体参数的测量装置及方法 Download PDF

Info

Publication number
CN102610480B
CN102610480B CN201210042947.XA CN201210042947A CN102610480B CN 102610480 B CN102610480 B CN 102610480B CN 201210042947 A CN201210042947 A CN 201210042947A CN 102610480 B CN102610480 B CN 102610480B
Authority
CN
China
Prior art keywords
probe
plasma
resistance
voltage
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210042947.XA
Other languages
English (en)
Other versions
CN102610480A (zh
Inventor
刘文正
孔飞
张德金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jiaotong University
Original Assignee
Beijing Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jiaotong University filed Critical Beijing Jiaotong University
Priority to CN201210042947.XA priority Critical patent/CN102610480B/zh
Publication of CN102610480A publication Critical patent/CN102610480A/zh
Application granted granted Critical
Publication of CN102610480B publication Critical patent/CN102610480B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Plasma Technology (AREA)

Abstract

本发明公开了属于等离子体诊断技术领域的一种真空放电等离子体参数的测量装置及方法。此发明主要特征是采用施加负电位的栅网对等离子体进行控制。一种真空放电等离子体参数的测量装置的结构如下:栅网、第一探针和第二探针依次安装在等离子体传输通道上,栅网连接控制信号发生器,第一探针连接DC1直流电源和C1电容的公共节点,第二探针连接DC2直流电源和C2电容的公共节点。本发明的有益效果为:1)对单个或连续脉冲放电产生的、在不同空间或时间点处分布的等离子体特性进行诊断。2)通过施加适当的阻挡电位就能实现等离子体的开断控制。3)便于分析放电等离子体在空间的传输特性。4)结构简单,测量精度高,抗干扰能力强。

Description

一种真空放电等离子体参数的测量装置及方法
技术领域
本发明属于等离子体诊断技术领域,特别涉及一种真空放电等离子体参数的测量装置及方法。
背景技术
在真空放电等离子体生成过程中,等离子体中存在着大量的工艺可变量,如等离子体扩散速度、等离子体密度、电子温度、离子能量和各种离子激发基团等。它们都影响着等离子体与材料相互作用的物理、化学过程,决定了最终的材料结构与性能。因此对等离子体特性参数进行实验诊断,具有重要意义。
现有的真空放电等离子体参数的测量技术中,主要用朗缪尔探针法对单脉冲真空放电等离子体的参数进行测量。此种方法运用到连续放电(直流、连续脉冲等)条件时,放电产生的等离子体持续不断的通过探针系统,不能运用双探针法对等离子的扩散速度和放电产生的金属离子运动能量进行测量.此种方法具有局限性,不能有效的测量分析等离子体的全部特性。
发明内容
本发明针对上述缺陷公开了一种真空放电等离子体参数的测量装置及方法。
一种真空放电等离子体参数的测量装置,它的结构如下:栅网、第一探针和第二探针依次安装在等离子体传输通道上,等离子体传输通道位于圆筒状物体的内部,等离子体源和圆筒状物体均位于真空室中,栅网通过屏蔽线连接控制信号发生器,第一探针通过屏蔽线连接DC1直流电源和C1电容的公共节点,第二探针通过屏蔽线连接DC2直流电源和C2电容的公共节点;GND地电位分别连接R1电阻、R2电阻、R3电阻、R4电阻和数据采集卡,DC1直流电源连接R1电阻,DC2直流电源连接R3电阻,数据采集卡分别连接R3电阻、R1电阻、DC1直流电源、DC2直流电源和计算机。。
所述栅网为不锈钢金属网,其孔径尺寸为0.5mm*0.5mm-5mm*5mm。
所述第一探针和第二探针的间距为0-50mm可调。
所述圆筒状物体的材料为绝缘材料。
所述第一探针和第二探针能够在等离子体传输通道上水平移动,便于获得等离子体传输通道上不同位置的等离子体参数。
所述DC1直流电源和DC2直流电源的电压均可调,调节范围为0-100V。
一种真空放电等离子体参数的测量方法,它的步骤如下:在栅网施加负电压VG,利用负电压VG的阻挡作用,实现对等离子体的阻挡控制,通过控制负电压VG的大小,实现对通过栅网的等离子体数量的控制;记录等离子体通过第一探针和第二探针的时间间隔Δt,通过计算得出等离子体的传播速度v;
利用朗缪尔探针法对电子电流进行测定,通过第一探针和第二探针将电子电流引入至测量电路中,调节DC1直流电源的电压,从而改变第一探针上电压V1;调节DC2直流电源的电压,从而改变第二探针上的电压V2,记录该电压下的电子电流,利用数据采集卡采集上述数据,然后将其输入至计算机中,得到V-I曲线;通过计算得到等离子体的电子密度Ne、电子温度Te和空间电位Vp;当电子电流流过R1电阻和R3电阻时,会引起第一探针上电压V1和第二探针上的电压V2的变化,这时,R2电阻和C1电容构成的RC电路以及R4电阻和C2电容构成的RC电路将起到稳压作用。
所述负电压VG的大小为0至-100V可调,负电压VG对应的脉冲宽度为0-100μs可调。
本发明的有益效果是:
1)本发明能够对单个或连续脉冲放电产生的、在不同空间或时间点处分布的等离子体特性进行诊断。
2)本发明不需要机械装置阻碍等离子体的运动,通过施加适当的阻挡电位就能实现等离子体的开断控制。开断迅速、方法简单、易实现。
3)本发明通过在等离子体传输通道上布置双探针,便于分析放电等离子体在空间的传输特性。
4)本发明结构简单,测量精度高,抗干扰能力强。
附图说明
图1本发明的结构图;
图2栅网控制信号发生电路示例
图3栅网阻挡效果实验结构图;
图4探针测得的栅网前后电子电流波形图;
图5正负电压幅值对栅网阻挡影响图
图6探针电压-电子电流特性曲线图
图7两个探针测得的电子电流波形
具体实施方式
下面结合附图对本发明进一步详细说明:
如图1所示,等离子体源放电产生等离子体(等离子体源的阳极接地),等离子体在等离子体传输通道中传输,等离子体传输通道的上下一种真空放电等离子体参数的测量装置的结构如下:栅网G、第一探针P1和第二探针P2依次安装在等离子体传输通道上,等离子体传输通道位于圆筒状物体2的内部,等离子体源和圆筒状物体2均位于真空室中,栅网G通过屏蔽线1连接控制信号发生器中C4电容、R6电阻和L电感的公共节点,第一探针P1通过屏蔽线1连接DC1直流电源和C1电容的公共节点,第二探针P2通过屏蔽线1连接DC2直流电源和C2电容的公共节点;GND地电位分别连接R1电阻、R2电阻、R3电阻、R4电阻和数据采集卡,DC1直流电源连接R1电阻,DC2直流电源连接R3电阻,数据采集卡分别连接R3电阻、R1电阻、DC1直流电源、DC2直流电源和计算机。等离子体源和上述一种真空放电等离子体参数的测量装置均位于真空室中,屏蔽线1起到隔离真空室和外部空间的作用。
其中,栅网G为不锈钢金属网,其孔径尺寸的范围为0.5mm*0.5mm-5mm*5mm;第一探针P1和第二探针P2的间距为0-50mm可调;第一探针P1和第二探针P2能够在等离子体传输通道上水平移动,便于获得等离子体传输通道上不同位置的等离子体分布情况;DC1直流电源和DC2直流电源均为0-100V可调。圆筒状物体2的材料为聚四氟材料。
如图2所示,控制信号发生器的连接关系如下:220V交流电源U是接整流桥的交流端,整流桥直流端正端口接地,负端口接IGBT集电极。IGBT的基极输入控制信号(通过触发控制器产生控制信号),IGBT的发射极连接R5电阻、D二极管的阳极和L电感的公共节点。R6电阻、R7电阻和C4电容接地,R7电阻的一端接C3电容和D二极管阴极的公共节点,C4电容和R6电阻的上端均连接L电感,R5电阻连接C3电容。
栅网G的控制原理为:在真空环境内生成等离子体,等离子体向四周扩散运动。当在栅网上施加电压(正或负)时,栅网网孔的四周会因为电压的存在而产生鞘层,鞘层的厚度与栅网上施加的电压的幅值大小相关。施加幅值越大,产生鞘层的厚度越大。栅网网孔处的空间电位越高。由于真空放电产生的离子能量(大约为100eV左右)比电子能量大的多(5eV左右),当栅网上施加正电压的时候,栅网上形成的是正向阻止电位,实验证明:至少需要施加100V以上的电压才能够有效的阻挡离子的通过;然而当栅网上施加负压的时候,栅网上形成的是负向阻止电位,等离子体中的电子能量很小(约为5eV左右),在栅网上施加较小的负电压就能够完全阻挡电子的通过。由于等离子体中离子和电子间库仑力的存在,栅网完全将电子阻挡住的同时,离子被电子库仑力的束缚也不能通过栅网,最终实现了栅网对等离子体的阻挡效果。
如图3所示,为了检测栅网G对等离子体的阻挡效果,在栅网G的前后两侧放置第一探针P1和第二探针P2(其余部分的电路连接关系与图1相同,栅网G通过屏蔽线1连接控制信号发生器中C4电容、R6电阻和L电感的公共节点,第一探针P1通过屏蔽线1连接DC1直流电源和C1电容的公共节点,第二探针P2通过屏蔽线1连接DC2直流电源和C2电容的公共节点)。通过第一探针P1和第二探针P2测量栅网G前后两侧的等离子体电子电流的大小,来检测栅网G的阻挡控制效果。
如图4所示,在当放电生成等离子体的饱和电子电流为12mA时,在栅网G上施加-5V的电压,检测阻挡栅网的阻挡效果。图中上中下三条曲线分别为主放电回路的电流波形(等离子体源的放电电流波形)、第一探针P1测得的饱和电子电流波形(阻挡栅网前的等离子体电子电流波形)和第二探针P2测得的饱和电子电流波形(阻挡栅网后的等离子体电子电流波形),可以看出栅网后侧测得的电子电流幅值很小,说明栅网对等离子体有明显的阻挡效果。
如图5所示为正负电压幅值对栅网阻挡效果图。在实验中,第一探针p1和第二探针p2距离为14mm,不断改变施加到控制栅网G上的电压信号幅值,讨论栅网G上施加电压幅值的变化对栅网阻挡控制的影响(在图5中的曲线是通过第二探针P2测得的)。最终得到(图4)饱和电子电流随幅值变化的关系曲线。图中峰值点所对应的电压值(约10V左右)为放电等离子体的空间电位。可以看出,当栅网G上施加的正电压大于等离子体空间电位时,控制栅网G的阻挡效果不明显,且在施加很高的电压时不能完全阻挡等离子体。然而当栅网G上施加的电压小于等离子体空间电位时,栅网G的阻止效果非常明显。当在栅网G上施加大约-20V的电压时,等离子体完全被阻止住。实验证明,在栅网G上施加负压能够更加有效的阻挡等离子体的通过。
一种真空放电等离子体参数的测量方法的步骤如下:在栅网G施加负电压VG,利用负电压VG的阻挡作用,实现对等离子体的阻挡控制,通过控制负电压VG的大小,实现对通过栅网G的等离子体数量的控制;记录等离子体通过第一探针P1和第二探针P2的时间间隔Δt,通过计算得出等离子体的传播速度v;
利用朗缪尔探针法对电子电流进行测定,通过第一探针P1和第二探针P2将电子电流引入至测量电路中,调节DC1直流电源的电压,从而改变第一探针P1上电压V1;调节DC2直流电源的电压,从而改变第二探针P2上的电压V2,记录该电压下的电子电流,利用数据采集卡采集上述数据,然后将其输入至计算机中,得到V-I曲线;通过计算得到等离子体的电子密度Ne、电子温度Te和空间电位Vp;当电子电流流过R1电阻和R3电阻时,会引起第一探针P1上电压V1和第二探针P2上的电压V2的变化,这时,R2电阻和C1电容构成的RC电路以及R4电阻和C2电容构成的RC电路将起到稳压作用。
所述负电压VG的大小为0至-100V可调,负电压VG对应的脉冲宽度为0-100μs可调。
在第一探针P1(或第二探针P2)上施加一定电压,并在同一电压下,连续放电5次,记录并取5次放电过程中探针电子电流出现的最大值,作为该电压下的探针电流,绘制如图6所示的电压-电流特性曲线。依据曲线可以计算出不同实验条件下的电子温度、空间电位、等离子体密度等等离子体参数。
图7为当等离子体通过两个探针时,第一探针P1和第二探针P2测得的电子电流波形。通过计算电子电流波形峰值的时间差,可以计算出等离子体的运动速度。由于我们知道真空等离子体中的离子在做定向运动,因此可以推算出在空间传播的离子运动能量。
本发明虽然以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以做出可能的变动和修改,因此本发明的保护范围应当以本发明权利要求所界定的范围为准。

Claims (8)

1.一种真空放电等离子体参数的测量装置,其特征在于,它的结构如下:栅网(G)、第一探针(P1)和第二探针(P2)依次安装在等离子体传输通道上,等离子体传输通道位于圆筒状物体(2)的内部,等离子体源和圆筒状物体(2)均位于真空室中,栅网(G)通过屏蔽线(1)连接控制信号发生器,第一探针(P1)通过屏蔽线(1)连接DC1直流电源和C1电容的公共节点,第二探针(P2)通过屏蔽线(1)连接DC2直流电源和C2电容的公共节点;GND地电位分别连接R1电阻、R2电阻、R3电阻、R4电阻和数据采集卡,DC1直流电源连接R1电阻,DC2直流电源连接R3电阻,数据采集卡分别连接R3电阻、R1电阻、DC1直流电源、DC2直流电源和计算机。
2.根据权利要求1所述的一种真空放电等离子体参数的测量装置,其特征在于,所述栅网(G)为不锈钢金属网,其孔径尺寸的范围为0.5mm×0.5mm-5mm×5mm。
3.根据权利要求1所述的一种真空放电等离子体参数的测量装置,其特征在于,所述第一探针(P1)和第二探针(P2)的间距为0-50mm可调。
4.根据权利要求1所述的一种真空放电等离子体参数的测量装置,其特征在于,所述圆筒状物体(2)的材料为绝缘材料。
5.根据权利要求1所述的一种真空放电等离子体参数的测量装置,其特征在于,所述第一探针(P1)和第二探针(P2)能够在等离子体传输通道上水平移动,便于获得等离子体传输通道上不同位置的等离子体参数。
6.根据权利要求1所述的一种真空放电等离子体参数的测量装置,其特征在于,所述DC1直流电源和DC2直流电源的电压均可调,调节范围为0-100V。
7.一种真空放电等离子体参数的测量方法,其特征在于,它的步骤如下:在栅网(G)施加负电压VG,利用负电压VG的阻挡作用,实现对等离子体的阻挡控制,通过控制负电压VG的大小,实现对通过栅网(G)的等离子体数量的控制;记录等离子体通过第一探针(P1)和第二探针(P2)的时间间隔Δt,通过计算得出等离子体的传播速度v;
利用朗缪尔探针法对电子电流进行测定,通过第一探针(P1)和第二探针(P2)将电子电流引入至测量电路中,调节DC1直流电源的电压,从而改变第一探针(P1)上电压V1;调节DC2直流电源的电压,从而改变第二探针(P2)上的电压V2,记录电压V1和电压V2下的电子电流,利用数据采集卡采集上述数据,然后将其输入至计算机中,得到V-I曲线;通过计算得到等离子体的电子密度Ne、电子温度Te和空间电位Vp;当电子电流流过R1电阻和R3电阻时,会引起第一探针(P1)上电压V1和第二探针(P2)上的电压V2的变化,这时,R2电阻和C1电容构成的RC电路以及R4电阻和C2电容构成的RC电路将起到稳压作用。
8.根据权利要求7所述的一种真空放电等离子体参数的测量方法,其特征在于,所述负电压VG的大小为0至-100V可调,负电压VG对应的脉冲宽度为0-100μs可调。
CN201210042947.XA 2012-02-22 2012-02-22 一种真空放电等离子体参数的测量装置及方法 Active CN102610480B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210042947.XA CN102610480B (zh) 2012-02-22 2012-02-22 一种真空放电等离子体参数的测量装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210042947.XA CN102610480B (zh) 2012-02-22 2012-02-22 一种真空放电等离子体参数的测量装置及方法

Publications (2)

Publication Number Publication Date
CN102610480A CN102610480A (zh) 2012-07-25
CN102610480B true CN102610480B (zh) 2015-07-22

Family

ID=46527774

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210042947.XA Active CN102610480B (zh) 2012-02-22 2012-02-22 一种真空放电等离子体参数的测量装置及方法

Country Status (1)

Country Link
CN (1) CN102610480B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104422478B (zh) * 2013-08-23 2017-05-17 中国科学院空间科学与应用研究中心 一种超高速撞击中瞬态等离子体参数测量的方法
CN103770953B (zh) * 2013-12-17 2016-12-07 兰州空间技术物理研究所 航天器结构电位主动控制装置及其控制方法
CN105636328B (zh) * 2015-12-25 2017-10-20 北京理工大学 一种基于驻极体的等离子体密度测量系统及其测量方法
CN108022824A (zh) * 2017-11-21 2018-05-11 中国科学技术大学 高精度离子能量分析仪
CN109596245A (zh) * 2018-07-02 2019-04-09 哈尔滨工业大学 佳拉洁雅磁阱中电子温度及等离子体密度测量方法及系统
CN109507489A (zh) * 2018-10-18 2019-03-22 北京理工大学 一种用于低温等离子体电位诊断的探针系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364897A (ja) * 1989-08-02 1991-03-20 Mitsui Toatsu Chem Inc プラズマパラメーターの測定方法
CN1540323A (zh) * 2003-04-24 2004-10-27 ���������ƴ���ʽ���� 等离子体监测方法、等离子体监测装置和等离子体处理装置
JP2011060852A (ja) * 2009-09-07 2011-03-24 Mitsubishi Electric Corp 半導体膜の製造装置及び方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7993487B2 (en) * 2006-03-29 2011-08-09 Tokyo Electron Limited Plasma processing apparatus and method of measuring amount of radio-frequency current in plasma

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364897A (ja) * 1989-08-02 1991-03-20 Mitsui Toatsu Chem Inc プラズマパラメーターの測定方法
CN1540323A (zh) * 2003-04-24 2004-10-27 ���������ƴ���ʽ���� 等离子体监测方法、等离子体监测装置和等离子体处理装置
JP2011060852A (ja) * 2009-09-07 2011-03-24 Mitsubishi Electric Corp 半導体膜の製造装置及び方法

Also Published As

Publication number Publication date
CN102610480A (zh) 2012-07-25

Similar Documents

Publication Publication Date Title
CN102610480B (zh) 一种真空放电等离子体参数的测量装置及方法
Sorokin et al. Features of streamer formation in a sharply non-uniform electric field
US20080040410A1 (en) High-Speed, True Random-Number Generator
CN102623287B (zh) 一种真空放电等离子体的离子流检测装置及方法
Du et al. Effect of nanosecond rise time of pulse voltage on the surface charge of epoxy/TiO 2 nanocomposites
Pejović et al. Experimental investigation of breakdown voltage and electrical breakdown time delay of commercial gas discharge tubes
CN106680676A (zh) 气固沿面放电试验流注监测及表面电位测量系统及方法
CN110542844A (zh) 一种光学和电流信号联合分析空气间隙放电过程的方法
Allen et al. Corona propagation and charge deposition on a PTFE surface
Jiang et al. Distribution of stems around the HV electrode in a 0.74-m air gap under positive pulses
Li et al. Influence of N2 pressure on surface discharge characteristics of PEEK under positive repetitive square voltage
Burdovitsin et al. Potential of a dielectric target during its irradiation by a pulsed electron beam in the forevacuum pressure range
Cai et al. Observation of a U-like shaped velocity evolution of plasma expansion during a high-power diode operation
Li et al. Impulse breakdown of liquid water-influence of pulse duration and gap distance
Othman et al. Comparative study on space charge distribution measurements using PEA and PWP methods on high voltage insulation
Zeng-Qian et al. Temporal behaviour of micro-discharge in dielectric barrier discharges
NL1041245B1 (en) A method to measure the specific resistivity of thin layer material without the need for a second surface contact.
Darmaev et al. Fundamental limitations on the use of field-emission structures as cathodes of high-power vacuum microwave pulse devices
Adili et al. Partial discharges characterization in spherical voids using ultra-short x-ray pulses
Eimer Measurement of PMT dark rates for the IceCube mDOM
Lü et al. Influence of dust on surface properties of epoxy resin
Elzowawi et al. Visualization of the ionization phenomenon in porous materials under lightning impulse
Pilan et al. Role of Electron Stimulated Desorption in the initiation of HVDC vacuum arc
Voermans The characterization of kHz AC driven plasma bullets
Nilsen Plasma cloud detection and diagnostics from arcing by conditional averaging

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant