CN102607695B - Method for calculating natural frequency of honeycomb sandwich plate - Google Patents

Method for calculating natural frequency of honeycomb sandwich plate Download PDF

Info

Publication number
CN102607695B
CN102607695B CN201210035017.1A CN201210035017A CN102607695B CN 102607695 B CN102607695 B CN 102607695B CN 201210035017 A CN201210035017 A CN 201210035017A CN 102607695 B CN102607695 B CN 102607695B
Authority
CN
China
Prior art keywords
partiald
formula
sandwich plate
sandwich
chi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210035017.1A
Other languages
Chinese (zh)
Other versions
CN102607695A (en
Inventor
王盛春
沈卫东
王建立
徐嘉锋
宋思洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Communication College of China PLA
Original Assignee
Chongqing Communication College of China PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Communication College of China PLA filed Critical Chongqing Communication College of China PLA
Priority to CN201210035017.1A priority Critical patent/CN102607695B/en
Publication of CN102607695A publication Critical patent/CN102607695A/en
Application granted granted Critical
Publication of CN102607695B publication Critical patent/CN102607695B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention relates to a method for calculating a natural frequency of a honeycomb sandwich plate, which comprises the following steps of: by measuring bending rigidities D11, D12, D22 and D66 of the sandwich plate, shear moduli Gxz and Gyz of a core layer in x-z and y-z planes, a length a and a width b of the sandwich plate, a panel thickness t, a core layer thickness h and a panel density rho<f> and a core layer density rho<c> of the sandwich plate, calculating to obtain shear stiffnesses Cxz and Cyz of the core layer and an equivalent face density rho; and substituting the measured data into a formula to calculate so as to solve the natural frequency omega<m> of an mth order of the sandwich plate. According to the invention, a bending vibration equation system form and the process of solving the natural frequency of the sandwich plate are simplified, the influence of the transverse shear deformation of the core layer and the integral orthogonal anisotropy of the sandwich plate on the mechanical property of the sandwich plate is also considered, the calculating process of the natural frequency is simplified, the calculating efficiency is improved, the calculating difficulty is reduced and the calculating accuracy of the natural frequency is improved.

Description

A kind of measuring method of honeycomb sandwich panel natural frequency
Technical field
The present invention relates to a kind of measuring method of sandwich plate natural frequency, particularly a kind of measuring method for honeycomb sandwich panel natural frequency.
Background technology
Bending Vibration Analysis is the important foundation of carrying out structural design and engineering application thereof.Along with the widespread use of honeycomb sandwich construction in various fields such as space flight, aviation, high-speed transit means of transport and modern structure engineerings, its vibration problem becomes increasingly conspicuous, generally attention and the concern of engineering circles have been caused, vibration analysis and natural frequency design have become a key link in product design, are also one of major mechanical problems in Important Project.In the past few decades, Chinese scholars uses analytic method, numerical method and experimental technique from various angles, the vibration characteristics of honeycomb sandwich panel to be studied.The vibration problem of isotropy panel sandwich construction that the people such as Allen, Vinson has used classical laminated plate theoretical research, but this theory is based upon on the straight normal hypothesis of Kirchhoff basis, because the sandwich layer of sandwich construction is softer and thickness is larger, during flexural vibrations, under cross shear effect, larger detrusion will be there is, so straight normal hypothesis is no longer applicable when analyzing sandwich plate crooked, its computational accuracy has much room for improvement.In order to improve the computational accuracy of sandwich plate vibration problem, the people such as Reissner and Mindlin have proposed the shear deformable theory of slab, and have derived the bending vibration control system of equations of sandwich plate.Owing to containing 3 generalized displacements in Orthotropic Sandwich Plate bending vibration control system of equations the most conventional in engineering, for the general employing of solving of its natural frequency Rayleigh-Ritz method, equation form and solution procedure are all comparatively complicated, and this has limited this application of system of equations in the engineering practices such as composite Materials Design to a certain extent.Many for sandwich plate bending vibration control system of equations displacement function, equation form is complicated, by problems such as analytical method solving difficulties, Inst. of Mechanics, CAS is in the bending of monograph < < Laminated Plate/Shell, stable and vibration > > (Science Press, 1977) in provided a kind of engineering simplification solution, but this kind of method is only limited to the situation of isotropy panel, ignored the anisotropic impact of sandwich plate whole-body quadrature; The people such as the Wu Hui of Lanzhou University are at the natural frequency > > (authorship of the sandwich clip rectangle laminate of paper < < simply supported on four sides orthotropy ripple type, the 22nd the 9th phase of volume of calendar year 2001,919 pages-926 pages) in a kind of short-cut method of sandwich plate bending vibration control system of equations has been proposed, but this method has been ignored the impact of sandwich layer transverse shear deformation, and computational accuracy still has much room for improvement.
Summary of the invention
Object of the present invention is just to provide a kind of measuring method of honeycomb sandwich panel natural frequency, and it can simplify the computation process of natural frequency, improves counting yield, reduces difficulty in computation, and improves the accuracy in computation of natural frequency.
The object of the invention is to realize by such technical scheme, concrete steps are as follows:
1) use compound substance universal testing machine to measure sandwich plate to be measured, obtain sandwich plate bending stiffness D 11, D 12, D 22, D 66with the shear modulus G of sandwich layer in x-z and y-z plane xz, G yz;
2) utilize ruler measurement measured panel sandwich plate length a, width b, thickness t and core layer thickness h;
3) by formula C xz=G xzh (1+t/h) 2and C yz=G yzh (1+t/h) 2, calculate the shearing rigidity C of sandwich layer xzand C yz;
4) by material handbook, check in the panel density p of clamping plate to be measured fwith sandwich layer density p c, by formula ρ=ρ ch+2 ρ ft calculates the equivalent face density p of clamping plate;
5) data substitution formula above-mentioned steps being recorded calculates, and in conjunction with the boundary condition of sandwich plate, solves the natural frequency ω on sandwich plate m rank m, its formula is as follows:
D 11 + D 66 C yz &PartialD; 6 &chi; &PartialD; x 6 + Q 1 &PartialD; 6 &chi; &PartialD; x 4 &PartialD; y 2 + Q 2 &PartialD; 6 &chi; &PartialD; x 2 &PartialD; y 4 - 2 ( D 12 + 2 D 66 ) &PartialD; 4 &chi; &PartialD; x 2 &PartialD; y 2 - D 11 &PartialD; 4 &chi; &PartialD; x 4 - D 22 &PartialD; 4 &chi; &PartialD; y 4 + D 22 D 66 C xz &PartialD; 6 &chi; &PartialD; y 6 + &rho; &PartialD; 2 &PartialD; t 2 { &chi; - ( D 11 C xz + D 66 C yz ) &PartialD; 2 &chi; &PartialD; x 2 - D 11 D 66 C xz C yz &PartialD; 4 &chi; &PartialD; x 4 - ( D 22 C yz + D 66 C xz ) &PartialD; 2 &chi; &PartialD; y 2 + Q 3 &PartialD; 4 &chi; &PartialD; x 2 &PartialD; y 2 + Q 4 &PartialD; 4 &chi; &PartialD; y 4 } = 0
In formula
Q 1 = D 11 D 66 C xz + D 11 D 22 - 2 D 12 D 66 - D 12 2 C yz , Q 2 = D 11 D 22 - D 12 2 C xz + D 22 D 66 C yz
Q 3 = 2 D 11 D 66 + 2 D 11 D 12 C xz 2 - ( D 12 + D 66 ) 2 + D 66 2 + D 11 D 22 C xz C yz , Q 4 = 2 D 66 2 C xz 2 + D 22 D 66 C xz C yz
Figure GDA0000406899500000024
m wherein 1, m 2for mode ordinal number, a is sandwich plate length, and b is width, x, and y is denotation coordination respectively.
Further, the derivation of formula described in step 5) is as follows:
The middle face of sandwich is x-y plane, and under z is axial, the one side of z>0 is top panel, and the one side of z<0 is lower panel, and plate length is a, and width is b, and plate thickness is t, and sandwich thickness is h, and sandwich plate gross thickness is H=h+2t;
The free vibration governing equation group of introducing orthotropy clip rectangle laminate is:
D 11 &PartialD; 2 &psi; x &PartialD; x 2 + ( D 12 + D 66 ) &PartialD; 2 &psi; y &PartialD; x &PartialD; y + D 66 &PartialD; 2 &psi; x &PartialD; y 2 + C xz ( &PartialD; w &PartialD; x - &psi; x ) = 0 - - - ( 1 )
( D 12 + D 66 ) &PartialD; 2 &psi; x &PartialD; x &PartialD; y + D 66 &PartialD; 2 &psi; y &PartialD; x 2 + D 22 &PartialD; 2 &psi; y &PartialD; y 2 + C yz ( &PartialD; w &PartialD; y - &psi; y ) = 0 - - - ( 2 )
C xz ( &PartialD; 2 w &PartialD; x 2 - &PartialD; &psi; x &PartialD; x ) + C yz ( &PartialD; 2 w &PartialD; y 2 - &PartialD; &psi; y &PartialD; y ) + &rho; &PartialD; 2 w &PartialD; t 2 = 0 - - - ( 3 )
Wherein w is the amount of deflection of sandwich plate under action of lateral load, ψ x, ψ yfor before sandwich plate distortion perpendicular to the straight-line segment of middle the corner in x-z and y-z plane;
System of equations Chinese style (1) is asked to local derviation to y, and formula (2) is asked local derviation to x, and then two formulas are subtracted each other, and can obtain
D 11 C xz &PartialD; 3 &psi; x &PartialD; x 2 &PartialD; y + D 66 C xz &PartialD; 3 &psi; x &PartialD; y 3 - D 12 + D 66 C yz &PartialD; 3 &psi; x &PartialD; 2 x &PartialD; y - &PartialD; &psi; x &PartialD; y + D 12 + D 66 C xz &PartialD; 3 &psi; y &PartialD; x &PartialD; y 2 - D 66 C yz &PartialD; 3 &psi; y &PartialD; x 3 - D 22 C yz &PartialD; 3 &psi; y &PartialD; x &PartialD; y 2 + &PartialD; &psi; y &PartialD; x = 0 - - - ( 4 )
Introduce partial differential operator, formula (4) can be rewritten as
L 1 &PartialD; &psi; x &PartialD; y = L 2 &psi; y - - - ( 5 )
Wherein L1, L2 are partial differential operator:
L 1 = - D 11 C xz &PartialD; 2 &PartialD; x 2 - D 66 C xz &PartialD; 2 &PartialD; y 2 + D 12 + D 66 C yz &PartialD; 2 &PartialD; x 2 + 1 - - - ( 6 )
L 2 = D 12 + D 66 C xz &PartialD; 3 &PartialD; x &PartialD; y 2 - D 66 C yz &PartialD; 3 &PartialD; x 3 - D 22 C yz &PartialD; 3 &PartialD; x &PartialD; y 2 + &PartialD; &PartialD; x - - - ( 7 )
Introduce displacement function χ, and order
ψ x=L 2χ (8)
By formula (8) substitution formula (5), obtain
L 2 &psi; y = L 1 &PartialD; &PartialD; y ( L 2 &chi; ) = L 1 L 2 &PartialD; &chi; &PartialD; y - - - ( 9 )
By (9) formula, obtained
&psi; y = L 1 &PartialD; &chi; &PartialD; y - - - ( 10 )
By in formula (6), (7) substitution formula (8), (10), generalized displacement ψ xand ψ yavailable displacement function χ is expressed as
&psi; x = [ 1 - D 66 ( 1 C yz &PartialD; 2 &PartialD; x 2 - 1 C xz &PartialD; 2 &PartialD; y 2 ) + ( D 12 C xz - D 22 C yz ) &PartialD; 2 &PartialD; y 2 ] &PartialD; &chi; &PartialD; x - - - ( 11 )
&psi; y = [ 1 + D 66 ( 1 C yz &PartialD; 2 &PartialD; x 2 - 1 C xz &PartialD; 2 &PartialD; y 2 ) + ( D 12 C yz - D 11 C xz ) &PartialD; 2 &PartialD; x 2 ] &PartialD; &chi; &PartialD; y - - - ( 12 )
By formula (11), (12) substitution formula (1), through abbreviation, obtain
&PartialD; w &PartialD; x = [ 1 - D 66 ( 1 C yz &PartialD; 2 &PartialD; x 2 - 1 C xz &PartialD; 2 &PartialD; y 2 ) + ( D 12 C xz - D 22 C yz ) &PartialD; 2 &PartialD; y 2 ] ( 1 - D 11 C xz &PartialD; 2 &PartialD; x 2 - D 66 C xz &PartialD; 2 &PartialD; y 2 ) &PartialD; &chi; &PartialD; x - D 12 + D 66 C xz [ 1 + D 66 ( 1 C yz &PartialD; 2 &PartialD; x 2 - 1 C xz &PartialD; 2 &PartialD; y 2 ) + ( D 12 C yz - D 11 C xz ) &PartialD; 2 &PartialD; x 2 ] &PartialD; 3 &chi; &PartialD; x &PartialD; y 2 - - - ( 13 )
Indefinite integral is carried out to x in formula (13) both sides, and generalized displacement w is expressed as by displacement function χ
w = [ 1 - D 66 ( 1 C yz &PartialD; 2 &PartialD; x 2 - 1 C xz &PartialD; 2 &PartialD; y 2 ) + ( D 12 C xz - D 22 C yz ) &PartialD; 2 &PartialD; y 2 ] ( &chi; - D 11 C xz &PartialD; 2 &chi; &PartialD; x 2 - D 66 C xz &PartialD; 2 &chi; &PartialD; y 2 ) - D 12 + D 66 C xz [ 1 + D 66 ( 1 C yz &PartialD; 2 &PartialD; x 2 - 1 C xz &PartialD; 2 &PartialD; y 2 ) + ( D 12 C yz - D 11 C xz ) &PartialD; 2 &PartialD; x 2 ] &PartialD; 2 &chi; &PartialD; y 2 - - - ( 14 )
By formula (11), (12) and formula (14) substitution system of equations formula (3), through merging, abbreviation, obtain the vibration control equation about displacement function χ
U 1 &PartialD; 2 &chi; &PartialD; x 2 + U 2 &PartialD; 4 &chi; &PartialD; x 2 &PartialD; y 2 + U 3 &PartialD; 2 &chi; &PartialD; y 2 + U 4 &PartialD; 4 &chi; &PartialD; y 4 + &rho; &PartialD; 2 &PartialD; t 2 U 5 = 0 - - - ( 15 )
Wherein
U 1 = - C xz [ 1 - D 66 ( 1 C yz &PartialD; 2 &PartialD; x 2 - 1 C xz &PartialD; 2 &PartialD; y 2 ) + ( D 12 C xz - D 22 C yz ) &PartialD; 2 &PartialD; y 2 ] ( D 11 C xz &PartialD; 2 &PartialD; x 2 + D 66 C xz &PartialD; 2 &PartialD; y 2 ) - - - ( 16 )
U 2 = - ( D 12 + D 66 ) [ 1 + D 66 ( 1 C yz &PartialD; 2 &PartialD; x 2 - 1 C xz &PartialD; 2 &PartialD; y 2 ) + ( D 12 C yz - D 11 C xz ) &PartialD; 2 &PartialD; x 2 ] - - - ( 17 )
U 3 = C yz [ 1 - D 66 ( 1 C yz &PartialD; 2 &PartialD; x 2 - 1 C xz &PartialD; 2 &PartialD; y 2 ) + ( D 12 C xz - D 22 C yz ) &PartialD; 2 &PartialD; y 2 ] ( 1 - D 11 C xz &PartialD; 2 &PartialD; x 2 - D 66 C xz &PartialD; 2 &PartialD; y 2 ) - C yz [ 1 + D 66 ( 1 C yz &PartialD; 2 &PartialD; x 2 - 1 C xz &PartialD; 2 &PartialD; y 2 ) + ( D 12 C yz - D 11 C xz ) &PartialD; 2 &PartialD; x 2 ] - - - ( 18 )
U 4 = C yz C xz ( D 12 + D 66 ) [ 1 + D 66 ( 1 C yz &PartialD; 2 &PartialD; x 2 - 1 C xz &PartialD; 2 &PartialD; y 2 ) + ( D 12 C yz - D 11 C xz ) &PartialD; 2 &PartialD; x 2 ] - - - ( 19 )
U 5 = [ 1 - D 66 ( 1 C yz &PartialD; 2 &PartialD; x 2 - 1 C xz &PartialD; 2 &PartialD; y 2 ) + ( D 12 C xz - D 22 C yz ) &PartialD; 2 &PartialD; y 2 ] ( &chi; - D 11 C xz &PartialD; 2 &chi; &PartialD; x 2 - D 66 C xz &PartialD; 2 &chi; &PartialD; y 2 ) - D 12 + D 66 C xz [ 1 + D 66 ( 1 C yz &PartialD; 2 &PartialD; x 2 - 1 C xz &PartialD; 2 &PartialD; y 2 ) + ( D 12 C yz - D 11 C xz ) &PartialD; 2 &PartialD; x 2 ] &PartialD; 2 &chi; &PartialD; y 2 - - - ( 20 )
To formula (16)-(20) merge, abbreviation, and substitution formula (15), just can obtain only containing the Orthotropic Sandwich Plate free vibration governing equation of displacement function χ
D 11 + D 66 C yz &PartialD; 6 &chi; &PartialD; x 6 + Q 1 &PartialD; 6 &chi; &PartialD; x 4 &PartialD; y 2 + Q 2 &PartialD; 6 &chi; &PartialD; x 2 &PartialD; y 4 - 2 ( D 12 + 2 D 66 ) &PartialD; 4 &chi; &PartialD; x 2 &PartialD; y 2 - D 11 &PartialD; 4 &chi; &PartialD; x 4 - D 22 &PartialD; 4 &chi; &PartialD; y 4 + D 22 D 66 C xz &PartialD; 6 &chi; &PartialD; y 6 + &rho; &PartialD; 2 &PartialD; t 2 { &chi; - ( D 11 C xz + D 66 C yz ) &PartialD; 2 &chi; &PartialD; x 2 - D 11 D 66 C xz C yz &PartialD; 4 &chi; &PartialD; x 4 - ( D 22 C yz + D 66 C xz ) &PartialD; 2 &chi; &PartialD; y 2 + Q 3 &PartialD; 4 &chi; &PartialD; x 2 &PartialD; y 2 + Q 4 &PartialD; 4 &chi; &PartialD; y 4 } = 0 - - - ( 21 )
Wherein
Q 1 = D 11 D 66 C xz + D 11 D 22 - 2 D 12 D 66 - D 12 2 C yz , Q 2 = D 11 D 22 - D 12 2 C xz + D 22 D 66 C yz
Q 3 = 2 D 11 D 66 + 2 D 11 D 12 C xz 2 - ( D 12 + D 66 ) 2 + D 66 2 + D 11 D 22 C xz C yz , Q 4 = 2 D 66 2 C xz 2 + D 22 D 66 C xz C yz .
Owing to having adopted technique scheme, the present invention has advantages of as follows:
The present invention carries out simply sandwich plate flexural vibrations system of equations form and natural frequency solution procedure, and consider sandwich layer transverse shear deformation and the impact of sandwich plate whole-body quadrature anisotropy on sandwich plate mechanical characteristic simultaneously, simplify the computation process of natural frequency, improve counting yield, reduce difficulty in computation, and improve the accuracy in computation of natural frequency.
Other advantages of the present invention, target and feature will be set forth to a certain extent in the following description, and to a certain extent, based on will be apparent to those skilled in the art to investigating below, or can be instructed from the practice of the present invention.Target of the present invention and other advantages can be realized and be obtained by instructions and claims below.
Accompanying drawing explanation
Accompanying drawing of the present invention is described as follows.
Fig. 1 is the structural representation of orthotropy honeycomb sandwich panel;
The comparison diagram of Fig. 2 sandwich plate calculation on Natural Frequency result and this method computation structure when not considering sandwich layer transverse shear deformation;
The comparison diagram of Fig. 3 sandwich plate calculation on Natural Frequency result and this method computation structure when not considering orthotropy.
Embodiment
Below in conjunction with drawings and Examples, the invention will be further described.
A measuring method for honeycomb sandwich panel natural frequency, concrete steps are as follows:
1) use compound substance universal testing machine to measure sandwich plate to be measured, obtain sandwich plate bending stiffness D 11, D 12, D 22, D 66with the shear modulus G of sandwich layer in x-z and y-z plane xz, G yz;
2) utilize ruler measurement measured panel sandwich plate length a, width b, thickness t and core layer thickness h;
3) by formula C xz=G xzh (1+t/h) 2and C yz=G yzh (1+t/h) 2, calculate the shearing rigidity C of sandwich layer xzand C yz;
4) by material handbook, check in the panel density p of clamping plate to be measured fwith sandwich layer density p c, by formula ρ=ρ ch+2 ρ ft calculates the equivalent face density p of clamping plate;
5) data substitution formula above-mentioned steps being recorded calculates, and in conjunction with the boundary condition of sandwich plate, solves the natural frequency ω on sandwich plate m rank m, its formula is as follows:
D 11 + D 66 C yz &PartialD; 6 &chi; &PartialD; x 6 + Q 1 &PartialD; 6 &chi; &PartialD; x 4 &PartialD; y 2 + Q 2 &PartialD; 6 &chi; &PartialD; x 2 &PartialD; y 4 - 2 ( D 12 + 2 D 66 ) &PartialD; 4 &chi; &PartialD; x 2 &PartialD; y 2 - D 11 &PartialD; 4 &chi; &PartialD; x 4 - D 22 &PartialD; 4 &chi; &PartialD; y 4 + D 22 D 66 C xz &PartialD; 6 &chi; &PartialD; y 6 + &rho; &PartialD; 2 &PartialD; t 2 { &chi; - ( D 11 C xz + D 66 C yz ) &PartialD; 2 &chi; &PartialD; x 2 - D 11 D 66 C xz C yz &PartialD; 4 &chi; &PartialD; x 4 - ( D 22 C yz + D 66 C xz ) &PartialD; 2 &chi; &PartialD; y 2 + Q 3 &PartialD; 4 &chi; &PartialD; x 2 &PartialD; y 2 + Q 4 &PartialD; 4 &chi; &PartialD; y 4 } = 0
In formula
Q 1 = D 11 D 66 C xz + D 11 D 22 - 2 D 12 D 66 - D 12 2 C yz , Q 2 = D 11 D 22 - D 12 2 C xz + D 22 D 66 C yz
Q 3 = 2 D 11 D 66 + 2 D 11 D 12 C xz 2 - ( D 12 + D 66 ) 2 + D 66 2 + D 11 D 22 C xz C yz , Q 4 = 2 D 66 2 C xz 2 + D 22 D 66 C xz C yz
Figure GDA0000406899500000067
m wherein 1, m 2for mode ordinal number, a is sandwich plate length, and b is width, x, and y is denotation coordination respectively.
The derivation of formula described in step 5) is as follows:
The middle face of sandwich is x-y plane, and under z is axial, the one side of z>0 is top panel, and the one side of z<0 is lower panel, and plate length is a, and width is b, and plate thickness is t, and sandwich thickness is h, and sandwich plate gross thickness is H=h+2t;
The free vibration governing equation group of introducing orthotropy clip rectangle laminate is:
D 11 &PartialD; 2 &psi; x &PartialD; x 2 + ( D 12 + D 66 ) &PartialD; 2 &psi; y &PartialD; x &PartialD; y + D 66 &PartialD; 2 &psi; x &PartialD; y 2 + C xz ( &PartialD; w &PartialD; x - &psi; x ) = 0 - - - ( 1 )
( D 12 + D 66 ) &PartialD; 2 &psi; x &PartialD; x &PartialD; y + D 66 &PartialD; 2 &psi; y &PartialD; x 2 + D 22 &PartialD; 2 &psi; y &PartialD; y 2 + C yz ( &PartialD; w &PartialD; y - &psi; y ) = 0 - - - ( 2 )
C xz ( &PartialD; 2 w &PartialD; x 2 - &PartialD; &psi; x &PartialD; x ) + C yz ( &PartialD; 2 w &PartialD; y 2 - &PartialD; &psi; y &PartialD; y ) + &rho; &PartialD; 2 w &PartialD; t 2 = 0 - - - ( 3 )
Wherein w is the amount of deflection of sandwich plate under action of lateral load, ψ x, ψ yfor before sandwich plate distortion perpendicular to the straight-line segment of middle the corner in x-z and y-z plane;
System of equations Chinese style (1) is asked to local derviation to y, and formula (2) is asked local derviation to x, and then two formulas are subtracted each other, and can obtain
D 11 C xz &PartialD; 3 &psi; x &PartialD; x 2 &PartialD; y + D 66 C xz &PartialD; 3 &psi; x &PartialD; y 3 - D 12 + D 66 C yz &PartialD; 3 &psi; x &PartialD; 2 x &PartialD; y - &PartialD; &psi; x &PartialD; y + D 12 + D 66 C xz &PartialD; 3 &psi; y &PartialD; x &PartialD; y 2 - D 66 C yz &PartialD; 3 &psi; y &PartialD; x 3 - D 22 C yz &PartialD; 3 &psi; y &PartialD; x &PartialD; y 2 + &PartialD; &psi; y &PartialD; x = 0 - - - ( 4 )
Introduce partial differential operator, formula (4) can be rewritten as
L 1 &PartialD; &psi; x &PartialD; y = L 2 &psi; y - - - ( 5 )
Wherein L1, L2 are partial differential operator:
L 1 = - D 11 C xz &PartialD; 2 &PartialD; x 2 - D 66 C xz &PartialD; 2 &PartialD; y 2 + D 12 + D 66 C yz &PartialD; 2 &PartialD; x 2 + 1 - - - ( 6 )
L 2 = D 12 + D 66 C xz &PartialD; 3 &PartialD; x &PartialD; y 2 - D 66 C yz &PartialD; 3 &PartialD; x 3 - D 22 C yz &PartialD; 3 &PartialD; x &PartialD; y 2 + &PartialD; &PartialD; x - - - ( 7 )
Introduce displacement function χ, and order
ψ x=L 2χ (8)
By formula (8) substitution formula (5), obtain
L 2 &psi; y = L 1 &PartialD; &PartialD; y ( L 2 &chi; ) = L 1 L 2 &PartialD; &chi; &PartialD; y - - - ( 9 )
By (9) formula, obtained
&psi; y = L 1 &PartialD; &chi; &PartialD; y - - - ( 10 )
By in formula (6), (7) substitution formula (8), (10), generalized displacement ψ xand ψ yavailable displacement function χ is expressed as
&psi; x = [ 1 - D 66 ( 1 C yz &PartialD; 2 &PartialD; x 2 - 1 C xz &PartialD; 2 &PartialD; y 2 ) + ( D 12 C xz - D 22 C yz ) &PartialD; 2 &PartialD; y 2 ] &PartialD; &chi; &PartialD; x - - - ( 11 )
&psi; y = [ 1 + D 66 ( 1 C yz &PartialD; 2 &PartialD; x 2 - 1 C xz &PartialD; 2 &PartialD; y 2 ) + ( D 12 C yz - D 11 C xz ) &PartialD; 2 &PartialD; x 2 ] &PartialD; &chi; &PartialD; y - - - ( 12 )
By formula (11), (12) substitution formula (1), through abbreviation, obtain
&PartialD; w &PartialD; x = [ 1 - D 66 ( 1 C yz &PartialD; 2 &PartialD; x 2 - 1 C xz &PartialD; 2 &PartialD; y 2 ) + ( D 12 C xz - D 22 C yz ) &PartialD; 2 &PartialD; y 2 ] ( 1 - D 11 C xz &PartialD; 2 &PartialD; x 2 - D 66 C xz &PartialD; 2 &PartialD; y 2 ) &PartialD; &chi; &PartialD; x - D 12 + D 66 C xz [ 1 + D 66 ( 1 C yz &PartialD; 2 &PartialD; x 2 - 1 C xz &PartialD; 2 &PartialD; y 2 ) + ( D 12 C yz - D 11 C xz ) &PartialD; 2 &PartialD; x 2 ] &PartialD; 3 &chi; &PartialD; x &PartialD; y 2 - - - ( 13 )
Indefinite integral is carried out to x in formula (13) both sides, and generalized displacement w is expressed as by displacement function χ
w = [ 1 - D 66 ( 1 C yz &PartialD; 2 &PartialD; x 2 - 1 C xz &PartialD; 2 &PartialD; y 2 ) + ( D 12 C xz - D 22 C yz ) &PartialD; 2 &PartialD; y 2 ] ( &chi; - D 11 C xz &PartialD; 2 &chi; &PartialD; x 2 - D 66 C xz &PartialD; 2 &chi; &PartialD; y 2 ) - D 12 + D 66 C xz [ 1 + D 66 ( 1 C yz &PartialD; 2 &PartialD; x 2 - 1 C xz &PartialD; 2 &PartialD; y 2 ) + ( D 12 C yz - D 11 C xz ) &PartialD; 2 &PartialD; x 2 ] &PartialD; 2 &chi; &PartialD; y 2 - - - ( 14 )
By formula (11), (12) and formula (14) substitution system of equations formula (3), through merging, abbreviation, obtain the vibration control equation about displacement function χ
U 1 &PartialD; 2 &chi; &PartialD; x 2 + U 2 &PartialD; 4 &chi; &PartialD; x 2 &PartialD; y 2 + U 3 &PartialD; 2 &chi; &PartialD; y 2 + U 4 &PartialD; 4 &chi; &PartialD; y 4 + &rho; &PartialD; 2 &PartialD; t 2 U 5 = 0 - - - ( 15 )
Wherein
U 1 = - C xz [ 1 - D 66 ( 1 C yz &PartialD; 2 &PartialD; x 2 - 1 C xz &PartialD; 2 &PartialD; y 2 ) + ( D 12 C xz - D 22 C yz ) &PartialD; 2 &PartialD; y 2 ] ( D 11 C xz &PartialD; 2 &PartialD; x 2 + D 66 C xz &PartialD; 2 &PartialD; y 2 ) - - - ( 16 )
U 2 = - ( D 12 + D 66 ) [ 1 + D 66 ( 1 C yz &PartialD; 2 &PartialD; x 2 - 1 C xz &PartialD; 2 &PartialD; y 2 ) + ( D 12 C yz - D 11 C xz ) &PartialD; 2 &PartialD; x 2 ] - - - ( 17 )
U 3 = C yz [ 1 - D 66 ( 1 C yz &PartialD; 2 &PartialD; x 2 - 1 C xz &PartialD; 2 &PartialD; y 2 ) + ( D 12 C xz - D 22 C yz ) &PartialD; 2 &PartialD; y 2 ] ( 1 - D 11 C xz &PartialD; 2 &PartialD; x 2 - D 66 C xz &PartialD; 2 &PartialD; y 2 ) - C yz [ 1 + D 66 ( 1 C yz &PartialD; 2 &PartialD; x 2 - 1 C xz &PartialD; 2 &PartialD; y 2 ) + ( D 12 C yz - D 11 C xz ) &PartialD; 2 &PartialD; x 2 ] - - - ( 18 )
U 4 = C yz C xz ( D 12 + D 66 ) [ 1 + D 66 ( 1 C yz &PartialD; 2 &PartialD; x 2 - 1 C xz &PartialD; 2 &PartialD; y 2 ) + ( D 12 C yz - D 11 C xz ) &PartialD; 2 &PartialD; x 2 ] - - - ( 19 )
U 5 = [ 1 - D 66 ( 1 C yz &PartialD; 2 &PartialD; x 2 - 1 C xz &PartialD; 2 &PartialD; y 2 ) + ( D 12 C xz - D 22 C yz ) &PartialD; 2 &PartialD; y 2 ] ( &chi; - D 11 C xz &PartialD; 2 &chi; &PartialD; x 2 - D 66 C xz &PartialD; 2 &chi; &PartialD; y 2 ) - D 12 + D 66 C xz [ 1 + D 66 ( 1 C yz &PartialD; 2 &PartialD; x 2 - 1 C xz &PartialD; 2 &PartialD; y 2 ) + ( D 12 C yz - D 11 C xz ) &PartialD; 2 &PartialD; x 2 ] &PartialD; 2 &chi; &PartialD; y 2 - - - ( 20 )
To formula (16)-(20) merge, abbreviation, and substitution formula (15), just can obtain only containing the Orthotropic Sandwich Plate free vibration governing equation of displacement function χ
D 11 + D 66 C yz &PartialD; 6 &chi; &PartialD; x 6 + Q 1 &PartialD; 6 &chi; &PartialD; x 4 &PartialD; y 2 + Q 2 &PartialD; 6 &chi; &PartialD; x 2 &PartialD; y 4 - 2 ( D 12 + 2 D 66 ) &PartialD; 4 &chi; &PartialD; x 2 &PartialD; y 2 - D 11 &PartialD; 4 &chi; &PartialD; x 4 - D 22 &PartialD; 4 &chi; &PartialD; y 4 + D 22 D 66 C xz &PartialD; 6 &chi; &PartialD; y 6 + &rho; &PartialD; 2 &PartialD; t 2 { &chi; - ( D 11 C xz + D 66 C yz ) &PartialD; 2 &chi; &PartialD; x 2 - D 11 D 66 C xz C yz &PartialD; 4 &chi; &PartialD; x 4 - ( D 22 C yz + D 66 C xz ) &PartialD; 2 &chi; &PartialD; y 2 + Q 3 &PartialD; 4 &chi; &PartialD; x 2 &PartialD; y 2 + Q 4 &PartialD; 4 &chi; &PartialD; y 4 } = 0 - - - ( 21 )
Wherein
Q 1 = D 11 D 66 C xz + D 11 D 22 - 2 D 12 D 66 - D 12 2 C yz , Q 2 = D 11 D 22 - D 12 2 C xz + D 22 D 66 C yz
Q 3 = 2 D 11 D 66 + 2 D 11 D 12 C xz 2 - ( D 12 + D 66 ) 2 + D 66 2 + D 11 D 22 C xz C yz , Q 4 = 2 D 66 2 C xz 2 + D 22 D 66 C xz C yz .
The example that is calculated as with simply supported on four sides clip rectangle laminate natural frequency:
The clip rectangle laminate that is simply supported on four sides for boundary condition, its boundary condition is that amount of deflection is 0, moment of flexure is 0,
At x=0, a place
At y=0, b place
Figure GDA0000406899500000092
Utilize formula (11), (12) and (14), boundary condition can be rewritten as:
At x=0, a place &chi; = 0 , &PartialD; 2 &chi; &PartialD; x 2 = 0 , &PartialD; 4 &chi; &PartialD; x 4 = 0 - - - ( 24 )
At y=0, b place &chi; = 0 , &PartialD; 2 &chi; &PartialD; y 2 = 0 , &PartialD; 4 &chi; &PartialD; y 4 = 0 - - - ( 25 )
For the sandwich plate of simply supported on four sides, the solution of formula (21) has following form:
&chi; = A sin k m 1 x sin k m 2 y e j &omega; m t - - - ( 26 )
ω wherein mthe m rank natural frequency that represents sandwich plate,
Figure GDA0000406899500000096
m 1and m 2for mode ordinal number.
By formula (26) substitution formula (21), obtain natural frequency equation
D 11 + D 66 C yz k m 1 6 + Q 1 k m 1 4 k m 2 2 + Q 2 k m 1 2 k m 2 4 + 2 ( D 12 + 2 D 66 ) k m 1 2 k m 2 2 + D 11 k m 1 4 + D 22 k m 2 4 + D 22 D 66 C xz k m 1 6 - &rho; &omega; m 2 [ 1 + ( D 11 C xz + D 66 C yz ) k m 1 2 - D 11 D 66 C xz C yz k m 1 4 + ( D 22 C yz + D 66 C xz ) k m 2 2 + Q 3 k m 1 2 k m 2 2 + Q 4 k m 2 4 ] = 0 - - - ( 27 )
By formula (27), can be solved the natural frequency of simply supported on four sides Orthotropic Sandwich Plate
&omega; m = [ D 11 + D 66 C yz k m 1 6 + Q 1 k m 1 4 k m 2 2 + Q 2 k m 1 2 k m 2 4 + 2 ( D 12 + 2 D 66 ) k m 1 2 k m 2 2 + D 11 k m 1 4 + D 22 k m 2 4 + D 22 D 66 C xz k m 1 6 ] 1 2 &times; 1 &rho; [ 1 + ( D 11 C xz + D 66 C yz ) k m 1 2 - D 11 D 66 C xz C yz k m 1 4 + ( D 22 C yz + D 66 C xz ) k m 2 2 + Q 3 k m 1 2 k m 2 2 + Q 4 k m 2 4 ] - 1 2 - - - ( 28 )
Table 1 is sandwich plate parameter to be measured:
Figure GDA0000406899500000099
Table 2 is the parameter that measuring method of the present invention and traditional measuring method calculate:
Figure GDA00004068995000000910
Figure GDA0000406899500000101
In table, FEM is that finite element method, SFPM are that the finite point method, HSDPT are that Higher-order Shear is theoretical.
From table 2 data, relatively can find out, it is fine that the sandwich plate natural frequency calculating by the inventive method and experimental result are coincide, maximum error is no more than 1.8%, least error is only 0.32%, average error is only 1.18%, the computational accuracy of the Orthotropic Sandwich Plate bending vibration control equation that explanation obtains by the inventive method and the calculation on Natural Frequency formula being obtained by governing equation is obviously better than finite element method, quite theoretical with the Higher-order Shear that computational accuracy is very high, therefore can think that the sandwich plate bending vibration control system of equations short-cut method that the present invention proposes has enough computational accuracies.
When not considering the impact of sandwich layer transverse shear deformation, suppose the shearing rigidity C of sandwich in x-z, y-z plane xz, C yzduring for infinity, the calculation on Natural Frequency formula (28) of simply supported on four sides sandwich plate deteriorates to
&omega; m = 2 ( D 12 + 2 D 66 ) k m 1 2 k m 2 2 + D 11 k m 1 4 + D 22 k m 2 4 &rho; - - - ( 29 )
Get identical sandwich plate parameter, with formula (28) and (29), calculate respectively the front 25 rank natural frequencys more as shown in Figure 2 of sandwich plate.As can be seen from Figure 2, sandwich layer transverse shear deformation has comparatively significantly impact to sandwich plate natural frequency, do not consider that sandwich layer transverse shear deformation will cause sandwich plate natural frequency overvalued, and this impact is along with the rising of order and natural frequency has the trend of continuous enhancing, as the 21st rank, the 23rd rank natural frequency, do not consider that the natural frequency of sandwich layer transverse shear deformation exceeds approximately 17% than the natural frequency of considering sandwich layer transverse shear deformation.Therefore the impact of, considering sandwich layer transverse shear deformation in sandwich plate bending vibration control equation and calculation on Natural Frequency process is very necessary.
When the panel of sandwich plate is isotropic material, the whole-body quadrature anisotropy of sandwich plate is very weak consequently can be ignored.But when panel is compound substance, sandwich plate presents comparatively significantly whole-body quadrature anisotropy.The orthotropic degree available orthogonal of sandwich plate anisotropy factor α represents
&alpha; = ( D 12 + 2 D 66 ) / D 11 D 22 - - - ( 30 )
When panel is isotropy, α=1 and D 11=D 22=D, now the calculation on Natural Frequency formula (28) of sandwich plate deteriorates to
&omega; m = [ D + D 66 C yz k m 1 6 + Q 1 &prime; k m 1 4 k m 2 2 + Q 2 &prime; k m 1 2 k m 2 4 + 2 Dk m 1 2 k m 2 2 + D k m 1 4 + D k m 2 4 + D D 66 C xz k m 1 6 ] 1 2 &times; 1 &rho; [ 1 + ( D C xz + D 66 C yz ) k m 1 2 - D D 66 C xz C yz k m 1 4 + ( D C yz + D 66 C xz ) k m 2 2 + Q 3 &prime; k m 1 2 k m 2 2 + Q 4 &prime; k m 2 4 ] - 1 2 - - - ( 31 )
Wherein Q 1 &prime; = D D 66 C xz + 2 D D 66 C yz , Q 2 &prime; = 4 D 66 ( D - D 66 ) C xz + D D 66 C yz
Q 3 &prime; = 2 D ( D - D 66 ) C xz 2 - 2 D ( D - D 66 ) + 2 D 66 2 C xz C yz , Q 4 &prime; = 2 D 66 2 C xz 2 + D D 66 C xz C yz
Get identical sandwich plate parameter, with formula (28) and (31), calculate respectively the front 25 rank natural frequencys more as shown in Figure 3 of sandwich plate.As can be seen from Figure 3, sandwich plate whole-body quadrature anisotropy has comparatively significantly impact to its natural frequency, do not consider that orthotropy will cause the valuation of sandwich plate natural frequency obviously too high, as the 1st rank, the 4th rank, the 10th rank, the 23rd rank natural frequency, do not consider that the natural frequency value of orthotropy impact is than considering that orthotropic natural frequency value exceeds approximately 30%.Therefore, in sandwich plate bending vibration control equation and calculation on Natural Frequency process, consider that orthotropic impact is very necessary.
Finally explanation is, above embodiment is only unrestricted in order to technical scheme of the present invention to be described, although the present invention is had been described in detail with reference to preferred embodiment, those of ordinary skill in the art is to be understood that, can modify or be equal to replacement technical scheme of the present invention, and not departing from aim and the scope of the technical program, it all should be encompassed in the middle of claim scope of the present invention.

Claims (2)

1. a measuring method for honeycomb sandwich panel natural frequency, is characterized in that, concrete steps are as follows:
1) use compound substance universal testing machine to measure sandwich plate to be measured, obtain sandwich plate bending stiffness d 11, d 12, d 22, d 66exist with sandwich layer x- zwith y- zmodulus of shearing in plane g xz, g yz;
2) utilize ruler measurement measured panel sandwich plate length a, width b, thickness tand core layer thickness h;
3) pass through formula
Figure 2012100350171100001DEST_PATH_IMAGE002
with
Figure 2012100350171100001DEST_PATH_IMAGE004
, calculate the shearing rigidity of sandwich layer c xzwith c yz;
4) by material handbook, check in the panel density of clamping plate to be measured
Figure 2012100350171100001DEST_PATH_IMAGE006
with sandwich layer density , pass through formula
Figure 2012100350171100001DEST_PATH_IMAGE010
calculate the equivalent face density of clamping plate
Figure 2012100350171100001DEST_PATH_IMAGE012
;
5) data substitution formula above-mentioned steps being recorded calculates, and in conjunction with the boundary condition of sandwich plate, solves the natural frequency on sandwich plate m rank
Figure 2012100350171100001DEST_PATH_IMAGE014
, its formula is as follows:
Figure 2012100350171100001DEST_PATH_IMAGE016
In formula
Figure 2012100350171100001DEST_PATH_IMAGE018
Figure 2012100350171100001DEST_PATH_IMAGE020
Figure 2012100350171100001DEST_PATH_IMAGE022
Figure 2012100350171100001DEST_PATH_IMAGE024
X, y is denotation coordination respectively.
2. the measuring method of a kind of honeycomb sandwich panel natural frequency as claimed in claim 1, is characterized in that: the derivation of formula described in step 5) is as follows:
The middle face of sandwich is x-y plane, and under z is axial, the one side of z>0 is top panel, and the one side of z<0 is lower panel, and plate length is a, and width is b, and plate thickness is t, and sandwich thickness is h, and sandwich plate gross thickness is H=h+2t;
The free vibration governing equation group of introducing orthotropy clip rectangle laminate is:
Figure 2012100350171100001DEST_PATH_IMAGE026
(1)
(2)
Figure 2012100350171100001DEST_PATH_IMAGE030
(3)
Wherein w is the amount of deflection of sandwich plate under action of lateral load,
Figure 2012100350171100001DEST_PATH_IMAGE032
,
Figure 2012100350171100001DEST_PATH_IMAGE034
for before sandwich plate distortion perpendicular to the straight-line segment of middle the corner in x-z and y-z plane;
System of equations Chinese style (1) is right
Figure 2012100350171100001DEST_PATH_IMAGE036
ask local derviation, formula (2) is right
Figure 2012100350171100001DEST_PATH_IMAGE038
ask local derviation, then two formulas are subtracted each other, and can obtain
Figure 2012100350171100001DEST_PATH_IMAGE040
(4)
Introduce partial differential operator, formula (4) can be rewritten as
Figure 2012100350171100001DEST_PATH_IMAGE042
(5)
L wherein 1, L 2for partial differential operator:
(6)
Figure 2012100350171100001DEST_PATH_IMAGE046
(7)
Introduce displacement function
Figure 2012100350171100001DEST_PATH_IMAGE048
, and order
(8)
By formula (8) substitution formula (5), obtain
Figure 2012100350171100001DEST_PATH_IMAGE052
(9)
By (9) formula, obtained
Figure 2012100350171100001DEST_PATH_IMAGE054
(10)
By in formula (6), (7) substitution formula (8), (10), generalized displacement
Figure 631373DEST_PATH_IMAGE032
with
Figure 804866DEST_PATH_IMAGE034
available displacement function be expressed as
Figure 2012100350171100001DEST_PATH_IMAGE056
(11)
Figure 2012100350171100001DEST_PATH_IMAGE058
(12)
By formula (11), (12) substitution formula (1), through abbreviation, obtain
(13)
By formula (13) both sides pair xcarry out indefinite integral, generalized displacement wby displacement function
Figure 157405DEST_PATH_IMAGE048
be expressed as
Figure 2012100350171100001DEST_PATH_IMAGE062
(14)
By formula (11), (12) and formula (14) substitution system of equations formula (3), through merging, abbreviation, obtain about displacement function
Figure 66586DEST_PATH_IMAGE048
vibration control equation
Figure 2012100350171100001DEST_PATH_IMAGE064
(15)
Wherein
Figure 2012100350171100001DEST_PATH_IMAGE066
(16)
Figure 2012100350171100001DEST_PATH_IMAGE068
(17)
Figure 2012100350171100001DEST_PATH_IMAGE070
(18)
(19)
Figure 2012100350171100001DEST_PATH_IMAGE074
(20)
To formula (16)-(20) merge, abbreviation, and substitution formula (15), just can obtain only containing displacement function
Figure 214408DEST_PATH_IMAGE048
orthotropic Sandwich Plate free vibration governing equation
Figure 79596DEST_PATH_IMAGE016
(21)
Wherein
Figure 31503DEST_PATH_IMAGE018
Figure 614931DEST_PATH_IMAGE020
Figure 864646DEST_PATH_IMAGE022
Figure 912237DEST_PATH_IMAGE024
CN201210035017.1A 2012-02-16 2012-02-16 Method for calculating natural frequency of honeycomb sandwich plate Expired - Fee Related CN102607695B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210035017.1A CN102607695B (en) 2012-02-16 2012-02-16 Method for calculating natural frequency of honeycomb sandwich plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210035017.1A CN102607695B (en) 2012-02-16 2012-02-16 Method for calculating natural frequency of honeycomb sandwich plate

Publications (2)

Publication Number Publication Date
CN102607695A CN102607695A (en) 2012-07-25
CN102607695B true CN102607695B (en) 2014-04-30

Family

ID=46525278

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210035017.1A Expired - Fee Related CN102607695B (en) 2012-02-16 2012-02-16 Method for calculating natural frequency of honeycomb sandwich plate

Country Status (1)

Country Link
CN (1) CN102607695B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105631162B (en) * 2016-02-01 2018-12-21 北京航空航天大学 A kind of fundamental frequency forecasting procedure for the laminated thin plate of reinforcement rectangle that is open
CN109885898B (en) * 2019-01-28 2023-04-07 华北水利水电大学 Method for measuring and calculating natural vibration frequency of convex spring with nonlinear rectangular section
CN110569544A (en) * 2019-08-06 2019-12-13 湖北大成空间科技股份有限公司 Method for determining space stress of prefabricated combined type cavity floor
CN110991106B (en) * 2019-11-21 2021-08-20 华中科技大学 Method for forecasting vibration characteristic of composite material soft sandwich structure containing cavity in fluid
CN111177913A (en) * 2019-12-25 2020-05-19 东华大学 Transverse vibration control method for honeycomb sandwich plate
CN111220481B (en) * 2020-01-21 2021-06-25 大连理工大学 Method for testing elastic modulus of three-layer composite paper in each layer surface

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101487790B (en) * 2009-02-20 2011-01-05 北京林业大学 Fast measuring apparatus and measuring method for mechanical property of thin slab type wood materials
CN201993168U (en) * 2011-03-27 2011-09-28 佳木斯大学 Device for detecting natural frequency of beam

Also Published As

Publication number Publication date
CN102607695A (en) 2012-07-25

Similar Documents

Publication Publication Date Title
CN102607695B (en) Method for calculating natural frequency of honeycomb sandwich plate
Mohammadi et al. An equivalent model for trapezoidal corrugated cores based on homogenization method
Shimpi et al. A new layerwise trigonometric shear deformation theory for two-layered cross-ply beams
Brischetto et al. Improved bending analysis of sandwich plates using a zig-zag function
Rath et al. Vibration of layered shells
Hilton et al. Anisotropic viscoelastic finite element analysis of mechanically and hygrothermally loaded composites
CN103698225A (en) Four-point bending elastic parameter measuring method and four-point bending elastic parameter measuring system
Zhang et al. A simple first-order shear deformation theory for vibro-acoustic analysis of the laminated rectangular fluid-structure coupling system
Boutin et al. Generalized plate model for highly contrasted laminates
Abedi et al. A new solution method for free vibration analysis of rectangular laminated composite plates with general stacking sequences and edge restraints
Lopatin et al. Approximate buckling analysis of the CCFF orthotropic plates subjected to in-plane bending
Thai et al. A layerwise C0-type higher order shear deformation theory for laminated composite and sandwich plates
Shahbaztabar et al. Effects of in-plane loads on free vibration of symmetrically cross-ply laminated plates resting on Pasternak foundation and coupled with fluid
CN103336871A (en) Method for determining equivalent engineering constants in planes of compound materials in thickness direction
CN115081148B (en) Method for determining equivalent parameters of stiffened plate based on potential energy theory
Vo et al. Axial-flexural coupled vibration and buckling of composite beams using sinusoidal shear deformation theory
Bhaskar et al. An elasticity approach for simply-supported isotropic and orthotropic stiffened plates
Cheung et al. Vibration analysis of symmetrically laminated rectangular plates with intermediate line supports
Xie et al. An accurate beam theory and its first-order approximation in free vibration analysis
Tahani et al. Interlaminar stresses in thick cylindrical shell with arbitrary laminations and boundary conditions under transverse loads
CN102096737B (en) Piezoelectric composite rod machine-electric coupling performance emulation and simulation method
Lopatin et al. Fundamental frequency and design of the CFCF composite sandwich plate
Pham et al. Effective boundary condition method and approximate secular equations of Rayleigh waves in orthotropic half-spaces coated by a thin layer
Jain et al. Efficient time-domain spectral element with zigzag kinematics for multilayered strips
Wang et al. State space approach for stress decay in laminates

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140430

Termination date: 20150216

EXPY Termination of patent right or utility model