CN102593830B - Parallel identification method for model parameters of electric power system - Google Patents
Parallel identification method for model parameters of electric power system Download PDFInfo
- Publication number
- CN102593830B CN102593830B CN2012100644921A CN201210064492A CN102593830B CN 102593830 B CN102593830 B CN 102593830B CN 2012100644921 A CN2012100644921 A CN 2012100644921A CN 201210064492 A CN201210064492 A CN 201210064492A CN 102593830 B CN102593830 B CN 102593830B
- Authority
- CN
- China
- Prior art keywords
- parallel
- power system
- calculation
- optimized algorithm
- parameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 68
- 238000004364 calculation method Methods 0.000 claims abstract description 53
- 238000004088 simulation Methods 0.000 claims abstract description 50
- 238000005457 optimization Methods 0.000 claims abstract description 42
- 230000002452 interceptive effect Effects 0.000 claims abstract description 11
- 238000012545 processing Methods 0.000 claims abstract description 9
- 230000008569 process Effects 0.000 claims description 14
- 230000004044 response Effects 0.000 claims description 11
- 230000009466 transformation Effects 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 7
- 238000005094 computer simulation Methods 0.000 abstract description 2
- 238000007726 management method Methods 0.000 description 15
- 230000003993 interaction Effects 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- 230000001052 transient effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 241000257303 Hymenoptera Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
本发明公开了一种电力系统模型参数并行辨识方法,属于电力系统建模技术领域。本发明通过建立优化算法与电力系统仿真软件之间的交互迭代实现了广域电力系统模型的参数辨识,更主要的是,在计算机集群环境下通过对电力系统仿真计算任务的并行处理实现了参数辨识的并行化,有效地缩短了参数辨识的时间,提高了广域电力系统模型参数辨识的实用性。此外,本发明可以适用于目前我国电力行业使用的各种电力系统仿真软件,并且可以适用于粒子群算法、蚁群算法、模拟进化算法等众多现代优化算法,具有良好的推广应用前景。
The invention discloses a parallel identification method for electric system model parameters, which belongs to the technical field of electric system modeling. The present invention realizes the parameter identification of the wide-area power system model through the interactive iteration between the establishment of the optimization algorithm and the power system simulation software, and more importantly, realizes the parameter identification through the parallel processing of the power system simulation calculation task in the computer cluster environment. The parallelization of identification can effectively shorten the time of parameter identification and improve the practicability of parameter identification of wide-area power system model. In addition, the present invention can be applied to various power system simulation software currently used in my country's electric power industry, and can be applied to many modern optimization algorithms such as particle swarm algorithm, ant colony algorithm, simulated evolution algorithm, etc., and has good promotion and application prospects.
Description
技术领域 technical field
本发明涉及一种电力系统模型参数并行辨识方法,属于电力系统建模技术领域。 The invention relates to a parallel identification method for electric system model parameters, which belongs to the technical field of electric power system modeling.
背景技术 Background technique
电力系统仿真计算的结果是电力生产部门用于指导实际电网运行的基本依据,而仿真结果是否正确在很大程度上取决于模型参数是否准确。在电力系统模型参数获取方面,目前主流的方法是参数辨识。所谓参数辨识,即利用待测模型在某一动态过程中所测得的输入、输出数据,通过优化算法不断调整模型参数以使模型仿真结果尽可能接近实测结果。 The results of power system simulation calculations are the basic basis for the power production department to guide the actual grid operation, and the accuracy of the simulation results depends to a large extent on the accuracy of the model parameters. In terms of parameter acquisition of power system models, the current mainstream method is parameter identification. The so-called parameter identification is to use the input and output data measured by the model to be tested in a certain dynamic process to continuously adjust the model parameters through the optimization algorithm so that the model simulation results are as close as possible to the actual measurement results.
在辨识广域电力系统的模型参数时,一方面需要进行多类参数的同时优化,另一方面需要计算反映电力系统整体动态行为的目标函数值,即优化过程与目标函数值计算过程是交互的。目标函数值的计算是以电力系统动态过程仿真为基础的,这就需要在优化算法与电力系统仿真计算软件之间建立数据交换,即优化一次获得的中间参数结果自动替代仿真系统中的参数,然后由仿真计算软件获得系统动态响应并且输出给优化程序,优化程序计算获得目标函数值,并进一步优化获得新的参数值。 When identifying the model parameters of the wide-area power system, on the one hand, it is necessary to simultaneously optimize multiple types of parameters, and on the other hand, it is necessary to calculate the value of the objective function that reflects the overall dynamic behavior of the power system, that is, the optimization process and the calculation process of the objective function value are interactive. . The calculation of the objective function value is based on the simulation of the dynamic process of the power system, which requires the establishment of data exchange between the optimization algorithm and the power system simulation calculation software, that is, the intermediate parameter results obtained by optimizing once can automatically replace the parameters in the simulation system. Then the dynamic response of the system is obtained by the simulation calculation software and output to the optimization program, the optimization program calculates the value of the objective function, and further optimizes to obtain new parameter values.
但是,在广域电力系统参数辨识过程中涉及到多参数的同时优化,这大大增加了优化算法的计算量,而且广域电力系统的仿真也需要较长的时间,所以辨识一组参数通常需要十几个小时甚至数日。因此,提高参数辨识速度对于广域电力系统参数辨识的实用化具有重要意义,而采用并行处理技术是一个较为理想的解决方案。 However, the simultaneous optimization of multiple parameters is involved in the parameter identification process of the wide-area power system, which greatly increases the calculation amount of the optimization algorithm, and the simulation of the wide-area power system also takes a long time, so identifying a set of parameters usually requires Ten hours or even several days. Therefore, improving the speed of parameter identification is of great significance for the practical application of wide-area power system parameter identification, and the use of parallel processing technology is an ideal solution.
计算机集群技术是将多台计算机组织起来进行协同工作的一种并行处理技术。该技术利用高速通信网络将一组工作站(计算节点)按某种结构连接起来,形成一个松散耦合的并行计算环境;然后通过并行程序设计及可视化人机交互环境的支持来实现统一调度和协调处理,从而组成一个高效并行处理的系统来协同求解同一个问题。 Computer cluster technology is a parallel processing technology that organizes multiple computers to work together. This technology uses a high-speed communication network to connect a group of workstations (computing nodes) in a certain structure to form a loosely coupled parallel computing environment; and then realize unified scheduling and coordinated processing through parallel programming and the support of a visual human-computer interaction environment , so as to form an efficient parallel processing system to solve the same problem collaboratively.
发明内容 Contents of the invention
本发明的目的在于克服现有技术中的缺陷,提出了一种电力系统模型参数并行辨识方法,该方法通过建立优化算法与电力系统仿真软件之间的交互实现了广域电力系统模型的参数辨识,更主要的是,在计算机集群环境下通过对电力系统仿真计算任务的并行处理实现了参数辨识的并行化,有效地缩短了参数辨识的时间,提高了广域电力系统模型参数辨识的实用性。本发明具体采用如下技术方案: The purpose of the present invention is to overcome the defects in the prior art, and propose a parallel identification method for power system model parameters, which realizes the parameter identification of wide-area power system models through the interaction between the establishment of optimization algorithms and power system simulation software , more importantly, in the computer cluster environment, the parallel processing of power system simulation computing tasks has realized the parallelization of parameter identification, effectively shortened the time of parameter identification, and improved the practicability of parameter identification of wide-area power system models . The present invention specifically adopts the following technical solutions:
通过建立优化算法与电力系统仿真软件之间的交互实现了广域电力系统模型的参数辨识,参数辨识过程中优化算法与电力系统仿真软件的交互总体上由优化算法控制,并通过一个交互接口程序来实现;在计算机集群环境下通过对电力系统仿真计算任务的并行处理实现了参数辨识的并行化,具体是以计算机集群作为参数并行辨识的载体,采用一种主从模式的并行计算方式,即计算机集群中的一台计算机作为并行计算任务管理机,主要承担优化算法的执行和并行计算任务的调度,其余计算机作为计算节点,主要承担电力系统仿真计算任务,每个电力系统仿真计算任务实际代表的是待辨识参数的一组可能取值,在优化算法的每一轮迭代中将众多计算任务同时分配到计算机集群的各个计算节点以实现仿真计算任务的并行化。 The parameter identification of the wide-area power system model is realized by establishing the interaction between the optimization algorithm and the power system simulation software. The interaction between the optimization algorithm and the power system simulation software in the parameter identification process is generally controlled by the optimization algorithm, and through an interactive interface program In the computer cluster environment, the parallelization of parameter identification is realized through the parallel processing of power system simulation calculation tasks. Specifically, the computer cluster is used as the carrier of parameter parallel identification, and a parallel computing method of master-slave mode is adopted, namely One computer in the computer cluster is used as a parallel computing task management machine, which is mainly responsible for the execution of optimization algorithms and the scheduling of parallel computing tasks. The other computers are used as computing nodes, mainly responsible for power system simulation computing tasks. It is a set of possible values of the parameters to be identified. In each iteration of the optimization algorithm, many computing tasks are assigned to each computing node of the computer cluster at the same time to realize the parallelization of simulation computing tasks.
本发明的有益效果是:解决了以往广域电力系统参数辨识耗时过长的问题,提高了广域电力系统模型参数辨识的实用性,从而对提高电力系统仿真分析精度、正确制定电网建设规划和运行方式产生积极作用。此外,本发明可以适用于目前我国电力行业使用的各种电力系统仿真软件,并且可以适用于粒子群算法、蚁群算法、模拟进化算法等众多现代优化算法,因此具有良好的推广应用前景。 The beneficial effects of the present invention are: solving the problem of too long time-consuming parameter identification of the wide-area power system in the past, improving the practicability of parameter identification of the wide-area power system model, thereby improving the accuracy of power system simulation analysis and correctly formulating power grid construction planning and the way it works has a positive effect. In addition, the present invention can be applied to various power system simulation software currently used in my country's electric power industry, and can be applied to many modern optimization algorithms such as particle swarm algorithm, ant colony algorithm, simulated evolutionary algorithm, etc., so it has good promotion and application prospects.
附图说明:Description of drawings:
附图1是参数辨识过程中优化算法与电力系统仿真软件交互的示意图 Attached Figure 1 is a schematic diagram of the interaction between the optimization algorithm and the power system simulation software during the parameter identification process
附图2是本发明所提出的电力系统模型参数并行辨识方法的流程图 Accompanying drawing 2 is the flow chart of the power system model parameter parallel identification method proposed by the present invention
附图3是经过并行化编程的优化算法通用执行流程图 Accompanying drawing 3 is the general execution flowchart of the optimized algorithm through parallel programming
具体实施方式:Detailed ways:
本发明的电力系统模型参数并行辨识方法通过建立优化算法与电力系统仿真软件之间的交互实现了广域电力系统模型的参数辨识,参数辨识过程中优化算法与电力系统仿真软件的交互总体上由优化算法控制,并通过一个交互接口程序(或名称不同而功能类似的程序)来实现;在计算机集群环境下通过对电力系统仿真计算任务的并行处理实现了参数辨识的并行化,具体是以计算机集群作为参数并行辨识的载体,采用一种主从模式的并行计算方式,即计算机集群中的一台计算机作为并行计算任务管理机(以下简称“管理机”),主要承担优化算法的执行和并行计算任务的调度,其余计算机作为计算节点,主要承担电力系统仿真计算任务,每个电力系统仿真计算任务实际代表的是待辨识参数的一组可能取值,在优化算法的每一轮迭代中将众多计算任务同时分配到计算机集群的各个计算节点以实现仿真计算任务的并行化。 The parallel identification method of power system model parameters of the present invention realizes the parameter identification of the wide-area power system model by establishing the interaction between the optimization algorithm and the power system simulation software, and the interaction between the optimization algorithm and the power system simulation software in the parameter identification process is generally composed of Optimize the algorithm control, and realize it through an interactive interface program (or a program with different names but similar functions); in the computer cluster environment, the parallelization of parameter identification is realized through the parallel processing of power system simulation calculation tasks, specifically with the computer As the carrier of parameter parallel identification, the cluster adopts a master-slave mode of parallel computing, that is, one computer in the computer cluster acts as a parallel computing task management machine (hereinafter referred to as "manager machine"), which is mainly responsible for the execution of optimization algorithms and parallel computing tasks. Scheduling of calculation tasks, the rest of the computers are used as calculation nodes, mainly responsible for power system simulation calculation tasks, each power system simulation calculation task actually represents a set of possible values of the parameters to be identified, in each iteration of the optimization algorithm will be Numerous computing tasks are distributed to each computing node of the computer cluster at the same time to realize the parallelization of simulation computing tasks.
《电力系统分析综合程序》(Power System Analysis Software Package,PSASP)是目前我国电力企业进行电力系统仿真的主要工具之一。下面以PSASP为实施例,结合附图对本发明的实施方式做详细说明。 "Power System Analysis Software Package (PSASP)" is one of the main tools for power system simulation in my country's electric power enterprises. Taking PSASP as an example below, the implementation manner of the present invention will be described in detail in conjunction with the accompanying drawings.
图1是参数辨识过程中优化算法与电力系统仿真软件交互的示意图,参数辨识过程总体上由优化算法控制,具体交互过程为: Figure 1 is a schematic diagram of the interaction between the optimization algorithm and the power system simulation software in the parameter identification process. The parameter identification process is generally controlled by the optimization algorithm, and the specific interaction process is as follows:
1.优化算法首先确定待辨识参数的一组取值。 1. The optimization algorithm first determines a set of values for the parameters to be identified.
2.通过交互接口程序将该组参数值(经格式转换后)下发给电力系统仿真软件。 2. Send the set of parameter values (after format conversion) to the power system simulation software through the interactive interface program.
3.交互接口程序调用电力系统仿真软件进行仿真计算。 3. The interactive interface program calls the power system simulation software for simulation calculation.
4.计算完成后,交互接口程序根据仿真输出计算优化目标函数值并返回给优化算法。 4. After the calculation is completed, the interactive interface program calculates the optimized objective function value according to the simulation output and returns it to the optimization algorithm.
5.优化算法根据返回的目标函数值确定下一步优化操作。 5. The optimization algorithm determines the next optimization operation according to the returned objective function value.
6.重复以上步骤,直到优化算法达到设定的迭代次数或目标函数值达到预期,最后输出参数优化结果。 6. Repeat the above steps until the optimization algorithm reaches the set number of iterations or the value of the objective function reaches the expected value, and finally output the parameter optimization results.
图2是本发明所提出的电力系统模型参数并行辨识方法的流程图,当以PSASP为实施例时,具体包含以下步骤: Fig. 2 is a flow chart of the power system model parameter parallel identification method proposed by the present invention. When PSASP is used as an embodiment, it specifically includes the following steps:
1.在管理机上准备用于参数辨识的电力系统仿真数据包,主要内容包括目标响应曲线(一般采用实测的动态响应曲线)数据的格式化、电力系统仿真软件输出内容的匹配等。根据不同的电力系统仿真软件,有时还需要对待辨识参数进行代码设置、向仿真数据包中拷贝仿真调用程序等。设模型所在目录的名称为“PowerSystem”,具体操作包括: 1. Prepare the power system simulation data package for parameter identification on the management machine. The main content includes the format of the data of the target response curve (usually the measured dynamic response curve is used), and the matching of the output content of the power system simulation software. Depending on the power system simulation software, sometimes it is necessary to set the code for the parameters to be identified, copy the simulation calling program to the simulation data package, and so on. Set the name of the directory where the model is located as "PowerSystem", the specific operations include:
(1)将参数辨识所需的目标响应曲线(通常为实测的电力系统动态响应曲线)数据按PSASP仿真输出结果的格式进行整理,并命名为“FN1.DAT”存放在“PowerSystem\”目录下。PSASP仿真输出文件为“PowerSystem\temp\FN1.DAT”,其中每一条输出曲线按列存放,每列之间以“,”分割。 (1) Arrange the data of the target response curve (usually the measured power system dynamic response curve) required for parameter identification according to the format of the PSASP simulation output results, and name it "FN1.DAT" and store it in the "PowerSystem\" directory . The PSASP simulation output file is "PowerSystem\temp\FN1.DAT", in which each output curve is stored in columns, and each column is separated by ",".
(2)根据目标响应曲线的实际情况,在PSASP界面中设置相应的网络故障和仿真输出内容,要求仿真输出与目标响应曲线的内容、数量、时间长度一致。 (2) According to the actual situation of the target response curve, set the corresponding network faults and simulation output content in the PSASP interface, and require the content, quantity, and time length of the simulation output to be consistent with the target response curve.
(3)在PSASP界面中对待辨识参数进行“代码”设置。 (3) Set the "code" of the parameters to be identified in the PSASP interface.
由于PSASP本身并不支持外部程序的直接调用,所以也没有提供参数的编程修改功能。在PSASP界面中可以对仿真系统的各种参数进行设置,随后在执行计算前需要对计算作业进行“刷新”,其作用是将仿真所需的各种参数写入到仿真系统所在目录下的特定文件中(仿真系统参数写入“PowerSystem\Lib\DATALIB.DAT”,负荷模型中的静态负荷比例写入“PowerSystem\Temp\ST.S6”的最后一列),这样就使模型参数脱离数据库环境以便于计算程序的读取。参数辨识程序通过修改“DATALIB.DAT”和“ST.S6”文件中的特定位置即可实现对仿真系统参数的修改。但由于这两个文件的内容会随着仿真系统的改变而改变,因此考虑到通用性,需要在上述文件中对待辨识参数设置“代码”,以起到识别参数修改位置的作用。 Since PSASP itself does not support the direct call of external programs, it does not provide the programming modification function of parameters. Various parameters of the simulation system can be set in the PSASP interface, and then the calculation job needs to be "refreshed" before the calculation is performed. Its function is to write various parameters required for the simulation into the specific In the file (the simulation system parameters are written into "PowerSystem\Lib\DATALIB.DAT", and the static load ratio in the load model is written into the last column of "PowerSystem\Temp\ST.S6"), so that the model parameters are separated from the database environment so that for reading in computing programs. The parameter identification program can modify the parameters of the simulation system by modifying the specific positions in the "DATALIB.DAT" and "ST.S6" files. However, since the content of these two files will change with the change of the simulation system, considering the versatility, it is necessary to set the "code" for the parameters to be identified in the above files to identify the location of parameter modification.
待辨识参数的代码可以直接在PSASP界面中设置,设置的参数代码也是数字,但是需要与采用标幺制的参数值有明显差别。代码设置完毕后,需要刷新一下计算作业。随后还可以继续将“DATALIB.DAT”和“ST.S6”文件中的参数代码改成字母形式,但这仅在需要大量辨识静态负荷比例时才有必要。 The code of the parameter to be identified can be set directly in the PSASP interface. The parameter code to be set is also a number, but it needs to be significantly different from the parameter value in per unit system. After the code is set up, you need to refresh the calculation job. You can then continue to change the parameter codes in the "DATALIB.DAT" and "ST.S6" files to alphabetic form, but this is only necessary if a large number of static load ratios need to be identified.
(4)设置好待辨识参数的搜索范围。搜索范围可以根据经验值、典型值或者节点级辨识结果来确定。 (4) Set the search range of the parameters to be identified. The search range can be determined based on empirical values, typical values, or node-level identification results.
(5)将PSASP计算程序拷贝到模型目录中。 (5) Copy the PSASP calculation program to the model directory.
PSASP的众多仿真计算功能是通过调用其安装目录下的不同可执行程序来实现的,即每个可执行程序对应一种仿真计算功能。PSASP虽然没有直接提供仿真计算的调用指令,但只需要运行所需计算功能对应的可执行程序即可实现调用。本发明中主要用到PSASP的潮流(“Wmlf.exe”)、暂态稳定(“Wmud.exe”)、暂态稳定/UPI(“Wmupst.exe”)三个计算模块。将这上述三个程序以及“lforDLL.DLL”拷贝到“PowerSystem\Temp\”目录下,随后即可脱离PSASP环境直接由外部程序调用。该方法不是对PSASP的破解,因此调用计算功能时PSASP的软件加密狗依然需要,并没有损害PSASP作者的商业利益。 Many simulation calculation functions of PSASP are realized by calling different executable programs in its installation directory, that is, each executable program corresponds to a simulation calculation function. Although PSASP does not directly provide call instructions for simulation calculation, it only needs to run the executable program corresponding to the required calculation function to realize the call. The present invention mainly uses three calculation modules of PSASP flow ("Wmlf.exe"), transient stability ("Wmud.exe"), and transient stability/UPI ("Wmupst.exe"). Copy the above three programs and "lforDLL.DLL" to the "PowerSystem\Temp\" directory, and then they can be directly called by external programs without the PSASP environment. This method is not to crack the PSASP, so the PSASP software dongle is still needed when calling the calculation function, and does not damage the commercial interests of the PSASP author.
2.管理机通知各个计算节点启动并行计算客户端。该客户端用于接收管理机下发的电力系统仿真数据包以及参数辨识时的计算任务(并向管理机返回计算结果)。 2. The management machine notifies each computing node to start the parallel computing client. The client is used to receive the power system simulation data package issued by the management machine and the calculation tasks during parameter identification (and return the calculation results to the management machine).
3.管理机将电力系统仿真数据包下发给各个计算节点,这需要管理机和计算节点上的并行计算客户端相互配合完成。 3. The management machine sends the power system simulation data package to each computing node, which requires the cooperation between the management machine and the parallel computing client on the computing node.
4.管理机启动经过并行化编程的优化算法调度程序。 4. The management machine starts the optimized algorithm scheduler programmed through parallelization.
本发明以计算机集群作为参数并行辨识的载体,并采用了一种主从模式的并行计算方式。根据这一特点,对现代优化算法进行并行化的思路是进行计算任务的并行化处理,每个计算任务可以是蚁群算法中的一只“蚂蚁”、粒子群算法中的一个“粒子”或者遗传算法中的一个“个体”等等,其实际代表的是待辨识参数的一组可能取值。在优化算法的每一轮迭代中都同时存在许多个计算任务,通过将这些计算任务分配到计算机集群的各个计算节点上以实现优化算法的并行化。 The invention uses a computer cluster as a carrier for parameter parallel identification, and adopts a master-slave mode parallel computing method. According to this feature, the idea of parallelizing modern optimization algorithms is to parallelize computing tasks. Each computing task can be an "ant" in the ant colony algorithm, a "particle" in the particle swarm algorithm, or An "individual" in the genetic algorithm actually represents a set of possible values of the parameters to be identified. In each iteration of the optimization algorithm, there are many computing tasks at the same time, and the parallelization of the optimization algorithm is realized by distributing these computing tasks to each computing node of the computer cluster.
经过并行化编程的优化算法是一个运行在计算机集群管理机上的并行优化算法调度程序(或名称不同而功能类似的程序)。无论具体采用哪种优化算法,其通用的执行流程如图3所示,具体步骤为: The optimized algorithm after parallel programming is a parallel optimized algorithm scheduler (or a program with different names but similar functions) running on the computer cluster management machine. No matter which optimization algorithm is used, its general execution flow is shown in Figure 3, and the specific steps are:
(1)并行优化算法调度程序启动,并对优化算法本身的一些参数进行设置,比如蚁群的最大移动次数、粒子群的惯性权重、遗传算法的变异概率等等。 (1) The parallel optimization algorithm scheduler is started, and some parameters of the optimization algorithm are set, such as the maximum number of movements of ant colony, inertia weight of particle swarm, mutation probability of genetic algorithm, etc.
(2)计算确定当前一轮迭代时的所有计算任务(比如蚁群算法中蚂蚁的位置、粒子群算法中粒子的位置、遗传算法中个体的基因组成等)。 (2) Calculate and determine all computing tasks in the current round of iteration (such as the position of ants in ant colony algorithm, the position of particles in particle swarm algorithm, the genetic composition of individuals in genetic algorithm, etc.).
(3)向计算机集群的空闲计算节点下发计算任务,如果没有空闲计算节点则进行等待。 (3) Send computing tasks to the idle computing nodes of the computer cluster, and wait if there are no idle computing nodes.
(4)当本轮迭代的所有计算任务都下发后,等待所有计算节点返回计算结果。如果有计算节点未能在规定时间内返回计算结果,则将计算任务分配到其他计算节点上重新计算。 (4) After all the calculation tasks of the current iteration are delivered, wait for all calculation nodes to return the calculation results. If a computing node fails to return the calculation result within the specified time, the computing task will be assigned to other computing nodes for recalculation.
(5)检查迭代次数限制以及最小误差是否达到期望值,以确定是否进行下一轮迭代。如果还需要迭代,则回到步骤(2)继续执行,否则输出优化结果。 (5) Check the limit of the number of iterations and whether the minimum error reaches the expected value to determine whether to proceed to the next iteration. If iteration is needed, go back to step (2) and continue, otherwise output the optimization result.
5.管理机上的优化算法调度程序首先计算得到本轮迭代的所有计算任务,然后向各计算节点下发任务。计算任务实际为待辨识参数的一组可能取值。 5. The optimization algorithm scheduler on the management machine first calculates all the computing tasks of the current iteration, and then sends the tasks to each computing node. The calculation task is actually a set of possible values of the parameters to be identified.
6.各个计算节点收到计算任务后调用PSASP计算并向管理机返回仿真输出曲线与目标响应曲线之间的误差数值(即优化算法的目标函数值),具体步骤为: 6. After receiving the calculation task, each calculation node calls PSASP to calculate and return the error value between the simulation output curve and the target response curve (that is, the objective function value of the optimization algorithm) to the management machine. The specific steps are:
(1)对电力系统仿真数据包中的“DATALIB.DAT”和“ST.S6”文件进行修改,使其中待辨识参数的数值为当前计算任务值。 (1) Modify the "DATALIB.DAT" and "ST.S6" files in the power system simulation data package, so that the values of the parameters to be identified are the values of the current calculation task.
(2)根据需要调用“PowerSystem\Temp\”目录下的“Wmud.exe” (暂态稳定)或者“Wmupst.exe”(暂态稳定/UPI)进行计算 (2) Call "Wmud.exe" (transient stability) or "Wmupst.exe" (transient stability/UPI) in the "PowerSystem\Temp\" directory to calculate
(3)等待计算结束,然后读取PSASP输出文件“PowerSystem\Temp\FN1.DAT”中的数据,并与目标响应曲线的数据(存放于“PowerSystem\FN1.DAT”中)进行对比,计算误差数值。在这一步骤中,有可能因为计算任务中参数的取值不合理而导致计算异常终止,这就需要通过检查“PowerSystem\Temp\FN1.DAT”文件的修改时间来判断,如果发生计算异常终止,就应该向管理机返回一个约定的数值代码,以表示当前参数组合不合理。 (3) Wait for the calculation to end, then read the data in the PSASP output file "PowerSystem\Temp\FN1.DAT", compare it with the data of the target response curve (stored in "PowerSystem\FN1.DAT"), and calculate the error value. In this step, the calculation may be terminated abnormally due to the unreasonable value of the parameters in the calculation task. This needs to be judged by checking the modification time of the "PowerSystem\Temp\FN1.DAT" file. If the calculation is abnormally terminated , it should return an agreed numerical code to the management machine to indicate that the current parameter combination is unreasonable.
(4)向管理机返回仿真输出曲线与目标响应曲线之间的误差数值,然后等待下一个计算任务。 (4) Return the error value between the simulation output curve and the target response curve to the management machine, and then wait for the next calculation task.
7. 管理机上的优化算法调度程序根据各个计算节点返回的结果,判断是否进行下一轮迭寻优。如果继续寻优,则重复步骤5和步骤6,否则输出参数辨识结果。 7. The optimization algorithm scheduler on the management machine judges whether to perform the next round of iterative optimization based on the results returned by each computing node. If the optimization continues, repeat steps 5 and 6, otherwise output the parameter identification results.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012100644921A CN102593830B (en) | 2012-03-13 | 2012-03-13 | Parallel identification method for model parameters of electric power system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012100644921A CN102593830B (en) | 2012-03-13 | 2012-03-13 | Parallel identification method for model parameters of electric power system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102593830A CN102593830A (en) | 2012-07-18 |
CN102593830B true CN102593830B (en) | 2013-12-25 |
Family
ID=46482159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012100644921A Expired - Fee Related CN102593830B (en) | 2012-03-13 | 2012-03-13 | Parallel identification method for model parameters of electric power system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102593830B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106383974A (en) * | 2016-11-08 | 2017-02-08 | 广西电网有限责任公司电力科学研究院 | Method for establishing simulation model of excitation system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110187647B (en) * | 2018-02-23 | 2024-08-16 | 北京京东尚科信息技术有限公司 | Model training method and system |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101363886A (en) * | 2008-10-08 | 2009-02-11 | 河海大学 | Modeling method of high and low voltage side power load based on single side sampling |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3683466B2 (en) * | 2000-03-15 | 2005-08-17 | 三菱電機株式会社 | Power system simulation system |
-
2012
- 2012-03-13 CN CN2012100644921A patent/CN102593830B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101363886A (en) * | 2008-10-08 | 2009-02-11 | 河海大学 | Modeling method of high and low voltage side power load based on single side sampling |
Non-Patent Citations (5)
Title |
---|
《基于计算机集群的电力系统暂态风险评估》;郭琦等;《电网技术》;20050831;第29卷(第15期);第13-17,50页 * |
《构建高性能集群计算机系统的关键技术》;王文义等;《郑州工业大学学报》;20010331;第22卷(第1期);第6-9页 * |
JP特开2001-268791A 2001.09.28 |
王文义等.《构建高性能集群计算机系统的关键技术》.《郑州工业大学学报》.2001,第22卷(第1期),第6-9页. |
郭琦等.《基于计算机集群的电力系统暂态风险评估》.《电网技术》.2005,第29卷(第15期),第13-17,50页. |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106383974A (en) * | 2016-11-08 | 2017-02-08 | 广西电网有限责任公司电力科学研究院 | Method for establishing simulation model of excitation system |
CN106383974B (en) * | 2016-11-08 | 2019-12-17 | 广西电网有限责任公司电力科学研究院 | A Method of Establishing Simulation Model of Excitation System |
Also Published As
Publication number | Publication date |
---|---|
CN102593830A (en) | 2012-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200249663A1 (en) | Method and system for quick customized-design of intelligent workshop | |
CN101403907B (en) | A method for fast generation of five-coordinate NC tool paths from scattered point cloud data | |
CN105677556B (en) | A kind of dispatching automation main station system method for testing software and its platform | |
Tarplee et al. | Energy and makespan tradeoffs in heterogeneous computing systems using efficient linear programming techniques | |
CN102194018B (en) | System and method for predictive analysis of energy consumption of building based on cloud computing | |
CN113642069B (en) | Building wind load rapid iteration design method based on BIM and heterogeneous system | |
WO2017067225A1 (en) | System, method and storage device for cim/e model standard compliance test | |
CN107392497A (en) | A Workshop Scheduling System and Scheduling Method Based on Improved Genetic Algorithm | |
JP2019537079A (en) | How to build stochastic models for large-scale renewable energy data | |
CN105719126A (en) | System and method for internet big data task scheduling based on life cycle model | |
CN102591709A (en) | Shapefile master-slave type parallel writing method based on OGR (open geospatial rule) | |
CN103353857B (en) | The communication test method of a kind of transformer station comprehensive monitoring unit | |
CN109865292A (en) | A kind of game resource construction method and device based on game engine | |
CN107992358A (en) | A kind of asynchronous IO suitable for the outer figure processing system of core performs method and system | |
CN105184452B (en) | A kind of MapReduce job dependence control methods calculated suitable for power information big data | |
CN102593830B (en) | Parallel identification method for model parameters of electric power system | |
CN104517014B (en) | A kind of product automatic assembly design system based on Pro/E | |
CN104572467A (en) | Method for testing performance of virtual platform database of server | |
CN111679859B (en) | An automated parallel MPI-I/O acceleration method for I/O-intensive high-performance applications | |
CN110096786B (en) | Semi-physical real-time simulation platform for group intelligent building application program | |
KR102597248B1 (en) | Meter data unification management system | |
CN104750916A (en) | Design resource integration system for designing virtual prototype of boiler | |
CN102226913A (en) | A method for automatically generating a bug repair plan and a bug repair method | |
Shuai et al. | Research on Data Migration Method Based on Electric Power Marketing Service System | |
Zhang et al. | A simulation‐based differential evolution algorithm for stochastic parallel machine scheduling with operational considerations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131225 Termination date: 20210313 |