CN102592016B - Engineering multiphysics coupling analysis method - Google Patents

Engineering multiphysics coupling analysis method Download PDF

Info

Publication number
CN102592016B
CN102592016B CN 201110460238 CN201110460238A CN102592016B CN 102592016 B CN102592016 B CN 102592016B CN 201110460238 CN201110460238 CN 201110460238 CN 201110460238 A CN201110460238 A CN 201110460238A CN 102592016 B CN102592016 B CN 102592016B
Authority
CN
China
Prior art keywords
physical field
model
load
field numerical
analysis system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 201110460238
Other languages
Chinese (zh)
Other versions
CN102592016A (en
Inventor
张群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INTESIM (DALIAN) CO Ltd
Original Assignee
INTESIM (DALIAN) CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INTESIM (DALIAN) CO Ltd filed Critical INTESIM (DALIAN) CO Ltd
Priority to CN 201110460238 priority Critical patent/CN102592016B/en
Publication of CN102592016A publication Critical patent/CN102592016A/en
Application granted granted Critical
Publication of CN102592016B publication Critical patent/CN102592016B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention discloses an engineering multiphysics coupling analysis method, which comprises the following steps: (1) acquiring data information related to load transfer in different physical field numerical models; (2) setting load transfer relations of different physical field numerical models, setting the solving sequence of physical field numerical models of different computer aided engineering (CAE) analysis systems, and setting load transfer, convergence and control laws; (3) performing load data conversion and transfer for different physical field numerical models in real time on the basis of load transfer relations in an iterative loop mode according to the set solving sequence; and (4) displaying calculation results in different physical models. According to the method, functions of the existing CAE software are used to the maximum extent, the existing CAE software is not required to be modified, research and development costs and software usage costs are saved, simultaneously the usability of coupling field analysis software is improved, so that the method has a positive effect on application and popularization of the engineering multiphysics analysis in industrial design and is beneficial to performance analysis and innovative design of complex industrial issues.

Description

Engineering multiple physical field coupling analytical method
Technical field
The invention belongs to the emulation field, particularly be applicable to characteristics of components, the performance in fields such as automobile, Aero-Space, boats and ships, heavy industry, railway locomotive, equipment manufacturing, electronics, biomedicine are carried out the method that the multiple physical field coupling Simulation is analyzed.
Background technology
In fields such as automobile, Aero-Space, boats and ships, heavy industry, railway locomotive, equipment manufacturing, electronics, biomedicines, need analyze the characteristic of equipment and parts, engineering numerical analysis and the multiple physical field coupling Simulation of performance.Relate to electromagnetic field during such as the new-energy automobile motor rotation and give birth to heat, fluid heat radiation, electromagnetic torque, rotor dynamics phenomenon, for guaranteeing reliably operation expeditiously of motor safety, to the electromagnetic and mechanical power of motor, the analysis of loss and efficient, safety has just related to the interaction between electromagnetic field, rotor dynamics, fluid field, temperature field, the structural stress field.
At present a lot of CAE software have multiple physical field coupling analysis function in various degree, and its analysis principle can be divided into direct strong coupling method and stride two kinds of weak coupling implementation methods between the program.Strong coupling method wherein is that different physical field models is unified under the same cae analysis software, and an integrated unified global matrix equation is found the solution simultaneously and upgraded all variablees of Fourier Series expansion technique; The at present representative strong coupling method processing stream-solid coupling analysis CAE software product that has comprises ADINA, INTESIM.The weak coupling disposal route of striding between the program wherein is that different CAE software is found the solution different physical field problems respectively, find the solution structure problem as the ANSYS structure analysis software, Fluent software is found the solution the fluid problem, data transmission between physical field/CAE software and find the solution flow process control by unified coupled interface system realization, as MpCCI, ANSYS-MFX.
The main limitation of existing strong coupling method be need be under same software integrated different physical models, can't take full advantage of the function of existing business software, simultaneously integrated global matrix conditional number is relatively poor, and the unknown number scale is unfavorable for the realization of concurrent technique efficiently greatly.And data or the mode of intelligence transmission that existing weak coupling implementation method of striding between the program adopts are based on network information transmission technology (as the Socket technology), simultaneously in distinct program inside same beans-and bullets shooter need be set, main limitation is: 1) need the library file function that existing CAE software and coupled interface provide be coupled together; 2) need the data of the needed certain format of increase coupled interface software to obtain and the deposit data function, need write respectively different coupled interfaces; 3) need under existing program, set synchronous point and insert corresponding data access function with beans-and bullets shooter.More than working not only needs professional research staff's participation to finish, and has simultaneously also increased use difficulty and technical support burden for the user, and the result has caused striding the limitation that the coupling of different loads between the multiprogram realizes.
Summary of the invention
The present invention is directed to the above-mentioned limitation that existing weak coupling implementation method of striding between the program exists, proposed an engineering multiple physical field coupling analytical method.The technological means that the present invention adopts is as follows:
A kind of engineering multiple physical field coupling analytical method is characterized in that may further comprise the steps:
Step 1: from the physical field numerical model of different cae analysis system, obtain the data message relevant with the load transmission;
Step 2: set the load transitive relation between the physical field numerical model of different cae analysis system, set different cae analysis system the physical field numerical model find the solution order, and set load transmission convergence control criterion;
Step 3: according to the order of setting of finding the solution, by the mode of iterative loop, to real-time the carrying out the load data conversion and transmit based on the load transitive relation of physical field numerical model of different cae analysis system;
Step 4: in different physical field numerical models, show result of calculation.
The invention provides a kind of flexible, general, stride coupling tool platform between the CAE software easily, can stride different cae analysis softwares and carry out flow process control, nonlinear iteration control, the load transmission control of multiple physical field coupling analysis, finish complicated multiple physical field coupling analysis.With traditional strong coupling method and data tool for transmitting Network Based and function control method ratio, this method has been used the function of existing C AE software to greatest extent, does not need to carry out any transformation and new exploitation directly can be carried out many coupling analysis under this technology platform for the CAE software of existing IO interface.Not only save R﹠D costs, software use cost and improved the ease for use of coupled field analysis software simultaneously greatly, for the application of engineering multiple physical field analysis in industrial design certainly will play a positive role, help performance evaluation and the innovative design of complex industrial problem.
Description of drawings
Fig. 1 is the process flow diagram of engineering multiple physical field coupling analytical method of the present invention.
Fig. 2 is the synoptic diagram of load data conversion of the present invention.
Fig. 3 is fluid-solid coupled interface synoptic diagram under the coupled interface mesh generation mode different situations.
Fig. 4 is the synoptic diagram of mapping interpolation under the three-dimensional surface grid.
Fig. 5 is the heat-stress grid model of the screw rod problem of generation.
Embodiment
In order to make purpose of the present invention, technical scheme and advantage clearer, below in conjunction with drawings and Examples, the present invention is further elaborated.
As shown in Figure 1, engineering multiple physical field coupling analytical method of the present invention may further comprise the steps:
Step 1: from the physical field numerical model of different cae analysis system, obtain the data message relevant with the load transmission.
Step 2: set the load transitive relation between the physical field numerical model of different cae analysis system, set different cae analysis system the physical field numerical model find the solution order, and set load transmission convergence control criterion.
Step 3: according to the order of setting of finding the solution, by the mode of iterative loop, to real-time the carrying out the load data conversion and transmit based on the load transitive relation of physical field numerical model of different cae analysis system.
With reference to shown in Figure 2, the step of based on load transitive relation carrying out load data conversion real-time to the physical field numerical model of different cae analysis system may further comprise the steps again:
1: the load data translation interface reads the load data of physical field numerical model 1 in the cae analysis system.
2: the load data translation interface shines upon and interpolation operation load data, the load data of physical field numerical model 1 is transformed on the grid of physical field numerical model 2 in another cae analysis system, and output is analyzed required load data form to physical field numerical model 2.
3: the load data on the grid that is transformed into physical field numerical model 2 is read in another cae analysis system, and this model is analyzed.
The present invention allows different physical field in the mesh generation difference of coupled interface when handling the transmission of coupled interface load or data, as shown in Figure 3 (among Fig. 3, interface gaps in the reality between the different physical field is zero) need mapping techniques and interpolation technique efficiently, for this reason, the present invention adopts Bucket Search method to seek efficient to improve, simultaneously in the linear interpolation mode of interpolation operation employing based on the unit local coordinate.
Should may further comprise the steps again based on the linear interpolation mode of unit local coordinate: find unit and the local coordinate value of impact point on the source item grid, value according to each node of source item grid cell, and impact point adopts approach based on linear interpolation to try to achieve the numerical value of impact point in the local coordinate value of source item grid cell, as shown in Figure 4; Among Fig. 4, the frame zone A of dotted line institute is target gridding, and the frame zone B of solid line institute is the source item grid.
Because the convergence of interface transmitted load is the key that guarantees coupling process load transmitting accuracy, the present invention adopts the method that relaxes the factor to come the transmission speed of control load data, and this step is expressed as:
F i+1=F i+α×(F ext-F i)
Wherein, F I+1Be the load that the i+1 iteration step is delivered to the stand under load model, F iBe the load that last iteration step i is delivered to the stand under load model, F ExtBe that current up-to-date should applying outward carried, α relaxes the factor, and numerical value is between (0,1.0).Interface load convergence Rule of judgment is expressed as follows:
||F i+1-F i||/||F i||<ε
Wherein, ε is the decimal of realizing appointment, || * || be vectorial mould.
Step 4: in different physical field numerical models, show result of calculation.Applying under the situation of boundary condition, analysis result is speed, stress, displacement, temperature or other values, and the form demonstration with cloud atlas, streamline, animation can show multiple drawing in different physical models.
Before the step 1, also can may further comprise the steps:
1: the mathematical model of setting up MODEL C AD form.Wherein the CAD formatted file refers to the three-dimensional model with the foundation of CAD software.
2: carry out the mesh generation of finite element or limited bulk based on cad model, obtain grid model.This mesh generation can finish under the general mesh generation instrument or have the mesh generation worker can CAE software under finish.
3: grid model is imported to corresponding cae analysis system set up corresponding physical model.Physical model refers to that real physical field by the reflection of this program in computing machine, comprises structure field, fluid field, temperature field, electrostatic field, magnetic field, electric field, piezoelectric field etc.
The analysis condition of 4:CAE analytic system setting physical field numerical model is set material parameter, applies boundary condition, and the starting condition that setting is calculated and output adjusting control etc. is finished the setting of physical field numerical model under each cae analysis system.
Below by the analysis of the thermal stress that the solid screw rod under the temperature loading effect is produced, illustrate the detailed process of above-mentioned analytical approach:
Step1: open graphic user interface.
Step2: how much files that import the Step form.
Step3: generating mesh comprises step again:
1. establishment geometrical boundary condition;
2. subdivision grid, the grid result shows as shown in Figure 5;
3. preservation file;
Step4: create physical model, comprise step again:
Step4.1: thermal model is set;
Under " Thermal " physical model
1. emulation setting;
2. importing grid assembly;
3. designating unit type;
4. add carrier material;
5. setting material properties;
6. apply boundary condition;
7. find the solution thermal model;
8. demonstration thermal result;
Step4.2: set the solid state physics model;
Under " Solid " environment
1. emulation is set;
2. importing grid assembly;
3. designating unit type;
4. add carrier material;
5. specified material characteristic;
6. conditions setting;
7. solid model is found the solution in test;
8. demonstration result.
Step5: design temperature stress coupled problem may further comprise the steps again:
1. delete incoherent BCs;
2. setting coupling condition;
3. create the parallel group of finding the solution.
Step6: preserve and import and find the solution.
Step7: show the result.
The invention provides a kind of flexible, general, stride coupling tool platform between the CAE software easily, can stride different cae analysis softwares and carry out flow process control, nonlinear iteration control, the load transmission control of multiple physical field coupling analysis, finish complicated multiple physical field coupling analysis.With traditional strong coupling method and data tool for transmitting Network Based and function control method ratio, this method has been used the function of existing C AE software to greatest extent, does not need to carry out any transformation and new exploitation directly can be carried out many coupling analysis under this technology platform for the CAE software of existing IO interface.Not only save R﹠D costs, software use cost and improved the ease for use of coupled field analysis software simultaneously greatly, for the application of engineering multiple physical field analysis in industrial design certainly will play a positive role, help performance evaluation and the innovative design of complex industrial problem.
The above; only be the preferable embodiment of the present invention; but protection scope of the present invention is not limited thereto; anyly be familiar with those skilled in the art in the technical scope that the present invention discloses; be equal to replacement or change according to technical scheme of the present invention and inventive concept thereof, all should be encompassed within protection scope of the present invention.

Claims (3)

1. engineering multiple physical field coupling analytical method is characterized in that may further comprise the steps:
Step 1: from the physical field numerical model of different cae analysis system, obtain the data message relevant with the load transmission;
Step 2: set the load transitive relation between the physical field numerical model of different cae analysis system, set different cae analysis system the physical field numerical model find the solution order, and set load transmission convergence control criterion;
Step 3: according to the order of setting of finding the solution, by the mode of iterative loop, to real-time the carrying out the load data conversion and transmit based on the load transitive relation of physical field numerical model of different cae analysis system;
Step 4: in different physical field numerical models, show result of calculation;
Wherein, the real-time step of carrying out the load data conversion based on the load transitive relation of the physical field numerical model of different cae analysis system be may further comprise the steps again:
1: the load data translation interface reads the load data of physical field numerical model 1 in the cae analysis system I;
2: the load data translation interface shines upon and interpolation operation load data, the load data of physical field numerical model 1 is transformed on the grid of physical field numerical model 2 in the cae analysis system II, and output is analyzed required load data form to physical field numerical model 2;
3:CAE analytic system II is read in the load data on the grid that is transformed into physical field numerical model 2, and this model is analyzed;
Wherein, interpolation operation adopts the map operation of Bucket Search and based on the linear interpolation mode of unit local coordinate;
Linear interpolation mode based on the unit local coordinate may further comprise the steps again: find unit and the local coordinate value of impact point on the source item grid, according to the value of each node of source item grid cell, and impact point adopts approach based on linear interpolation to try to achieve the numerical value of impact point in the local coordinate value of source item grid cell.
2. according to the method for claim 1, it is characterized in that adopting the method that relaxes the factor to come the transmission speed of control load data, be expressed as:
F i+1=F i+α×(F ext-F i)
Wherein, F I+1Be the load that the i+1 iteration step is delivered to the stand under load model, F iBe the load that last iteration step i is delivered to the stand under load model, F ExtBe that current up-to-date should applying outward carried, α relaxes the factor, and numerical value is between (0,1.0); Load transmission convergence control criterion is expressed as follows:
||F i+1-F i||/||F i||<ε
Wherein, ε is the decimal of realizing appointment, || * || be vectorial mould.
3. according to the method for claim 1, it is characterized in that step 1 is before further comprising the steps of:
1: the mathematical model of setting up MODEL C AD form;
2: carry out the mesh generation of finite element or limited bulk based on cad model, obtain grid model;
3: grid model is imported to corresponding cae analysis system set up corresponding physical model;
The analysis condition of 4:CAE analytic system setting physical field numerical model is set material parameter, applies boundary condition, and the starting condition that setting is calculated and output adjusting control etc. is finished the setting of physical field numerical model under each cae analysis system.
CN 201110460238 2011-12-31 2011-12-31 Engineering multiphysics coupling analysis method Active CN102592016B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110460238 CN102592016B (en) 2011-12-31 2011-12-31 Engineering multiphysics coupling analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110460238 CN102592016B (en) 2011-12-31 2011-12-31 Engineering multiphysics coupling analysis method

Publications (2)

Publication Number Publication Date
CN102592016A CN102592016A (en) 2012-07-18
CN102592016B true CN102592016B (en) 2013-09-04

Family

ID=46480650

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110460238 Active CN102592016B (en) 2011-12-31 2011-12-31 Engineering multiphysics coupling analysis method

Country Status (1)

Country Link
CN (1) CN102592016B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103020468B (en) * 2012-12-26 2016-01-20 中山大学 Obtain the method for nuclear reactor thermal coupling
CN103400010B (en) * 2013-08-08 2016-08-17 英特工程仿真技术(大连)有限公司 A kind of permagnetic synchronous motor temperature rise analysis of heat transmission method based on multi-scenarios method technology
CN104063550A (en) * 2014-07-02 2014-09-24 上海中仿计算机科技有限公司 Multi-physics field CAE system based on cloud computing platform
CN104460776B (en) * 2014-10-22 2017-01-25 北京航空航天大学 Multi-physical field coupling environment simulation device
CN104537193B (en) * 2015-01-21 2017-12-29 英特工程仿真技术(大连)有限公司 The system that multiple physical field power coupling analysis is realized under the unified platform
CN104809297A (en) * 2015-04-30 2015-07-29 三峡大学 Electromagnetic force density transferring method used among special-shaped grids in magnetic field-structure field coupling calculation
CN105893667A (en) * 2016-03-30 2016-08-24 浙江大学 Heterogeneous simulation data unified integrated visual method
CN106650002B (en) * 2016-11-21 2019-07-30 哈尔滨工业大学 It is a kind of difference computation model between interface data transmitting and interpolation method
CN109766641A (en) * 2018-11-30 2019-05-17 中国航空工业集团公司沈阳飞机设计研究所 The multiple physical field CAE modeling method that knowledge based reuses
CN110555289B (en) * 2019-09-27 2023-12-15 哈尔滨理工大学 Motor stator winding multi-physical field coupling computing platform and computing method based on cloud computing
CN110765685A (en) * 2019-10-18 2020-02-07 南方电网科学研究院有限责任公司 Simulation method and device for multi-physical-field coupling of reactor and storage medium
CN111223185B (en) * 2019-12-30 2023-10-27 苏州数设科技有限公司 Grid cell information display method of three-dimensional model, device and electronic equipment thereof
CN113515855B (en) * 2021-06-23 2021-12-07 北京瑞莱智慧科技有限公司 Determination method and device of seepage medium physical field model, computing equipment and medium
CN115526091B (en) * 2022-11-22 2023-03-17 中国人民解放军国防科技大学 Separated coupling numerical simulation method and device for multi-physics field application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6954725B2 (en) * 2000-12-12 2005-10-11 Fujitsu Limited Multi-physics analysis method, method for setting analysis conditions therefor, and storage medium
CN101140461A (en) * 2007-10-17 2008-03-12 天津大学 Multiple physical states monitoring optimizing and remote synthetic diagnose intelligent numerical control system
CN101614635A (en) * 2009-04-17 2009-12-30 中国科学院上海硅酸盐研究所 Multiphysics fatigue property test macro and method of testing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6954725B2 (en) * 2000-12-12 2005-10-11 Fujitsu Limited Multi-physics analysis method, method for setting analysis conditions therefor, and storage medium
CN101140461A (en) * 2007-10-17 2008-03-12 天津大学 Multiple physical states monitoring optimizing and remote synthetic diagnose intelligent numerical control system
CN101614635A (en) * 2009-04-17 2009-12-30 中国科学院上海硅酸盐研究所 Multiphysics fatigue property test macro and method of testing

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
刘振宇 等.基于异构网格耦合的产品多物理场有限元数据集成与可视化仿真.《机械工程学报》.2010,第46卷(第7期),第114-121页.
基于异构网格耦合的产品多物理场有限元数据集成与可视化仿真;刘振宇 等;《机械工程学报》;20100430;第46卷(第7期);第114-121页 *
宋少云 等.耦合场协同仿真中节点载荷插值的混合法.《计算机仿真》.2006,第23卷(第08期),第73-75,125页.
耦合场协同仿真中节点载荷插值的混合法;宋少云 等;《计算机仿真》;20060831;第23卷(第08期);第73-75,125页 *

Also Published As

Publication number Publication date
CN102592016A (en) 2012-07-18

Similar Documents

Publication Publication Date Title
CN102592016B (en) Engineering multiphysics coupling analysis method
Yi et al. Digital twin-based smart assembly process design and application framework for complex products and its case study
Hu et al. Digital twin: A state-of-the-art review of its enabling technologies, applications and challenges
Zhang et al. A multi-scale modeling method for digital twin shop-floor
Nielsen et al. Discrete adjoint-based design for unsteady turbulent flows on dynamic overset unstructured grids
Brandvik et al. An accelerated 3D Navier–Stokes solver for flows in turbomachines
Konstantinov et al. The cyber-physical e-machine manufacturing system: Virtual engineering for complete lifecycle support
Cary et al. Cfd vision 2030 road map: Progress and perspectives
Holl et al. 3D multiscale crack propagation using the XFEM applied to a gas turbine blade
Albers et al. Integrated structural and controller optimization in dynamic mechatronic systems
CN111046587A (en) Robot simulation method and device, electronic equipment and storage medium
Yan et al. Digital twin-based energy modeling of industrial robots
Chang et al. A parallel implicit hole-cutting method based on background mesh for unstructured Chimera grid
Wiens et al. The potential of FMI for the development of digital twins for large modular multi-domain systems
Zhang et al. Efficient aerodynamic shape optimization of the hypersonic lifting body based on free form deformation technique
Zhou et al. Fast transonic flow prediction enables efficient aerodynamic design
Tesfahunegn et al. Surrogate-based airfoil design with space mapping and adjoint sensitivity
Qamar et al. A mechatronic design infrastructure integrating heterogeneous models
Wirth et al. Analysis and optimization of flow around flexible wings and blades using the standard co-simulation interface MpCCI
Varkonyi-Koczy Review on the usage of the multiobjective optimization package of modefrontier in the energy sector
Bischof et al. Efficient and accurate derivatives for a software process chain in airfoil shape optimization
Pappalardo et al. A General Method for Performing an Integrated CAD-MBD-FEM Analysis
Pickl et al. Editorial for the special issue on “Intelligent Computing and System towards Smart Manufacturing”
Pyne Model-based digital twin of a heavy duty machinery
Lemu Advances in numerical computation based mechanical system design and simulation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant