New! View global litigation for patent families

CN102590830A - Method for estimating Doppler frequency of global positioning system (GPS) signal source - Google Patents

Method for estimating Doppler frequency of global positioning system (GPS) signal source Download PDF

Info

Publication number
CN102590830A
CN102590830A CN 201110394217 CN201110394217A CN102590830A CN 102590830 A CN102590830 A CN 102590830A CN 201110394217 CN201110394217 CN 201110394217 CN 201110394217 A CN201110394217 A CN 201110394217A CN 102590830 A CN102590830 A CN 102590830A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
moment
satellite
user
information
next
Prior art date
Application number
CN 201110394217
Other languages
Chinese (zh)
Inventor
李玉柏
林静然
Original Assignee
电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention belongs to the field of parameter estimation of satellite navigation signal source and provides a method for estimating Doppler frequency of a GPS signal source. The method includes calculating satellite position information at the moment, user position information at a next moment, and satellite position information at next moment according to user speed at the moment, position information and a navigation almanac; calculating relative distances between a user and a satellite at the moment and at the next moment respectively by using the position information; calculating a relative distance variation quantity between the user and the satellite at the moment and at the next moment; calculating a relative transmission delay variation quantity between the user and the satellite; estimating an average value of the Doppler frequency from the moment to the next moment; and the like. The method reduces the amount of calculation, and is more suitable for continuous estimation of the Doppler frequency.

Description

一种用于估计GPS信号源的多普勒频率的方法 A method for estimating GPS signal Doppler frequency source

技术领域 FIELD

[0001] 本发明涉及卫星导航信号源的参数估计领域,具体涉及一种用于估计GPS信号源的多普勒频率的方法。 [0001] Parameter estimation relates to the field of satellite navigation signal source of the present invention, particularly relates to a method of estimating a Doppler frequency for GPS signal source.

背景技术 Background technique

[0002] GPS信号源可以为卫星导航领域的各项研究、仿真和测试提供可重复的模拟信号, 有助于研究工作的推进。 [0002] GPS signal source can provide repeatable analog signals for the various research, simulation and testing in the field of satellite navigation, help advance research. 同时,在不便于架设天线的环境中,如偏远山区和气候恶劣的地区,GPS信号源也可以保证导航终端的正常工作,大大降低了架设天线的建设成本和维护费用。 At the same time, not easy to set up an antenna environments, such as remote mountainous areas and harsh climates, GPS signal source can ensure the normal operation of the navigation terminal, greatly reducing the erection of the antenna construction and maintenance costs.

[0003] 在GPS信号源模拟产生GPS导航信号时,准确估计出多普勒频率是其中一个重要的步骤,是正确模拟GPS信号的基础。 [0003] GPS navigation signal is generated in the GPS signal source simulation accurately estimate the Doppler frequency which is an important step is to properly simulate the basis of GPS signals. 目前常用的方法是,利用用户和所选卫星的速度信息,计算卫星与用户的相对速度,并基于此计算信号的多普勒频率参数fd,即 The most commonly used method is to use the user information and the selected speed of the satellite, the satellite calculates the relative velocity of the user, and the Doppler frequency fd based on the parameters of this signal is calculated, i.e.,

[0004] [0004]

Figure CN102590830AD00031

[0005] 其中,fT为GPS信号的载波频率,c为光速,Vu和Vs分别为当前时刻t的用户和卫星的速度矢量,Vu · Vs计算的是当前时刻卫星与用户的相对速度。 [0005] wherein, fT is the carrier frequency of the GPS signal, c is the speed of light, Vu and Vs, respectively, for the current user and the velocity vector of the satellite at time t, Vu · Vs to the relative velocity calculated current time with the user's satellite.

[0006] 在实际计算时,以上方法主要包括如下步骤: [0006] In the actual calculation, the above method includes the following steps:

[0007] 步骤I :输入用户状态信息和所选卫星的导航历书,并设定多普勒频率更新间隔 [0007] Step I: Enter the user status information and the selected navigation satellite almanac, and Doppler frequency set update interval

[0008] 用户状态信息包括:当前时刻时间t、以及对应的ECEF(地心地固)用户位置信息Pu = [xu, yu, Zu]τ和速度信息Vu = [vux, Vuy, VuJt0如果输入的用户位置和速度信息不是ECEF (地心地固)坐标,则需要对其进行坐标转换,转换方法为本领域普通技术人员所熟知的内容。 [0008] The user status information comprising: the current time period t, and corresponding to the ECEF (earth ECEF) user position information Pu = [xu, yu, Zu] τ and velocity Vu = [vux, user Vuy, VuJt0 if the input the ECEF position and velocity information is not (the ECEF) coordinates, the coordinates need to be converted, the conversion methods are known to those of ordinary skill in the art of the contents.

[0009] 导航历书可以是GPS导航技术规范上记载的历书,也可以是通过GPS导航终端接收的实际历书。 [0009] The navigation almanac almanac may be described in the GPS navigation technology specifications, actual almanac may be received through a GPS navigation terminal. 常用的导航历书参数包括:卫星轨道离心率e、历书生成时刻、卫星轨道和赤道的倾角io、升交点赤经的变化率'Ω、卫星轨道长半轴a、每周历元Ωε、近地点弧角ω、参考时刻的平近点角Mtl、轨道倾角的变化率di/dt、平均角速度的校正值Λ η、对纬度幅角余弦的校正值Cu。 Common navigation almanac parameters include: satellite orbital eccentricity E, almanac generation time, satellite orbit and equatorial inclination IO, the rate of change ascension of ascending node of the 'Ω, satellite orbit semi-major axis a, a week epoch Ωε, perigee arc angle ω , mean anomaly Mtl reference time rate of change of the orbit inclination angle di / dt, the average angular velocity correction value Λ η, the correction value Lat of the cosine argument of Cu. 、对纬度幅角正弦的校正值Cus、对轨道半径余弦的校正值CTC、对轨道半径正弦的校正值、对轨道倾角余弦的校正值Cic;、对轨道倾角正弦的校正值Cis等。 For school argument of the sine of the latitude value Cus, orbital radius of the school cosine value CTC, the radius of the orbit correction sine, cosine of the inclination of the orbit correction value Cic ;, the correction of the orbit inclination sine value Cis and so on.

[0010] 步骤2 :利用当前时刻t和导航历书,计算当前时刻的卫星位置,具体包括如下步骤: [0010] Step 2: using a current time t and navigation almanac satellite position is calculated at the current time, it includes the following steps:

[0011] 步骤2-1 :计算归一化时间: [0011] Step 2-1: calculating normalized time:

[0012] tk = t-toe [0012] tk = t-toe

[0013] 步骤2-2 :计算卫星运行的平均角速度nk [0013] Step 2-2: nk calculated average angular velocity of satellites

[0014] [0014]

Figure CN102590830AD00032

[0015] 其中,G = 3. 986005X IO14是地心引力常数,a是卫星椭圆轨道长半轴,An为平均角速度的校正值,均来自导航历书。 [0015] where, G = 3. 986005X IO14 is a gravity constant, a is an elliptical satellite orbit semi-major axis, An average angular velocity value for the correction, are from the navigation almanac.

[0016] 步骤2-3 :计算卫星在tk时刻的平近点角Mk [0016] Step 2-3: calculating mean anomaly Mk satellite at time tk

[0017] Mk = nk X tk+M0 [0017] Mk = nk X tk + M0

[0018] 其中,Mtl为历书中提供的参考时刻U的平近点角。 [0018] wherein the reference time for the almanac Mtl a flat U provide the anomaly.

[0019] 步骤2-4 :迭代计算卫星在tk时刻的偏近点角Fk, [0019] Step 2-4: iterative calculation of the satellite at time tk partial anomaly Fk,

[0020] (I)置初值,令Ektl = Mk; [0020] (I) set the initial value, so Ektl = Mk;

[0021] (2)迭代计算,令i = I,进行如下计算: [0021] (2) iteration, so i = I, calculated as follows:

[0022] Eki = Mk+esin Ek(H), AEk = Eki-Ekii^1) [0022] Eki = Mk + esin Ek (H), AEk = Eki-Ekii ^ 1)

[0023] 判断,若AEk小于事先设定的门限,则停止迭代,Ek = Eki ; [0023] It is determined, if AEk less than a preset threshold, then stop the iteration, Ek = Eki;

[0024] 否则,令i = i+Ι,返回第(2)步。 [0024] Otherwise, let i = i + Ι, return to the first step (2).

[0025] 步骤2-5 :计算卫星在tk时刻的真近点角fk, [0025] Step 2-5: the true anomaly is calculated satellite fk at the time tk,

[0026] [0026]

Figure CN102590830AD00041

[0027] 其中,卫星轨道离心率e由导航历书提供。 [0027] wherein the satellite orbital eccentricity e provided by the navigation almanac.

[0028] 步骤2-6 :计算未校准的升交点角距Ok [0028] Step 2-6: calculate uncalibrated angular distance of the ascending node Ok

[0029] Ok = fk+Q [0029] Ok = fk + Q

[0030] 其中,ω为历书中提供的近地点弧角。 [0030] wherein perigee ω is supplied almanac arc angle.

[0031] 步骤2-7 :计算摄动修正项δ v,Sr和δ i。 [0031] Step 2-7: calculating perturbation correction term δ v, Sr, and δ i.

[0032] δ μ, δΓ和Si分别为升交点角距Φ,、卫星失径rk和轨道倾角ik的摄动量,其具体的计算方法如下式所示: [0032] δ μ, δΓ ascending node and Si are the angular distance Φ ,, loss of satellite orbital inclination angle and ik rk diameter of perturbation, the specific calculation method is shown below the formula:

[0033] Su = Cue cos 20k+Cus sin 2Φ1ί [0033] Su = Cue cos 20k + Cus sin 2Φ1ί

[0034] δ r = Crc cos 2Φk+Crs sin 2C>k [0034] δ r = Crc cos 2Φk + Crs sin 2C> k

[0035] δ j = Cic cos 2C>k+Cis sin 2C>k [0035] δ j = Cic cos 2C> k + Cis sin 2C> k

[0036] 在此基础上,计算经过摄动改正的升交点角距Φ,,卫星失径rk,和轨道倾角id,具体计算公式为: [0036] On this basis, calculated through the ascending node perturbation corrected angular distance Φ ,, RK satellite path loss, and orbital inclination id, specifically calculated as:

[0037] Ok= c^k+ δ u» rk = a(l-ecos Ek)+ δ r, ik = i0+(di/dt) Xtk+ δ ^ [0037] Ok = c ^ k + δ u »rk = a (l-ecos Ek) + δ r, ik = i0 + (di / dt) Xtk + δ ^

[0038] 其中,i0为卫星轨道倾角,di/dt为轨道倾角的变化率,均由历书提供。 [0038] wherein, I0 is the rate of change of satellite orbital inclination, di / dt is the orbit inclination angle, provided by the almanac.

[0039] 步骤2-8 :计算卫星在tk时刻的升交点赤经Ω k [0039] Step 2-8: calculated satellite time tk liters intersection ascension Ω k

[0040] Qk= Ω6+; Ω Xtk [0040] Qk = Ω6 +; Ω Xtk

[0041] 其中,为历书中提供的参考时刻的升交点赤经,'Ω为历书提供的升交点赤经的变化率。 [0041] wherein the reference time for the almanac to provide a right ascension, 'Ω change rate to right ascension of almanac provided.

[0042] 如考虑地球自转,还需要对其进行地球自转校正 [0042] The rotation of the earth considered, it needs to be corrected earth rotation

[0043] Ω1ί = Ω6+(; Ω - ω e) tk-ω etoe = Ωε+; Ω tk- ω etin [0043] Ω1ί = Ω6 + (; Ω - ω e) tk-ω etoe = Ωε +; Ω tk- ω etin

[0044]其中,(^为地球自转速度,取值为 ωε = 7. 2921151467X IO^5(rad/s) „ [0044] wherein, (^ Earth's rotation rate, the value is ωε = 7. 2921151467X IO ^ 5 (rad / s) "

[0045] 步骤2-9 :计算tk时刻卫星在ECEF (地心地固)坐标系的坐标 [0045] Step 2-9: calculating the coordinates of the satellite at time tk the ECEF (earth ECEF) coordinate system

[0046] 步骤2-9-1 :计算卫星在椭圆轨道直角坐标系中的位置坐标 [0046] Step 2-9-1: calculating the position coordinates of the satellite in an elliptical orbit in a Cartesian coordinate system

[0047] xk = rkcosC>k, yk = rksinC>k [0047] xk = rkcosC> k, yk = rksinC> k

4[0048] 步骤2-9-2 :计算卫星在ECEF坐标系中的坐标ps = [xs, ys, zs] 4 [0048] Step 2-9-2: calculating the coordinates ps satellite ECEF coordinate system at = [xs, ys, zs]

Figure CN102590830AD00051

[0050] 步骤3 :利用当前时刻卫星的位置信息ps,对其进行求导,计算当前时刻卫星的速度信息vs [0050] Step 3: ps time using current position information satellite, its derivative, calculate the current speed of the satellite time information vs

Figure CN102590830AD00052

[0052] 上式中的xk'和yk'是由xk和yk对时间求导得到,即 [0052] The above formula xk 'and yk' to time is xk and yk by a guide obtained, i.e.,

[0053] X' k = y' k cos uk-rku' k sin uk, y1 k = r1 k sin uk+rku' k cos uk[0054] 其中uk',rk',ik'和Q k'可分别由uk, rk, ik和对时间求导得到,即 [0053] X 'k = y' k cos uk-rku 'k sin uk, y1 k = r1 k sin uk + rku' k cos uk [0054] wherein uk ', rk', ik 'and Q k' respectively , rk, ik, and with respect to time obtained from uk, i.e.

[0055] u1 k = O ; k+ 6 1 u, r' k = aeE' ksin Ek+ 8 1 r [0055] u1 k = O; k + 6 1 u, r 'k = aeE' ksin Ek + 8 1 r

[0056] i' k = di/dt+ 5 ' i, Q ' k = Q ' - co e[0057]其中S /,8r ,和i 5/可分别由( )u,、和5[0058] 6 ' =20 ' k[cus cos (2 ① k) -cuc sin (2 ① k)][0059] 6 ' =20 ' k [Crs cos (20k) -Crc sin (2 ① k)][0060] 6 ' u : =20 ' k[Cis cos (20k) -Cic sin (2 ① k)] [0056] i 'k = di / dt + 5' i, Q 'k = Q' - co e [0057] where S /, 8r, and i 5 /, respectively of () u ,, and 5 [0058] 6 '= 20' k [cus cos (2 ① k) -cuc sin (2 ① k)] [0059] 6 '= 20' k [Crs cos (20k) -Crc sin (2 ① k)] [0060] 6 'u: = 20' k [Cis cos (20k) -Cic sin (2 ① k)]

[0061] 其中可由对时间求导得到,即 [0061] which may be obtained with respect to time, i.e.,

Figure CN102590830AD00053

[0063] 其中Ek可由Ek对时间求导得到,即 [0063] wherein Ek Ek can be obtained with respect to time, i.e.,

Figure CN102590830AD00054

[0065] 其中Mk'可由Mk对时间求导得到,SP [0065] wherein Mk 'by Mk obtained with respect to time, SP

[0066] M' k = nk [0066] M 'k = nk

[0067] 步骤4:利用当前时刻用户和卫星的速度信息,计算卫星信号的多普勒频率。 [0067] Step 4: speed information with the current time and the user's satellite, the satellite signal Doppler frequency is calculated.

Figure CN102590830AD00055

[0069] 步骤5 :如果到达多普勒频率更新间隔Tu,则更新当前时刻为t = t+Tu,以及当前时刻的用户位置信息Pu和速度信息vu,返回步骤2。 [0069] Step 5: If the Doppler frequency reaches the update interval Tu, is updated to the current time t = Pu user position information and velocity information vu t + Tu, as well as the current time, returned to step 2.

[0070] 上述方法,在电子工业出版社2007年出版的由JAMES BAO-YEN TSM著,陈军等译.GPS软件接收机基础(第2版)中有详细记载,在电子工业出版社2009年出版的由谢钢著的GPS原理与接收机设计中也有详细记载。 [0070] The above-described method, the Electronic Industry Press published in 2007 by the JAMES BAO-YEN TSM, CHEN translated .GPS software receiver base (2nd edition) is described in detail in the Electronics Industry Press, 2009 Xie steel published by the principle of the GPS receiver design is also described in detail. [0071] 我们经过分析发现,以上方法在具体实现时存在如下难点: [0071] After the analysis we found that there is a difficulty in the method of the above specific implementation:

[0072] 真实卫星导航信号的多普勒频率都是连续变化的,而在使用以上方法对导航信号进行模拟时,只能以多普勒频率的离散值来逼近其连续变化的值。 [0072] the true Doppler frequency of satellite navigation signals are continuously changed, using the above method and in the navigation signal from analog, discrete values ​​can only be approximate values ​​of the Doppler frequency changes continuously. 这就存在一个参数的更新率问题。 That there is a parameter update rate problem. 理论上,参数的更新率越高,越能逼近其真实的变化情况。 The higher the refresh rate in theory, the parameters, the more real changes in its approach. 但是,参数的更新率越高,对实现系统的性能和成本要求也就越高,因为这要求系统能够在更短的时间内完成参数的计算,即将上述多普勒频率的估计方法重新计算一次。 However, the higher the update rate of the parameters, for achieving the higher performance and cost requirements of the system, because it requires the system to complete the calculation of the parameters in a shorter period of time, i.e. the above-described method of estimating Doppler frequency recalculated . 在以上方法中,多普勒频率的计算需要卫星和用户的速度信息,计算卫星的速度需要在求得其位置信息后,进一步对位置求导来获得,运算复杂度较高。 In the above method, the Doppler frequency calculating velocity information needs of users and satellites, calculates the speed of the satellite needs to obtain its location information, the location of the further derivation to obtain high computational complexity. 因此,多普勒频率参数的更新较为复杂,降低该参数更新的运算量有助于简化系统的实现难度和降低其硬件平台的成本。 Thus, the update frequency of the Doppler parameters is complex, reducing the amount of computation parameter update helps simplify the system implementation difficulty and cost of its hardware platform.

发明内容 SUMMARY

[0073] 本发明提供一种用于估计GPS信号源的多普勒频率的方法。 [0073] The present invention provides a method for estimating GPS signal Doppler frequency source. 和现有技术相比,该方法更为简单,仅使用用户和卫星的位置信息来对多普勒频率进行估计,不再需要计算卫星的速度信息。 And compared to the prior art, this method is more simple, only the position information of the user and the satellite to estimate the Doppler frequency, no longer need to calculate the speed of the satellite information.

[0074] 本发明提供的一种用于估计GPS信号源的多普勒频率的方法,包括利用卫星的导航历书参数计算该卫星在当前时刻和下一时刻t2的位置信息,分别记为Psl = [xsl, ysl, ZsJ1^Pps2 = [xs;E,ys;i,zs2]T,并利用用户在当前时刻h 的速度信息vul = [VxuPVyunVzul]1^ 位置信息Pul = [xul,yul,zul]T,估计用户在下一时刻t2的位置信息Pu2 = [Xu2, yu2, zu2]T = [xUI+vXUl X (t2_tl),Yul+Vyul X (t2_tl),2UI+YzUl X ] T,其特征是还依次包括如下步骤: [0074] A method for estimating GPS signal Doppler frequency source provided by the invention, including the use of satellite navigation almanac parameters calculated satellite position information of the current time and the next time t2, respectively referred to as Psl = [xsl, ysl, ZsJ1 ^ Pps2 = [xs; E, ys; i, zs2] T, using the user at the current speed of the time h details vul = [VxuPVyunVzul] 1 ^ position information Pul = [xul, yul, zul] T, the user is estimated at a next time t2 position information Pu2 = [Xu2, yu2, zu2] T = [xUI + vXUl X (t2_tl), Yul + Vyul X (t2_tl), 2UI + YzUl X] T, characterized by further comprising the steps of sequentially:

[0075] 步骤I :根据用户的位置信息和卫星的位置信息,分别计算出在当前时刻h和下一时刻t2时,用户和卫星的相对距离 [0075] Step I: The positional information of the user and the satellite, calculates the current relative distance t2, the user and the satellite time and the next time h

[0076] [0076]

Figure CN102590830AD00061

[0078] 步骤2 :计算从h时刻到t2时刻,用户与卫星相对距离的变化量Δ P = P2-P1; [0078] Step 2: calculated from the time t2 to the time point h, the amount of change in relative distance between the user and the satellite Δ P = P2-P1;

[0079] 步骤3 :计算从h时刻到t2时刻,用户与卫星相对传输时延的变化量Λ τ = Λ P / c,其中,c为光速; [0079] Step 3: h is calculated from the time t2 to the time point, the user and the satellite relative transmission delay variation Λ τ = Λ P / c, where, c is the speed of light;

[0080] 步骤4 :估计从h时刻到t2时刻,多普勒频率的平均值fd = fTX Δ τ /Tu,其中,fT 为GPS信号的载波频率,多普勒频率更新的时间间隔Tu = Vt10 [0080] Step 4: estimating from time t2 to the time point h, the average Doppler frequency fd = fTX Δ τ / Tu, where, fT is the carrier frequency of the GPS signals, the Doppler frequency update interval Tu = Vt10

[0081] 所述步骤4完成后,更新当前时刻的值h = t2,更新当前时刻的用户位置信息pul =Pu2,更新速度信息Vul = Vu2,更新用户和卫星的相对距离P1= P 2,并计算出下一时刻的用户位置信息Pu2和卫星位置信息Ps2,然后返回步骤I。 After [0081] The step 4 is completed, the updated value of the current time h = t2, the current time to update user position information pul = Pu2, the information updating speed Vul = Vu2, update the relative distance of the satellite and the user P1 = P 2, and calculate the user position information and the satellite position information Pu2 Ps2 next time, then returns to step I.

[0082] 通过以上对技术方案的描述可知,本发明在计算卫星的位置信息采用的是和现有技术相同的方法,但是后续的计算步骤采用了更新时间间隔内的平均多普勒频率来代替更新时刻点上的瞬时多普勒频率,因此不再需要计算更新时刻的卫星瞬时速度,仅利用更新时刻的卫星位置信息就可完成多普勒频率的估计,从而大大降低了多普勒频率的计算量。 [0082] The above description of the technical solution is known, in the present invention the calculated position information satellite using the prior art processes and the same, but the subsequent steps using the calculated average Doppler frequency within the update interval instead of update on the instantaneous Doppler frequency point in time, and therefore no need to calculate the instantaneous speed of the update time of the satellite using only the satellite position information can be completed update timing estimate the Doppler frequency, thereby greatly reducing the Doppler frequency the amount of calculation. 而且,连续两次多普勒频率估计之间,第一次估计计算出的“下一时刻”相关参数,正好是第二次估计的“当前时刻”相关参数,这样,连续两次估计得很多参数就可以共用,运算量能进一步降低,便于流水实现。 Also, Doppler frequency between two consecutive estimates, the first estimate of the parameters calculated "next time", the second estimate is just "this moment" parameters, so, too many consecutive estimates parameters can be shared, the amount of calculation can be further reduced, easy to achieve water. [0083] 和现有技术相比,在相同的硬件平台上,本发明的技术方案可以支持更高的参数更新率,从而更准确地逼近这些参数连续变化的情况。 [0083] and compared with the prior art, on the same hardware platform, aspect of the present invention can support a higher update rate parameters, a more accurate approximation of continuously changing these parameters. 或者说,在相同的参数更新率要求下,本发明的技术方案需要的运算量更少,可以在一个成本更低的平台上进行实现。 Or, at the same update rate parameter requirements, computational aspect of the present invention requires less, may be implemented on a lower-cost platform.

附图说明 BRIEF DESCRIPTION

[0084] 附图I为本发明提出的一种用于估计GPS信号源的多普勒频率的方法的总体流程图。 Overall flowchart of a method of estimating Doppler frequency of the GPS signal source for the [0084] BRIEF I of the present invention proposed.

具体实施方式 detailed description

[0085] 下面具体说明本发明技术方案的实施方式。 [0085] The following DETAILED DESCRIPTION Embodiments of the present invention.

[0086] 步骤I :输入用户状态信息和导航历书。 [0086] Step I: Enter the user status information and navigation almanac. 用户当前时刻为h = Os,用户ECEF位置坐标为Pu = [Xu,yu,ZU]T,用户ECEF速度坐标为Vu = [0,0,0]τ,即用户处于静止状态;导航历书为网站上下载的简易历书。 User current time h = Os, user location ECEF coordinates Pu = [Xu, yu, ZU] T, user coordinates ECEF velocity Vu = [0,0,0] τ, i.e., the user is in a stationary state; website navigation almanac is easy on the download almanac. 同时设定其它参数,包括光速c = 3XlOVs, GPS信号载波频率fT = 1575. 42MHz,多普勒频率更新间隔Tu = Ims0 Simultaneously set the other parameters, including the speed of light c = 3XlOVs, GPS signal carrier frequency fT = 1575. 42MHz, Doppler frequency update interval Tu = Ims0

[0087] 步骤2 :利用用户当前时间信息t1;结合导航历书参数,计算当前时刻所选GPS卫星的位置信息Ps= [xs,ys, ZsIt0具体的计算方法采用背景技术中提及的现有的计算方法。 [0087] Step 2: using the user information of the current time T1; binding navigation almanac parameters, calculates the position information of the current time Ps of the selected GPS satellites = [xs, ys, ZsIt0 specific calculation method mentioned in the background using conventional calculation methods.

[0088] 步骤3 :用户和卫星的位置信息Pu和Ps,计算当前时刻h用户和卫星的相对距离 [0088] Step 3: location of the user and the satellite information Pu and Ps, calculates the relative distance to the user and the satellite time h

[0089] Ρλ = ||pM -ΡίH2 = yj(xu-xs)2+(yu ~ys)2+(zu ~zs)2 [0089] Ρλ = || pM -ΡίH2 = yj (xu-xs) 2+ (yu ~ ys) 2+ (zu ~ zs) 2

[0090] 步骤4 :计算多普勒频率的更新时刻t2 [0090] Step 4: calculation of the Doppler frequency of the update time t2

[0091] t2 = tjTu = O. OOls [0091] t2 = tjTu = O. OOls

[0092] 步骤5 :利用导航电文,计算丨2时刻的卫星位置,仍记为psH [xs,ys,zs]T。 [0092] Step 5: Use the navigation message to calculate satellite position Shu 2 time, still referred to as psH [xs, ys, zs] T. 具体的计算方法采用背景技术中提及的现有的计算方法。 Specific calculation method using the conventional calculation method mentioned in the background art.

[0093] 步骤6 :利用用户的位置和速度信息,计算t2 = O. OOls时刻的用户位置,仍记为Pu,由于用户静止,故位置保持不变。 [0093] Step 6: using the user's position and velocity information, calculating the time t2 = O. OOls user location, is still referred to as Pu, because the user is stationary, so that the position remains unchanged.

[0094] pu = pu+vuXTu = [xu yu zu]T [0094] pu = pu + vuXTu = ​​[xu yu zu] T

[0095] 步骤7 :用户和卫星的位置信息ρ,Ρ ps,计算时刻t2 = O. OOls用户和卫星的相对距离P 2 : [0095] Step 7: ρ location information of the user and the satellite, Ρ ps, is calculated from the relative timing t2 = O. OOls users and satellites P 2:

_6] p2 = ||pM -ΡίH2 = V(xu -Xs)2 + (yu -ys)2 + (zu -zsf _6] p2 = || pM -ΡίH2 = V (xu -Xs) 2 + (yu -ys) 2 + (zu -zsf

[0097] 步骤8 :计算从t时刻到时刻,用户与卫星相对距离的变化量 [0097] Step 8: calculated from the time t to time, the user of the satellite relative amount of change in distance

[0098] Δ P = P2-P1 [0098] Δ P = P2-P1

[0099] 步骤9 :计算从t时刻到h时刻,用户与卫星相对传输时延的变化量 [0099] Step 9: Calculate h from time t to time, the user satellite transmission delay amount of relative change

[0100] [0100]

Figure CN102590830AD00071

[0101] 步骤10 :估计从时刻到t2时刻,多普勒频率的平均值 [0101] Step 10: estimating the average from time to time t2, the Doppler frequency

[0102] [0102]

Figure CN102590830AD00072

[0103] 步骤11 :如果到达多普勒频率更新间隔Tu,则更新当前时刻为t2 = ti+Tu,以及当前时刻的用户速度信息Vu= [0,0,0]T,同时,令Pi= P2,返回步骤4,即可对多普勒频率进行连续估计。 [0103] Step 11: If the Doppler frequency reaches the update interval Tu, the current time is the update speed of the user information Vu t2 = ti + Tu, and current time = [0,0,0] T, at the same time, so that Pi = P2, returning to step 4, the Doppler frequency can be continuously estimated. [0104] 由上述描述可以看出,连续两次多普勒频率估计之间,很多参数可以共用,这样运算量能进一步降低,同时便于流水实现。 [0104] As can be seen from the above description, the Doppler frequency between two consecutive estimates, many parameters can be shared, so that the amount of computation can be further reduced, while allowing water to achieve.

Claims (2)

  1. 1. 一种用于估计GPS信号源的多普勒频率的方法,包括利用卫星的导航历书参数计算该卫星在当前时刻h和下一时刻t2的位置信息,分别记为Psl = [xsl, ysl, ZsJ1^P Ps2 = [xs2,ys2,zs2]T,并利用用户在当前时刻的速度信息vul = [vxl, vyul, vzul]T和位置信息Pul =[^^〜匕估计用户在下一时刻^的位置信息卩也=[Xu2,yu2,Zu2]T = [xUI+vXUl X (t2_tl) » Yul+Vyul X (t2_tl),zUI+vZUl X (t2_ti) } T,其特征是还依次包括如下步骤:步骤I:根据用户的位置信息和卫星的位置信息,分别计算出在当前时刻和下一时刻t2时,用户和卫星的相对距离 1. A method for estimating GPS signal Doppler frequency source, including the use of satellite navigation almanac parameter calculating position information of the satellite at the current time and the next time t2, h, respectively referred to as Psl = [xsl, ysl , ZsJ1 ^ P Ps2 = [xs2, ys2, zs2] T, and the speed at the current time using the user information vul = [vxl, vyul, vzul] T and the position information Pul = [^^ ~ next time the user is estimated dagger ^ location Jie also = [Xu2, yu2, zu2] T = [xUI + vXUl X (t2_tl) »Yul + Vyul X (t2_tl), zUI + vZUl X (t2_ti)} T, characterized by further successively comprises the steps of : step I: the positional information of the user and the satellite, respectively, to calculate the relative distance t2, the user satellite and the current time and the next time
    Figure CN102590830AC00021
    步骤2 :计算从h时刻到t2时刻,用户与卫星相对距离的变化量Λρ = ρ2-ρ1;步骤3 :计算从h时刻到t2时刻,用户与卫星相对传输时延的变化量Λ τ = Δ p/c, 其中,c为光速;步骤4 :估计从h时刻到t2时刻,多普勒频率的平均值fd = fTX Λ τ /Tu,其中,fT为GPS信号的载波频率,多普勒频率更新的时间间隔Tu = t2-t10 Step 2: calculated from the time t2 to the time point h, the user of the satellite distance variation relative Λρ = ρ2-ρ1; Step 3: h is calculated from the time t2 to the time point, the user relative to the satellite transmission delay variation Λ τ = Δ p / c, where, c is the speed of light; step 4: estimating from time t2 to the time point h, the average Doppler frequency fd = fTX Λ τ / Tu, where, fT is the carrier frequency of the GPS signals, the Doppler frequency update interval Tu = t2-t10
  2. 2.根据权利要求I所述的一种用于估计GPS信号源的多普勒频率的方法,其特征是: 所述步骤4完成后,更新当前时刻的值h = t2,更新当前时刻的用户位置信息pul = Pu2,更新速度信息vul = vu2,更新用户和卫星的相对距离P1=P 2,并计算出下一时刻h的用户位置信息Pu2和卫星位置信息Ps2,然后返回步骤I。 2. The method of GPS signal source for estimating Doppler frequency according to claim I, characterized in that: after completion of said step 4, the updated value of the current time h = t2, update the current user time position information pul = Pu2, the update rate information vul = vu2, update the user and the satellite relative distance P1 = P 2, and calculates the user position information and the satellite position information Pu2 Ps2 next time h, and then returns to step I.
CN 201110394217 2011-11-22 2011-11-22 Method for estimating Doppler frequency of global positioning system (GPS) signal source CN102590830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110394217 CN102590830A (en) 2011-11-22 2011-11-22 Method for estimating Doppler frequency of global positioning system (GPS) signal source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110394217 CN102590830A (en) 2011-11-22 2011-11-22 Method for estimating Doppler frequency of global positioning system (GPS) signal source

Publications (1)

Publication Number Publication Date
CN102590830A true true CN102590830A (en) 2012-07-18

Family

ID=46479741

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110394217 CN102590830A (en) 2011-11-22 2011-11-22 Method for estimating Doppler frequency of global positioning system (GPS) signal source

Country Status (1)

Country Link
CN (1) CN102590830A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4445118A (en) * 1981-05-22 1984-04-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Navigation system and method
EP0462648A2 (en) * 1990-06-18 1991-12-27 Philips Electronics Uk Limited Method of and apparatus for obtaining vehicle heading information
US5194871A (en) * 1982-03-01 1993-03-16 Western Atlas International, Inc. System for simultaneously deriving position information from a plurality of satellite transmissions
US5418538A (en) * 1993-05-21 1995-05-23 Trimble Navigation Limited Rapid satellite signal acquisition in a satellite positioning system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4445118A (en) * 1981-05-22 1984-04-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Navigation system and method
US5194871A (en) * 1982-03-01 1993-03-16 Western Atlas International, Inc. System for simultaneously deriving position information from a plurality of satellite transmissions
EP0462648A2 (en) * 1990-06-18 1991-12-27 Philips Electronics Uk Limited Method of and apparatus for obtaining vehicle heading information
US5418538A (en) * 1993-05-21 1995-05-23 Trimble Navigation Limited Rapid satellite signal acquisition in a satellite positioning system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ELLIOTT D. KAPLAN AND JOSEPH L. LEVA: "《Understanding GPS Principles and Applications》", 31 December 2006, article "CHAPTER 2 Fundamentals of Satellite Navigation", pages: 21-66 *

Similar Documents

Publication Publication Date Title
US6313787B1 (en) Method and apparatus for assisted GPS protocol
CN101038169A (en) Navigation satellite autonomous navigation system and method based on X-ray pulsar
Ge et al. A computationally efficient approach for estimating high-rate satellite clock corrections in realtime
CN101666650A (en) SINS/GPS super-compact integrated navigation system and implementing method thereof
JP2004529032A (en) Generating / distributing method and apparatus of the satellite tracking information
CN102096086A (en) Self-adaptive filtering method based on different measuring characteristics of GPS (Global Positioning System)/INS (Inertial Navigation System) integrated navigation system
CN101788296A (en) SINS/CNS deep integrated navigation system and realization method thereof
US20090091493A1 (en) Method for correcting ionosphere error, and system and method for determining precision orbit using the same
CN102829777A (en) Integrated navigation system for autonomous underwater robot and method
CN101893445A (en) Rapid initial alignment method for low-accuracy strapdown inertial navigation system under swinging condition
CN101825468A (en) Strapdown inertial navigation method of dual quaternion based on frequency domain analysis method
US7443340B2 (en) Method and apparatus for generating and distributing satellite tracking information
CN101666868A (en) Satellite signal vector tracking method based on SINS/GPS deep integration data fusion
CN102331581A (en) Rapid positioning method of binary TDOA/FDOA satellite-to-earth integration positioning system
CN101702030A (en) Precise orbit determination method of navigation satellite for assisting clock error between stations
JP2005043189A (en) Space navigation system and method therefor
CN102494686A (en) Satellite attitude orbit determining system and method
Stead et al. AHD heights from GPS using AUSGEOID93
JP2004212400A (en) Position and direction predicting system for robot
CN1995915A (en) Deep space probe UPF celestial self-navigation method based on starlight angle
CN102213594A (en) Method for fusing ocean current observation data of unmanned undersea vehicle (UUV)
CN101487883A (en) Ionospheric layer grid regulation method suitable for multi-module satellite navigation system
US7786929B2 (en) Method and device for predicting GNSS satellite trajectory extension data used in mobile apparatus
CN102175254A (en) Navigation positioning correction method and device, and positioning navigation system
CN101915928A (en) Method and device for double-star time difference/frequency difference combined positioning

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C12 Rejection of a patent application after its publication