CN102590175B - Raman spectrum superposition-based method for quickly determining content of methanol in methanol gasoline - Google Patents
Raman spectrum superposition-based method for quickly determining content of methanol in methanol gasoline Download PDFInfo
- Publication number
- CN102590175B CN102590175B CN201210039272.3A CN201210039272A CN102590175B CN 102590175 B CN102590175 B CN 102590175B CN 201210039272 A CN201210039272 A CN 201210039272A CN 102590175 B CN102590175 B CN 102590175B
- Authority
- CN
- China
- Prior art keywords
- methanol
- spectrum
- gasoline
- base oil
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 title claims abstract description 360
- 239000003502 gasoline Substances 0.000 title claims abstract description 73
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000001237 Raman spectrum Methods 0.000 title claims abstract description 13
- 238000001228 spectrum Methods 0.000 claims abstract description 83
- 239000002199 base oil Substances 0.000 claims abstract description 56
- 238000005259 measurement Methods 0.000 claims abstract description 12
- 230000003595 spectral effect Effects 0.000 claims description 33
- 238000001069 Raman spectroscopy Methods 0.000 claims description 14
- 239000003921 oil Substances 0.000 claims description 11
- 238000001914 filtration Methods 0.000 claims description 7
- 229930195734 saturated hydrocarbon Natural products 0.000 claims description 7
- 238000009499 grossing Methods 0.000 claims description 6
- 238000010606 normalization Methods 0.000 claims description 4
- 238000007781 pre-processing Methods 0.000 claims description 3
- 238000003556 assay Methods 0.000 claims description 2
- 238000012545 processing Methods 0.000 abstract description 2
- 239000000523 sample Substances 0.000 description 9
- 238000002156 mixing Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 4
- 238000004497 NIR spectroscopy Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000004508 fractional distillation Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002095 near-infrared Raman spectroscopy Methods 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
技术领域 technical field
本发明属于化学计量学领域,涉及一种混合物中物质的光谱测量方法,尤其涉及一种甲醇汽油中甲醇含量的测量方法。 The invention belongs to the field of chemometrics, and relates to a method for measuring spectra of substances in a mixture, in particular to a method for measuring methanol content in methanol gasoline.
背景技术 Background technique
随着我国经济的高速发展,汽车使用量的快速增加,国内市场对汽油的需求量迅速增大,已给我国的石油供给与环境保护带来了巨大压力。改变石油短缺、环境严重污染的唯一方法就是减少对石油的依赖,开发绿色高效清洁替代能源。甲醇汽油作为普通汽油的替代品,是一种“以煤代油“路径,可直接替代普通汽油,在缓解汽油供应紧张的同时,有很好的环保效益,对国家生态经济的可持续发展、社会的进步都具有十分重要的意义。 With the rapid development of my country's economy and the rapid increase of automobile usage, the demand for gasoline in the domestic market has increased rapidly, which has brought enormous pressure to my country's oil supply and environmental protection. The only way to change oil shortage and severe environmental pollution is to reduce dependence on oil and develop green, efficient and clean alternative energy sources. As a substitute for ordinary gasoline, methanol gasoline is a path of "replacing oil with coal", which can directly replace ordinary gasoline. While alleviating the shortage of gasoline supply, it has good environmental protection benefits and is conducive to the sustainable development of the country's ecological economy, Social progress is of great significance.
甲醇汽油是甲醇、汽油及添加剂的混合物。甲醇掺入量一般为5%~30%。以掺入15%者为最多,称M15甲醇汽油。甲醇的热值约为汽油的一半,在不改动汽车发动机压缩比的前提下,甲醇含量必须固定在一定范围内。若含量过低,则会导致辛烷值太低而损害发动机;含量过高,则会导致燃料热值不够,增大油耗,提高成本。2009年底,我国正式颁布了车用高比例甲醇汽油产品标准《车用甲醇汽油(M85)》,要求甲醇在甲醇汽油中的含量为85%左右。陕西省已经全面推广使用M15甲醇汽油。在国家标准(M85)以及各省的地方标准中,如河北省地方标准《M30车用甲醇汽油》、《车用甲醇汽油组分油》,山西省地方标准DB14/T 92-2002,浙江省地方标准DB33/T 756.2-2009等,都对甲醇汽油中的甲醇含量作了严格的要求。 Methanol gasoline is a mixture of methanol, gasoline and additives. The amount of methanol incorporated is generally 5% to 30%. The one mixed with 15% is the most, which is called M15 methanol gasoline. The calorific value of methanol is about half that of gasoline. Under the premise of not changing the compression ratio of the automobile engine, the methanol content must be fixed within a certain range. If the content is too low, the octane number will be too low and damage the engine; if the content is too high, the calorific value of the fuel will be insufficient, fuel consumption will be increased, and the cost will be increased. At the end of 2009, my country officially promulgated the product standard of high-proportion methanol gasoline for vehicles "Methanol Gasoline for Vehicles (M85)", requiring the content of methanol in methanol gasoline to be about 85%. Shaanxi Province has fully promoted the use of M15 methanol gasoline. In the national standard (M85) and the local standards of various provinces, such as the local standard of Hebei Province "M30 Methanol Gasoline for Vehicles", "Methanol Gasoline Component Oil for Vehicles", the local standard of Shanxi Province DB14/T 92-2002, the local standard of Zhejiang Province Standards such as DB33/T 756.2-2009 have strict requirements on the methanol content in methanol gasoline.
在各类标准中,测量甲醇含量的法定方法包括气相色谱法与分馏法。这两种方法测量精确,但是操作复杂,检测周期长,设备复杂,不适合于现场检测。同时,气相色谱法还需要进行内标。为此,需要开发混合汽油中甲醇含量的快速准确测量方法,它对于甲醇汽油的品质控制和检验都有着至关重要的意义。 Among the various standards, official methods for measuring methanol content include gas chromatography and fractional distillation. These two methods are accurate in measurement, but the operation is complicated, the detection period is long, and the equipment is complicated, so they are not suitable for on-site detection. At the same time, gas chromatography also requires an internal standard. Therefore, it is necessary to develop a rapid and accurate measurement method for the methanol content in blended gasoline, which is of vital significance for the quality control and inspection of methanol gasoline.
目前的快速检测方法主要采用近红外光谱与拉曼光谱分析法。这类方法首先利用近红外或拉曼光谱仪获得待测油品的光谱数据,然后与数据库中大量的训练样本(指已知甲醇含量与对应光谱的油样)的光谱进行比对,进而估算出甲醇汽油中甲醇含量。此类方法,测量速度快、使用方便。但这两类方法存在的主要问题是,需要收集大量的不同基础油、不同甲醇含量的训练样本,这样才能保证对待测油品甲醇含量的检测精度。同时,由于近红外光谱的分子吸收特性,测量结果易受其它醇类干扰。 The current rapid detection methods mainly use near-infrared spectroscopy and Raman spectroscopy. This type of method first uses near-infrared or Raman spectrometers to obtain the spectral data of the oil to be tested, and then compares it with the spectra of a large number of training samples (referring to oil samples with known methanol content and corresponding spectra) in the database, and then estimates Methanol content in methanol gasoline. This type of method has fast measurement speed and is easy to use. However, the main problem of these two types of methods is that a large number of training samples with different base oils and different methanol contents need to be collected, so as to ensure the detection accuracy of the methanol content of the oil to be tested. At the same time, due to the molecular absorption characteristics of near-infrared spectroscopy, the measurement results are easily interfered by other alcohols.
发明内容 Contents of the invention
本发明的目的在于针对现有技术的不足,提供一种基于拉曼光谱叠加的甲醇汽油甲醇含量快速测定方法,该方法简便、有效。 The object of the present invention is to aim at the deficiencies of the prior art, and provide a method for quickly measuring the methanol content of methanol gasoline based on Raman spectrum superposition, which is simple and effective.
本发明的目的是通过以下技术方案来实现的:一种基于拉曼光谱线性叠加原理的甲醇汽油甲醇含量快速测定方法,该方法包括以下步骤: The object of the present invention is achieved by the following technical scheme: a kind of methanol gasoline methanol content rapid assay method based on Raman spectrum linear superposition principle, the method comprises the following steps:
(1)将甲醇加入某一基础油中,配置任意体积含量的甲醇汽油;基础油使用拉曼光谱仪测量基础油、上述甲醇汽油以及纯甲醇的拉曼光谱;首先对得到的光谱进行平滑、噪声滤除、荧光背景去除等预处理;然后对基础油与甲醇汽油光谱进行饱和烃特征峰归一化,得到光谱A与光谱B;对纯甲醇光谱进行最大值归一化,得到光谱C; (1) Add methanol to a certain base oil, and configure methanol gasoline with any volume content; the base oil uses a Raman spectrometer to measure the Raman spectra of the base oil, the above-mentioned methanol gasoline and pure methanol; Filtering, fluorescence background removal and other pretreatments; then normalize the saturated hydrocarbon characteristic peaks of the base oil and methanol gasoline spectra to obtain spectrum A and spectrum B; normalize the maximum value of the pure methanol spectrum to obtain spectrum C;
所述基础油指由催化汽油、重整汽油及MTBE混合而成的不含甲醇的常规汽油。 The base oil refers to methanol-free conventional gasoline mixed with catalytic gasoline, reformed gasoline and MTBE.
(2)将光谱B表示为基础油光谱A、纯甲醇光谱C的加权代数和,建立该基础油对应的光谱线性叠加公式: (2) Express the spectrum B as the weighted algebraic sum of the base oil spectrum A and the pure methanol spectrum C, and establish the spectral linear superposition formula corresponding to the base oil:
B=k1[(1-m)A]+k2(mC) +E ; B=k1[(1-m)A]+k2(mC) +E ;
式中, m为甲醇汽油中甲醇的体积百分比浓度,E为光谱测量误差,k1=a, k2=aK,a为系统参数,K为甲醇在甲醇汽油中的相对拉曼强度, In the formula, m is the volume percentage concentration of methanol in methanol gasoline, E is the spectral measurement error, k1=a, k2=aK, a is a system parameter, K is the relative Raman intensity of methanol in methanol gasoline,
然后利用最小二乘法,可得k1、k2,利用K=k2/k1,可得光谱线性叠加公式中关键参数K,最后将光谱A以及参数K存入光谱数据库; Then use the least square method to get k1 and k2, use K=k2/k1 to get the key parameter K in the spectral linear superposition formula, and finally store the spectrum A and parameter K in the spectral database;
(3)选择不同的基础油,重复进行步骤1和2,由此可建立不同基础油对应的光谱线性叠加公式,以及一个包含各种基础油的光谱及其参数K的光谱数据库;
(3) Select different base oils and repeat
(4)对于基础油类型未知、甲醇含量亦未知的待测油样,使用拉曼光谱仪测量其光谱;首先对该光谱进行平滑、噪声滤除、荧光背景去除等预处理,并进行饱和烃归一化,得到光谱D; (4) For the oil sample to be tested with unknown base oil type and unknown methanol content, use a Raman spectrometer to measure its spectrum; Oneization, the spectrum D is obtained;
(5)从光谱数据库中选择不同的基础油光谱A及其相关参数K,利用光谱叠加公式,D=k3A+k4KC+E,其中k3=a(1-m),k4=am使用最小二乘法估算出k3、k4;选择所有情况中估算误差最小的系数k3、k4作为最终的估算系数,利用k3、k4计算出m,由此得到该甲醇汽油样品中的甲醇含量。 (5) Select different base oil spectra A and their related parameters K from the spectral database, use the spectral superposition formula, D=k3A+k4KC+E, where k3=a(1-m), k4=am using the least squares method Estimate k3 and k4; select the coefficients k3 and k4 with the smallest estimation errors in all cases as the final estimation coefficients, use k3 and k4 to calculate m, and thus obtain the methanol content in the methanol gasoline sample.
本发明的有益效果是,本发明基于拉曼光谱线性叠加原理的甲醇汽油甲醇含量快速测定方法测量速度快,分析精度高,所需标定样本大幅度减少,为甲醇汽油在我国的推广过程中提供了一种便捷的检测手段。 The beneficial effect of the present invention is that, the present invention is based on the linear superposition principle of Raman spectrum, and the rapid determination method of the methanol content of methanol gasoline has fast measurement speed, high analysis precision, and the required calibration samples are greatly reduced, which provides a new method for the popularization of methanol gasoline in my country. A convenient means of detection.
附图说明 Description of drawings
图1是某炼油厂基础油光谱; Figure 1 is the base oil spectrum of a refinery;
图2某炼油厂M20光谱; Figure 2 M20 spectrum of a refinery;
图3是纯甲醇光谱; Fig. 3 is pure methanol spectrum;
图4处理后某炼油厂基础油光谱; The base oil spectrum of a refinery after treatment in Fig. 4;
图5处理后某炼油厂M20光谱; Figure 5 M20 spectrum of a refinery after treatment;
图6处理后纯甲醇光谱; Pure methanol spectrum after Fig. 6 treatment;
图7某汽油调和站基础油光谱; Figure 7 Base oil spectrum of a gasoline blending station;
图8某汽油调和站M30光谱; Figure 8 M30 spectrum of a gasoline blending station;
图9处理后某汽油调和站基础油光谱; Figure 9 Base oil spectrum of a gasoline blending station after treatment;
图10处理后某汽油调和站M30光谱; Figure 10 Spectrum of M30 of a certain gasoline blending station after processing;
图11部分测试样品光谱; Figure 11 part of the test sample spectrum;
图12处理后部分测试样品光谱。 Figure 12 Spectra of some test samples after treatment.
具体实施方式 Detailed ways
本发明基于拉曼光谱线性叠加原理的甲醇汽油甲醇含量快速测定方法,包括以下步骤: The present invention is based on the rapid determination method of methanol content in methanol gasoline based on the Raman spectrum linear superposition principle, comprising the following steps:
1、将甲醇加入某一基础油中,配置任意体积含量的甲醇汽油;使用拉曼光谱仪测量基础油、上述甲醇汽油以及纯甲醇的拉曼光谱。首先对得到的光谱进行平滑、噪声滤除、荧光背景去除等预处理。然后对基础油与甲醇汽油光谱进行饱和烃特征峰归一化,得到光谱A与光谱B;对纯甲醇光谱进行最大值归一化,得到光谱C。 1. Add methanol to a certain base oil, and configure methanol gasoline with any volume content; use a Raman spectrometer to measure the Raman spectra of the base oil, the above methanol gasoline and pure methanol. Firstly, preprocessing such as smoothing, noise filtering, and fluorescent background removal was performed on the obtained spectrum. Then, the characteristic peaks of saturated hydrocarbons were normalized for the spectra of base oil and methanol gasoline to obtain spectra A and B;
2、将光谱B表示为基础油光谱A、纯甲醇光谱C的加权代数和,建立该基础油对应的光谱线性叠加公式: 2. Express spectrum B as the weighted algebraic sum of base oil spectrum A and pure methanol spectrum C, and establish the spectral linear superposition formula corresponding to the base oil:
B=k1[(1-m)A]+k2(mC) +E ; B=k1[(1-m)A]+k2(mC) +E ;
式中, m为甲醇汽油中甲醇的体积百分比浓度,E为光谱测量误差,k1=a, k2=aK,a为系统参数,K为甲醇在甲醇汽油中的相对拉曼强度, In the formula, m is the volume percentage concentration of methanol in methanol gasoline, E is the spectral measurement error, k1=a, k2=aK, a is a system parameter, K is the relative Raman intensity of methanol in methanol gasoline,
然后利用最小二乘法,可得k1、k2,利用K=k2/k1,可得光谱线性叠加公式中关键参数K,最后将光谱A以及参数K存入光谱数据库。 Then use the least squares method to get k1 and k2, use K=k2/k1 to get the key parameter K in the spectral linear superposition formula, and finally store the spectrum A and parameter K in the spectral database.
3、选择不同的基础油,重复进行步骤1和2,由此可建立不同基础油对应的光谱线性叠加公式,以及一个包含各种基础油的光谱及其参数K的光谱数据库。
3. Select different base oils, and repeat
4、对于基础油类型未知、甲醇含量亦未知的待测油样,使用拉曼光谱仪测量其光谱。首先对该光谱进行平滑、噪声滤除、荧光背景去除等预处理,并进行饱和烃归一化,得到光谱D。 4. For the oil sample to be tested with unknown base oil type and unknown methanol content, use a Raman spectrometer to measure its spectrum. First, the spectrum was preprocessed by smoothing, noise filtering, fluorescence background removal, etc., and saturated hydrocarbon normalization was performed to obtain spectrum D.
5、从光谱数据库中选择不同的基础油光谱A及其相关参数K,利用光谱叠加公式,D=k3A+k4KC+E,其中k3=a(1-m),k4=am使用最小二乘法估算出k3、k4。选择所有情况中估算误差最小的系数k3、k4作为最终的估算系数,利用k3、k4计算出m,由此得到该甲醇汽油样品中的甲醇含量。 5. Select different base oil spectra A and its related parameters K from the spectral database, use the spectral superposition formula, D=k3A+k4KC+E, where k3=a(1-m), k4=am is estimated by the least square method Out of k3, k4. Select the coefficients k3 and k4 with the smallest estimation errors in all cases as the final estimation coefficients, use k3 and k4 to calculate m, and thus obtain the methanol content in the methanol gasoline sample.
以下结合附图和实例,进一步说明本发明。 Below in conjunction with accompanying drawing and example, further illustrate the present invention.
实施例1: Example 1:
实例光谱测试条件为:激光器中心波长为785nm,探头为InPhotonics拉曼探头,光谱仪使用美国海洋光学公司QE65000型光谱仪。设定光谱仪积分时间10s,采集10次取平均。 The spectral test conditions of the example are: the central wavelength of the laser is 785nm, the probe is an InPhotonics Raman probe, and the spectrometer uses a QE65000 spectrometer from Ocean Optics of the United States. The integration time of the spectrometer was set to 10 s, and the average was collected 10 times.
1、对于某炼油厂基础油,配置甲醇含量20%的甲醇汽油(记为M20)。使用拉曼光谱仪测量基础油、已知甲醇体积含量的甲醇汽油和纯甲醇的拉曼光谱。分别如图1、图2、图3所示。首先对得到的光谱进行平滑、噪声滤除、荧光背景去除等预处理。然后对基础油与甲醇汽油光谱进行饱和烃特征峰归一化,得到光谱A与光谱B,分别如图4、图5所示。对纯甲醇光谱进行最大值归一化,得到光谱C,如图6所示; 1. For the base oil of a refinery, configure methanol gasoline with a methanol content of 20% (denoted as M20). The Raman spectra of base oil, methanol gasoline with known methanol volume content and pure methanol were measured by Raman spectrometer. They are shown in Figure 1, Figure 2, and Figure 3 respectively. Firstly, preprocessing such as smoothing, noise filtering, and fluorescent background removal was performed on the obtained spectrum. Then, the spectra of base oil and methanol gasoline were normalized to the characteristic peaks of saturated hydrocarbons to obtain spectrum A and spectrum B, as shown in Figure 4 and Figure 5, respectively. Carry out maximum normalization to pure methanol spectrum, obtain spectrum C, as shown in Figure 6;
2、将光谱B表示为基础油光谱A、纯甲醇光谱C的加权代数和,建立该基础油对应的光谱线性叠加公式: 2. Express spectrum B as the weighted algebraic sum of base oil spectrum A and pure methanol spectrum C, and establish the spectral linear superposition formula corresponding to the base oil:
B=k1[(1-m)A]+k2(mC) +E ; B=k1[(1-m)A]+k2(mC) +E ;
式中,m为甲醇汽油中甲醇的体积百分比浓度,E为光谱测量误差,k1=a, k2=aK,a为系统参数,K为甲醇在甲醇汽油中的相对拉曼强度, In the formula, m is the volume percentage concentration of methanol in methanol gasoline, E is the spectral measurement error, k1=a, k2=aK, a is a system parameter, K is the relative Raman intensity of methanol in methanol gasoline,
然后利用最小二乘法,可得k1、k2,利用K=k2/k1,可得光谱线性叠加公式中关键参数K=1.333,最后将光谱A以及参数K存入光谱数据库。 Then use the least squares method to get k1 and k2, and use K=k2/k1 to get the key parameter K=1.333 in the spectral linear superposition formula, and finally store the spectrum A and parameter K in the spectral database.
3、选择某汽油调和站的基础油,配置甲醇含量30%的甲醇汽油(记为M30),重复进行(1)、(2)的步骤,其中对应K=1.7932。该汽油调和站的基础油、M30的拉曼光谱如图7、图8中所示。处理后的基础油、M30光谱如图9、图10中所示。 3. Select the base oil of a gasoline blending station, configure methanol gasoline with a methanol content of 30% (denoted as M30), and repeat steps (1) and (2), where K=1.7932. The Raman spectra of the base oil and M30 of the gasoline blending station are shown in Fig. 7 and Fig. 8 . The treated base oil and M30 spectra are shown in Fig. 9 and Fig. 10 .
由此可建立不同基础油对应的光谱叠加公式,以及一个包含各种基础油及相关参数K的光谱数据库。 In this way, the spectral superposition formula corresponding to different base oils can be established, as well as a spectral database containing various base oils and related parameters K.
4、使用某炼油厂基础油配制甲醇含量40%、60%、80%的甲醇汽油;使用某汽油调和站基础油配制甲醇含量0%、5%、10%、15%、20%、30%、40%、50%、60%、70%的甲醇汽油。将以上甲醇汽油作为分别作为基础油类型未知、甲醇含量亦未知的待测样品,使用拉曼光谱仪测量其光谱,图11是其中部分样品的光谱。首先对该光谱进行平滑、噪声滤除、荧光背景去除等预处理,并进行饱和烃归一化,得到相应光谱D,图12是其中部分样品的光谱。 4. Use the base oil of a refinery to prepare methanol gasoline with methanol content of 40%, 60%, 80%; use the base oil of a gasoline blending station to prepare methanol content of 0%, 5%, 10%, 15%, 20%, 30% , 40%, 50%, 60%, 70% methanol gasoline. The above methanol gasoline was used as samples to be tested with unknown base oil type and unknown methanol content, and their spectra were measured with a Raman spectrometer. Figure 11 is the spectra of some of the samples. First, the spectrum is preprocessed by smoothing, noise filtering, fluorescence background removal, etc., and saturated hydrocarbons are normalized to obtain the corresponding spectrum D. Figure 12 is the spectrum of some samples.
5、从光谱数据库中选择不同的基础油光谱A及其相关参数K,利用光谱叠加公式,D=k3A+k4KC+E,其中k3=a(1-m), k4=am使用最小二乘法估算出k3、k4。选择所有情况中估算误差最小的系数k3、k4作为最终的估算系数,利用k3、k4计算出m,由此得到该甲醇汽油样品中的甲醇含量。测试结果如表1和表2所示: 5. Select different base oil spectra A and its related parameters K from the spectral database, use the spectral superposition formula, D=k3A+k4KC+E, where k3=a(1-m), k4=am is estimated by the least square method Out of k3, k4. Select the coefficients k3 and k4 with the smallest estimation errors in all cases as the final estimation coefficients, use k3 and k4 to calculate m, and thus obtain the methanol content in the methanol gasoline sample. The test results are shown in Table 1 and Table 2:
表1:基础油取自炼油厂的样品测量结果 Table 1: Base oil sample measurements taken from refineries
注:表中数据为甲醇汽油中甲醇体积含量。 Note: The data in the table is the volume content of methanol in methanol gasoline.
表2:基础油取1自汽油调和站的样品测量结果。 Table 2: Measurement results of base oil samples taken from a gasoline blending station.
注:表中数据为甲醇汽油中甲醇体积含量。 Note: The data in the table is the volume content of methanol in methanol gasoline.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210039272.3A CN102590175B (en) | 2012-02-21 | 2012-02-21 | Raman spectrum superposition-based method for quickly determining content of methanol in methanol gasoline |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210039272.3A CN102590175B (en) | 2012-02-21 | 2012-02-21 | Raman spectrum superposition-based method for quickly determining content of methanol in methanol gasoline |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102590175A CN102590175A (en) | 2012-07-18 |
CN102590175B true CN102590175B (en) | 2014-04-09 |
Family
ID=46479115
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210039272.3A Expired - Fee Related CN102590175B (en) | 2012-02-21 | 2012-02-21 | Raman spectrum superposition-based method for quickly determining content of methanol in methanol gasoline |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102590175B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103063648B (en) * | 2012-12-31 | 2015-05-27 | 中国食品药品检定研究院 | Method for detecting liquid preparation by utilizing Raman spectra |
CN104749156B (en) * | 2013-12-27 | 2017-08-29 | 同方威视技术股份有限公司 | Raman spectra detection process |
CN105092547B (en) * | 2014-08-15 | 2018-02-27 | 天津陆海石油设备系统工程有限责任公司 | Biased sample fluorescence analysis method based on collection of illustrative plates form |
CN104267018B (en) * | 2014-10-27 | 2018-01-23 | 武汉四方光电科技有限公司 | The processing method of gas concentration signal in a kind of Raman gas analyzer |
CN106198482B (en) * | 2015-05-04 | 2019-07-05 | 清华大学 | The method for whether being added with Western medicine in detection health care product based on Raman spectrum |
CN105466908B (en) * | 2015-12-31 | 2018-04-20 | 安徽芯核防务装备技术股份有限公司 | A kind of sample bottle fixes the Raman spectrum minimizing technology of interference noise |
CN105806825B (en) * | 2016-05-17 | 2019-07-23 | 浙江大学 | A kind of online gas Raman analysis method of gas component |
US11468264B2 (en) | 2017-06-12 | 2022-10-11 | Beijing Cloudoptek Technology Co., Ltd. | Substance ingredient detection method and apparatus, and detection device |
CN108444976B (en) * | 2018-04-26 | 2019-10-22 | 浙江大学 | A method for measuring the calorific value of natural gas based on Raman spectroscopy |
CN110726713A (en) * | 2019-11-19 | 2020-01-24 | 中国人民解放军空军勤务学院 | Method for measuring antioxidant content in jet fuel |
CN110836885A (en) * | 2019-12-19 | 2020-02-25 | 西安石油大学 | A gasoline adulteration identification and analysis method based on Raman spectroscopy combined with random forest algorithm |
CN115343254A (en) * | 2021-05-14 | 2022-11-15 | 中国石油化工股份有限公司 | Method for determining ethanol content in ethanol gasoline |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101403696A (en) * | 2008-10-21 | 2009-04-08 | 浙江大学 | Method for measuring gasoline olefin content based on Raman spectrum |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8019466B2 (en) * | 2007-06-14 | 2011-09-13 | Northrop Grumman Systems Corporation | Devices and methods for detecting hazardous materials |
-
2012
- 2012-02-21 CN CN201210039272.3A patent/CN102590175B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101403696A (en) * | 2008-10-21 | 2009-04-08 | 浙江大学 | Method for measuring gasoline olefin content based on Raman spectrum |
Non-Patent Citations (6)
Title |
---|
Determination of methanol ratio in methanol-doped biogasoline by a fiber Raman sensing system;Qinfeng Xu 等;《Sensors and Actuators B》;20100129;全文 * |
Qinfeng Xu 等.Determination of methanol ratio in methanol-doped biogasoline by a fiber Raman sensing system.《Sensors and Actuators B》.2010, |
Qing Ye 等.Rapid and quantitative detection of ethanol proportion in ethanol-gasoline mixtures by Raman spectroscopy.《Optics Communications》.2009, |
Rapid and quantitative detection of ethanol proportion in ethanol-gasoline mixtures by Raman spectroscopy;Qing Ye 等;《Optics Communications》;20091231;全文 * |
基于低分辨率色散型拉曼光谱仪的汽油苯含量快速分析;林艺玲 等;《光谱学与光谱分析》;20101130;第30卷(第11期);全文 * |
林艺玲 等.基于低分辨率色散型拉曼光谱仪的汽油苯含量快速分析.《光谱学与光谱分析》.2010,第30卷(第11期), |
Also Published As
Publication number | Publication date |
---|---|
CN102590175A (en) | 2012-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102590175B (en) | Raman spectrum superposition-based method for quickly determining content of methanol in methanol gasoline | |
CN104034684B (en) | A kind of water quality multi-index detection method based on uv-visible absorption spectra | |
CN102788778B (en) | Method for rapid determination of methanol and ethanol content of alcohol gasoline | |
CN105352898B (en) | A kind of determining amount method based on spectroscopic methodology COD detections | |
US9709545B2 (en) | Methods and apparatuses for spectral qualification of fuel properties | |
Zawadzki et al. | Biodiesel blend level detection using ultraviolet absorption spectra | |
CN102590132A (en) | Method for measuring methanol content in methanol gasoline | |
CN105372200B (en) | Method for rapidly detecting content of SBS modified asphalt modifier | |
Shimamoto et al. | Alternative method to quantify biodiesel and vegetable oil in diesel-biodiesel blends through 1H NMR spectroscopy | |
US20080172187A1 (en) | Impedance spectroscopy (is) methods and systems for characterizing fuel | |
CN102221533B (en) | Method for quantitatively detecting adulteration of peanut oil based on ultraviolet spectrum | |
CN103729650A (en) | Selection method for near infrared spectrum modeling samples | |
CN109991206B (en) | Method for measuring total alcohol content of alcohol gasoline based on partial least square method | |
CN103175805B (en) | Method for determining indexes of COD and BOD5 in sewage through near infrared spectrometry | |
CN102338743B (en) | Mid-infrared spectrum method for identifying engine fuel type and brand | |
CN101672774A (en) | Method for quickly measuring content of polyvinylidene fluoride in fluorine-carbon paint of chromatic coating steel plate by infrared spectrum method | |
CN104297201A (en) | Method for quickly, accurately and quantitatively detecting ratio of various oil components in blend oil | |
CN106645012A (en) | Method for carrying out rapid quantitative analysis on ester compounds in finished product gasoline and diesel | |
CN102954946B (en) | By the method for infrared spectrum measurement sulfur content in crude oil | |
CN103063599A (en) | Method for predicting crude oil density by transmission infrared spectroscopy | |
CN106645020A (en) | Method for quickly determining oxidation stability of gasoline | |
CA2635930C (en) | Fourier transform infrared (ftir) chemometric method to determine cetane number of diesel fuels containing fatty acid alkyl ester additives | |
CN102323235B (en) | Method for measuring quality indexes of engine fuel by mid-infrared spectroscopy technology | |
Li et al. | A hard modeling approach to determine methanol concentration in methanol gasoline by Raman spectroscopy | |
CN103760131A (en) | Real-time gasoline product attribute prediction method based on near infrared spectrum detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140409 |