CN102589405A - Motor rotor displacement measurement method - Google Patents

Motor rotor displacement measurement method Download PDF

Info

Publication number
CN102589405A
CN102589405A CN2012100363788A CN201210036378A CN102589405A CN 102589405 A CN102589405 A CN 102589405A CN 2012100363788 A CN2012100363788 A CN 2012100363788A CN 201210036378 A CN201210036378 A CN 201210036378A CN 102589405 A CN102589405 A CN 102589405A
Authority
CN
China
Prior art keywords
signal
cosine
sine
pulse signal
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012100363788A
Other languages
Chinese (zh)
Other versions
CN102589405B (en
Inventor
胡金春
朱煜
尹文生
陈龙敏
杨开明
张鸣
徐登峰
穆海华
胡楚雄
刘召
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
U Precision Tech Co Ltd
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201210036378.8A priority Critical patent/CN102589405B/en
Publication of CN102589405A publication Critical patent/CN102589405A/en
Application granted granted Critical
Publication of CN102589405B publication Critical patent/CN102589405B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

一种电机动子位移测量方法,该方法是在动子上沿动子运动方向布置两个磁感应强度传感器,两个传感器相距磁场极距的四分之一,将两者的采样信号分别通过信号处理电路量化并进行幅值归一化处理后作n次倍频运算,再进行过零点检测,生成1组正交脉冲信号,检测脉冲信号的脉冲数,以及该组正交脉冲信号的相位差。本发明直接根据电机定子磁钢阵列在动子运动方向上的正弦磁场信息,将磁场极距τ细分为

Figure DDA0000136380970000011
实现高精度电机动子位移测量。本发明可解决由于电机动子位移测量高精度要求带来的计算方法复杂硬件安装不便及测量装置费用高的问题。

Figure 201210036378

A method for measuring the displacement of a motor mover. The method is to arrange two magnetic induction intensity sensors on the mover along the moving direction of the mover. The two sensors are separated by a quarter of the magnetic field pole distance, and the sampling signals of the two sensors are passed through the The processing circuit quantifies and normalizes the amplitude, then performs n times of frequency multiplication, and then performs zero-crossing detection to generate a group of orthogonal pulse signals, detect the pulse number of the pulse signal, and the phase difference of the group of orthogonal pulse signals . The present invention directly subdivides the magnetic field pitch τ into

Figure DDA0000136380970000011
Realize high-precision motor mover displacement measurement. The invention can solve the problems of complex calculation method, inconvenient hardware installation and high cost of the measuring device brought about by the requirement of high precision in motor mover displacement measurement.

Figure 201210036378

Description

一种电机动子位移测量方法A method for measuring the displacement of a motor mover

技术领域 technical field

本发明涉及一种用于动圈式直线电机、旋转电机等一类具有正弦磁场模型的电机中的动子位移测量方法,特别涉及一种长行程的细分测量算法。The invention relates to a method for measuring the displacement of a mover in a motor with a sinusoidal magnetic field model, such as a moving-coil linear motor and a rotating motor, in particular to a long-stroke subdivision measurement algorithm.

背景技术 Background technique

精密动态测量技术是实现动态精度控制的重要环节。在常规应用领域,光栅尺、激光干涉仪、磁栅尺等传感器作为动圈式直线电机、旋转电机的直线和角度位移的测量方法。专利200720002447.8中,描述了利用光栅位置检测编码器进行位置检测,专利200610033455中,描述了利用光栅编码器进行位置实时反馈来进行定位。这些传感器需要在电机定子上布置专门产生位移信号特征的磁场、栅格等装置,在动子上布置接收位移信号特征的电子处理单元装置;或者在动子上布置专门产生位移信号特征装置,而在定子上布置电子处理单元装置。专门产生位移信号特征装置以及电子处理单元装置两种装置增加了传感器系统的结构复杂性。此外这些传感器测量精度虽然较高,但需要较为复杂的电路与光学设备并且成本较高。而在实际运动过程中,若直接用霍尔传感器进行位置测量,测量信号本身及采样过程都会存在噪声而导致测量精度损失。Precision dynamic measurement technology is an important link to realize dynamic precision control. In conventional application fields, sensors such as grating scales, laser interferometers, and magnetic scale scales are used as measurement methods for linear and angular displacements of moving coil linear motors and rotating motors. Patent 200720002447.8 describes the use of a grating position detection encoder for position detection, and patent 200610033455 describes the use of a grating encoder for real-time position feedback for positioning. These sensors need to arrange magnetic fields, grids and other devices that specially generate displacement signal characteristics on the motor stator, and arrange electronic processing unit devices that receive displacement signal characteristics on the mover; or arrange special devices that generate displacement signal characteristics on the mover, and An electronic processing unit arrangement is arranged on the stator. The special device for generating the displacement signal characteristic and the electronic processing unit device increase the structural complexity of the sensor system. In addition, although these sensors have high measurement accuracy, they require relatively complex circuits and optical devices and are expensive. In the actual motion process, if the Hall sensor is directly used for position measurement, there will be noise in the measurement signal itself and the sampling process, resulting in loss of measurement accuracy.

对于电机这样的对象,其磁场本身就是位移信号检测的一个重要途径。如果能够利用电机本身的磁场信息,实现高精度位移测量,可以降低传感器安装与信号的复杂性。类似专利ZL201010034274.4,需要求解复杂非线性方程,这对工业实时应用带来困难;其他类似专利描述方法的测量结果对测量信号本身要求较高的信噪比,对实现电路提出复杂性、低噪声等高要求。因此,一种既能降低传感器安装与信号的复杂性,又能同时实现精度高、对原始信号质量不敏感、信号处理简单快速的测量方法亟待提出。For an object like a motor, its magnetic field itself is an important way to detect the displacement signal. If the magnetic field information of the motor itself can be used to achieve high-precision displacement measurement, the complexity of sensor installation and signal can be reduced. Similar to the patent ZL201010034274.4, complex nonlinear equations need to be solved, which brings difficulties to industrial real-time applications; the measurement results of other similar patent description methods require a high signal-to-noise ratio for the measurement signal itself, which poses a challenge to the implementation circuit. Noise and other high requirements. Therefore, a measurement method that can not only reduce the complexity of sensor installation and signal, but also achieve high precision, insensitivity to original signal quality, and simple and fast signal processing urgently needs to be proposed.

发明内容 Contents of the invention

本发明的目的在于提供一种电机动子位移的测量方法,利用电机本身的磁场信息,实现电机动子的高精度位移测量,无需特别转换算法,可直接输出工控领域常用的正交编码信号。The purpose of the present invention is to provide a method for measuring the displacement of the motor mover, which uses the magnetic field information of the motor itself to realize the high-precision displacement measurement of the motor mover, without special conversion algorithm, and can directly output the commonly used orthogonal coding signals in the field of industrial control.

为了达到上述目的,本发明所采用的技术方案如下:In order to achieve the above object, the technical scheme adopted in the present invention is as follows:

1)在电机定子磁钢阵列形成的正弦磁场中沿动子运动方向在动子上布置两个磁感应强度传感器:正弦传感器和余弦传感器,所述正弦传感器和余弦传感器相距τ/4,所述τ为电机正弦磁场的磁场极距,将所述正弦传感器的采样信号通过信号处理电路量化并进行幅值归一化处理后得到正弦测量信号S0,将所述余弦传感器的采样信号通过所述信号处理电路量化并进行幅值归一化处理后得到余弦测量信号C01) In the sinusoidal magnetic field formed by the motor stator magnetic steel array, two magnetic induction sensors are arranged on the mover along the moving direction of the mover: a sine sensor and a cosine sensor, and the distance between the sine sensor and the cosine sensor is τ/4, and the τ is the magnetic field pole pitch of the sinusoidal magnetic field of the motor, the sampling signal of the sine sensor is quantified by the signal processing circuit and the amplitude normalization process is performed to obtain the sine measurement signal S 0 , the sampling signal of the cosine sensor is passed through the signal The processing circuit quantifies and normalizes the amplitude to obtain the cosine measurement signal C 0 ;

2)通过所述信号处理电路(8)将所述正弦测量信号S0和余弦测量信号C0作n次倍频运算,即2n细分运算:2) by the signal processing circuit (8), the sine measurement signal S 0 and the cosine measurement signal C 0 are used for n times frequency multiplication operation, i.e. 2 n subdivision operations:

S1=2*S0*C0,C1=C0*C0-S0*S0S 1 =2*S 0 *C 0 , C 1 =C 0 *C 0 -S 0 *S 0 ,

S2=2*S1*C1,C2=C1*C1-S1*S1S 2 =2*S 1 *C 1 , C 2 =C 1 *C 1 −S 1 *S 1 ,

...,...,

Sn=2*Sn-1*Cn-1,Cn=Cn-1*Cn-1-Sn-1*Sn-1 S n =2*S n-1 *C n-1 , C n =C n-1 *C n-1 -S n-1 *S n-1

得到正弦细分信号Sn和余弦细分信号Cn,其中:S1、C1、S2、C2...Sn-1和Cn-1为中间变量,n=1,2,3,...;Obtain sine subdivision signal S n and cosine subdivision signal C n , wherein: S 1 , C 1 , S 2 , C 2 ... S n-1 and C n-1 are intermediate variables, n=1, 2, 3,...;

3)对步骤2)中经过n次迭代计算后得到的所述正弦细分信号Sn和余弦细分信号Cn进行过零点检测,生成1组正交测量脉冲信号:正弦测量脉冲信号A和余弦测量脉冲信号B;所述正弦细分信号Sn>0,则所述正弦测量脉冲信号A输出高电平;所述正弦细分信号Sn<0,则所述正弦测量脉冲信号A输出低电平;所述余弦细分信号Cn>0,则所述余弦测量脉冲信号B输出高电平;所述余弦细分信号Cn<0,则所述余弦测量脉冲信号B输出低电平;3) Perform zero-crossing detection on the sine subdivision signal Sn and cosine subdivision signal Cn obtained after n times of iterative calculation in step 2), and generate a group of orthogonal measurement pulse signals: sine measurement pulse signal A and Cosine measurement pulse signal B; if the sine subdivision signal S n >0, the sine measurement pulse signal A outputs a high level; if the sine subdivision signal S n <0, the sine measurement pulse signal A outputs Low level; if the cosine subdivision signal C n >0, the cosine measurement pulse signal B outputs a high level; if the cosine subdivision signal C n <0, the cosine measurement pulse signal B outputs a low level flat;

4)检测所述正弦测量脉冲信号A或余弦测量脉冲信号B的脉冲数,以及正弦测量脉冲信号A和余弦测量脉冲信号B的相位差,所述的正弦测量脉冲信号A或余弦测量脉冲信号B的一个脉冲代表一个位移分辨率

Figure BDA0000136380950000021
n=1,2,3,...,正弦测量脉冲信号A的相位落后于余弦测量脉冲信号B的相位表示正向位移,正弦测量脉冲信号A的相位落提前于余弦测量脉冲信号B的相位表示反向位移,从而实现电机动子的位移测量。4) Detect the pulse number of the sine measurement pulse signal A or the cosine measurement pulse signal B, and the phase difference between the sine measurement pulse signal A and the cosine measurement pulse signal B, the sine measurement pulse signal A or the cosine measurement pulse signal B One pulse represents a displacement resolution of
Figure BDA0000136380950000021
n=1, 2, 3,..., the phase of the sine measurement pulse signal A lags behind the phase of the cosine measurement pulse signal B, indicating a positive displacement, and the phase of the sine measurement pulse signal A falls ahead of the phase of the cosine measurement pulse signal B Indicates the reverse displacement, so as to realize the displacement measurement of the motor mover.

上述技术方案中,经过n次倍频运算后,n=1,2,3,...,所述的正弦细分信号Sn和余弦细分信号Cn的周期为随着倍频运算次数n的增大,所述周期

Figure BDA0000136380950000023
将逐步变小。In the above-mentioned technical scheme, after n times of frequency multiplication operations, n=1, 2, 3, ..., the period of the sine subdivision signal S n and the cosine subdivision signal C n is With the increase of frequency multiplication operation times n, the cycle
Figure BDA0000136380950000023
will gradually become smaller.

本发明的特征在于,步骤2)中倍频运算次数n的确定方法如下:The present invention is characterized in that, in step 2), the determining method of frequency multiplication number of times n is as follows:

设BM为所述电机定子磁钢阵列形成的正弦磁场的磁感应强度幅值,vx为传感器测量噪声,噪声水平为为保证能够顺利检测过零点,最大的倍频运算次数n为

Figure BDA0000136380950000032
Suppose B M is the magnetic induction intensity amplitude of the sinusoidal magnetic field formed by the stator magnetic steel array of the motor, v x is the sensor measurement noise, and the noise level is In order to ensure that the zero-crossing point can be detected smoothly, the maximum number of multiplication operations n is
Figure BDA0000136380950000032

本发明步骤2)中的所述倍频运算次数n不同,可实现不同的细分测量。The times n of frequency multiplication operations in step 2) of the present invention are different, and different subdivision measurements can be realized.

采用以上技术方案可使得本发明取得有益效果,即不需布置专门产生位移信号特征装置,直接利用电机定子的正弦磁场信息,降低了传感器系统的结构复杂性,且由于算法只涉及简单运算更容易获得快速测量,同时不需昂贵的电子处理电路和光学器件使得成本得以降低,在保证能够检测所述过零点的情况下,保障实现高精度动子位移测量。Adopting the above technical scheme can make the present invention achieve beneficial effects, that is, it does not need to arrange a special device for generating displacement signal characteristics, and directly uses the sinusoidal magnetic field information of the motor stator, which reduces the structural complexity of the sensor system, and because the algorithm only involves simple calculations, it is easier Obtaining fast measurements without the need for expensive electronic processing circuits and optics reduces costs, guaranteeing high precision mover displacement measurements while ensuring detection of said zero crossings.

附图说明 Description of drawings

图1是本发明采用动圈式直线电机为例的动子位移测量装置整体结构示意图。FIG. 1 is a schematic diagram of the overall structure of a mover displacement measuring device using a moving coil linear motor as an example in the present invention.

图2a、2b、2c、2d是本发明分别以倍频运算次数n=4和n=8为例的正余弦测量信号、正余弦细分信号以及正余弦测量脉冲信号的示意图。2a, 2b, 2c, and 2d are schematic diagrams of the sine-cosine measurement signal, the sine-cosine subdivision signal, and the sine-cosine measurement pulse signal respectively taking frequency multiplication operations n=4 and n=8 as examples in the present invention.

图3a、3b是本发明工作过程中以动子位移两种不同情况为例的正余弦测量脉冲信号的示意图。3a and 3b are schematic diagrams of sine and cosine measurement pulse signals in the working process of the present invention taking two different cases of mover displacement as examples.

其中,1-定子;2-磁钢阵列;3-正弦传感器;4-余弦传感器;5-线圈;6-动子;7-信号线;8-信号处理电路。Among them, 1-stator; 2-magnetic steel array; 3-sine sensor; 4-cosine sensor; 5-coil; 6-mover; 7-signal line; 8-signal processing circuit.

具体实施方式 Detailed ways

下面结合附图和实施例对本发明进行进一步的说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.

图1为本发明采用动圈式直线电机为例的动子位移测量方法中传感器的安装结构示意图,包括动圈式直线电机、正弦传感器3、余弦传感器4及信号处理电路8,所述动圈式直线电机包括设置有磁钢阵列2的定子1和与之相配合的设置有线圈5的动子6,所述信号处理电路8通过信号线7与正弦传感器3和余弦传感器4相连。Fig. 1 is a schematic diagram of the installation structure of the sensor in the moving element displacement measurement method using a moving coil linear motor as an example in the present invention, including a moving coil linear motor, a sine sensor 3, a cosine sensor 4 and a signal processing circuit 8, the moving coil The type linear motor includes a stator 1 provided with a magnetic steel array 2 and a mover 6 provided with a coil 5 matched with it, and the signal processing circuit 8 is connected with the sine sensor 3 and the cosine sensor 4 through the signal line 7 .

本发明提供的一种电机动子位移测量方法,该方法包括以下步骤:A method for measuring the displacement of a motor mover provided by the invention comprises the following steps:

1)在电机定子1磁钢阵列形成的正弦磁场中沿动子运动方向在动子6上布置两个磁感应强度传感器:正弦传感器3和余弦传感器4,所述正弦传感器和余弦传感器相距τ/4,所述τ为电机正弦磁场的磁场极距,将所述正弦传感器的采样信号通过信号处理电路8量化并进行幅值归一化处理后得到正弦测量信号S0,将所述余弦传感器的采样信号通过所述信号处理电路8量化并进行幅值归一化处理后得到余弦测量信号C01) In the sinusoidal magnetic field formed by the magnetic steel array of the motor stator 1, two magnetic induction sensors are arranged on the mover 6 along the moving direction of the mover: a sine sensor 3 and a cosine sensor 4, and the sine sensor and the cosine sensor are separated by τ/4 , the τ is the magnetic field pole pitch of the sinusoidal magnetic field of the motor, the sampling signal of the sine sensor is quantified by the signal processing circuit 8 and the amplitude normalization process is performed to obtain the sine measurement signal S 0 , the sampling signal of the cosine sensor is After the signal is quantized by the signal processing circuit 8 and subjected to amplitude normalization processing, a cosine measurement signal C 0 is obtained;

2)通过所述信号处理电路8将所述正弦测量信号S0和余弦测量信号C0作n次倍频运算:2) by said signal processing circuit 8, said sine measurement signal S 0 and cosine measurement signal C 0 are done n times frequency multiplication operation:

S1=2*S0*C0,C1=C0*C0-S0*S0S 1 =2*S 0 *C 0 , C 1 =C 0 *C 0 -S 0 *S 0 ,

S2=2*S1*C1,C2=C1*C1-S1*S1S 2 =2*S 1 *C 1 , C 2 =C 1 *C 1 −S 1 *S 1 ,

...,...,

Sn=2*Sn-1*Cn-1,Cn=Cn-1*Cn-1-Sn-1*Sn-1 S n =2*S n-1 *C n-1 , C n =C n-1 *C n-1 -S n-1 *S n-1

得到正弦细分信号Sn和余弦细分信号Cn,其中:S1、C1、S2、C2...Sn-1和Cn-1为中间变量,n=1,2,3,...;Obtain sine subdivision signal S n and cosine subdivision signal C n , wherein: S 1 , C 1 , S 2 , C 2 ... S n-1 and C n-1 are intermediate variables, n=1, 2, 3,...;

3)对所述正弦细分信号Sn和余弦细分信号Cn进行过零点检测,生成1组正交测量脉冲信号:正弦测量脉冲信号A和余弦测量脉冲信号B;所述正弦细分信号Sn>0,则所述正弦测量脉冲信号A输出高电平;所述正弦细分信号Sn<0,则所述正弦测量脉冲信号A输出低电平;所述余弦细分信号Cn>0,则所述余弦测量脉冲信号B输出高电平;所述余弦细分信号Cn<0,则所述余弦测量脉冲信号B输出低电平;3) Carry out zero-crossing detection on the sine subdivision signal S n and the cosine subdivision signal C n to generate a group of orthogonal measurement pulse signals: sine measurement pulse signal A and cosine measurement pulse signal B; the sine subdivision signal If S n >0, the sine measurement pulse signal A outputs a high level; if the sine subdivision signal S n <0, the sine measurement pulse signal A outputs a low level; the cosine subdivision signal C n >0, the cosine measurement pulse signal B outputs a high level; the cosine subdivision signal C n <0, then the cosine measurement pulse signal B outputs a low level;

4)检测所述正弦测量脉冲信号A或余弦测量脉冲信号B的脉冲数,以及所述正弦测量脉冲信号A和所述余弦测量脉冲信号B的相位差,所述正弦测量脉冲信号A或余弦测量脉冲信号B的一个脉冲代表一个位移分辨率

Figure BDA0000136380950000041
n=1,2,3,...,所述正弦测量脉冲信号A的相位落后于所述余弦测量脉冲信号B的相位表示正向位移,所述正弦测量脉冲信号A的相位提前于所述余弦测量脉冲信号B的相位表示反向位移,从而实现电机动子的位移测量。4) Detect the pulse number of the sine measurement pulse signal A or the cosine measurement pulse signal B, and the phase difference between the sine measurement pulse signal A and the cosine measurement pulse signal B, the sine measurement pulse signal A or the cosine measurement pulse signal One pulse of pulse signal B represents one displacement resolution
Figure BDA0000136380950000041
n=1, 2, 3,..., the phase of the sine measurement pulse signal A lagging behind the phase of the cosine measurement pulse signal B indicates positive displacement, and the phase of the sine measurement pulse signal A is ahead of the phase of the cosine measurement pulse signal B The phase of the cosine measurement pulse signal B represents the reverse displacement, thereby realizing the displacement measurement of the motor mover.

经过n次倍频运算后,所述的正弦细分信号Sn和余弦细分信号Cn的周期为

Figure BDA0000136380950000042
随着倍频运算次数n的增大,所述周期
Figure BDA0000136380950000043
将逐步变小。After n times of frequency multiplication operations, the period of the sine subdivision signal S n and the cosine subdivision signal C n is
Figure BDA0000136380950000042
With the increase of frequency multiplication operation times n, the cycle
Figure BDA0000136380950000043
will gradually become smaller.

所述倍频运算次数n的确定方法如下:The method for determining the number of frequency multiplication operations n is as follows:

设BM为所述电机定子磁钢阵列形成的正弦磁场的磁感应强度幅值,vx为传感器测量噪声,噪声水平为

Figure BDA0000136380950000044
为保证能够顺利检测过零点,最大的空间倍频运算次数n为 n = [ log 2 ( B M v x ) - 3 ] . Suppose B M is the magnetic induction intensity amplitude of the sinusoidal magnetic field formed by the stator magnetic steel array of the motor, v x is the sensor measurement noise, and the noise level is
Figure BDA0000136380950000044
In order to ensure that the zero-crossing point can be detected smoothly, the maximum number of spatial frequency multiplication operations n is no = [ log 2 ( B m v x ) - 3 ] .

所述倍频运算次数n不同,可实现不同的细分测量。The times n of frequency doubling operations are different, and different subdivision measurements can be realized.

实施例:Example:

参考图1、3,演示动子6的位移测量过程,以便更好地理解本发明。Referring to Figures 1 and 3, the displacement measurement process of the mover 6 is demonstrated for a better understanding of the present invention.

所述磁场极距τ=35.35mm,所述的正弦传感器和余弦传感器相距τ/4即8.8375mm。采用12位AD采样,噪声水平

Figure BDA0000136380950000051
根据最大倍频运算次数计算公式计算n=8。The pole distance of the magnetic field is τ=35.35mm, and the distance between the sine sensor and the cosine sensor is τ/4, that is, 8.8375mm. Using 12-bit AD sampling, the noise level
Figure BDA0000136380950000051
Calculate n=8 according to the calculation formula of the maximum number of multiplication operations.

1)根据上述计算,在动圈式直线电机定子磁钢阵列2形成的正弦磁场中沿动子运动方向在动子上布置两个磁感应强度传感器:即正弦传感器3和余弦传感器4,所述τ为电机正弦磁场的磁场极距,所述正弦传感器3和余弦传感器4相距τ/4即8.8375mm,将所述正弦传感器3的采样信号经过信号处理电路8量化并进行幅值归一化处理后得到正弦测量信号S0,将所述余弦传感器4的采样信号经过信号处理电路(8)量化并进行幅值归一化处理后得到余弦测量信号C01) According to the above calculation, in the sinusoidal magnetic field formed by the stator magnetic steel array 2 of the moving coil linear motor, two magnetic induction sensors are arranged on the mover along the moving direction of the mover: the sine sensor 3 and the cosine sensor 4, the τ It is the magnetic field pole distance of the sinusoidal magnetic field of the motor, and the distance between the sine sensor 3 and the cosine sensor 4 is τ/4, which is 8.8375 mm. Obtain the sine measurement signal S 0 , quantify the sampled signal of the cosine sensor 4 through the signal processing circuit (8) and perform amplitude normalization processing to obtain the cosine measurement signal C 0 ;

2)通过所述信号处理电路8对所述正弦测量信号S0和余弦测量信号C0作n次即8次倍频运算,即28细分运算:2) by the signal processing circuit 8, the sine measurement signal S 0 and the cosine measurement signal C 0 are n times, that is, 8 frequency multiplication operations, that is, 28 subdivision operations:

S1=2*S0*C0,C1=C0*C0-S0*S0S 1 =2*S 0 *C 0 , C 1 =C 0 *C 0 -S 0 *S 0 ,

S2=2*S1*C1,C2=C1*C1-S1*S1S 2 =2*S 1 *C 1 , C 2 =C 1 *C 1 −S 1 *S 1 ,

S3=2*S2*C2,C3=C2*C2-S2*S2S 3 =2*S 2 *C 2 , C 3 =C 2 *C 2 −S 2 *S 2 ,

S4=2*S3*C3,C4=C3*C3-S3*S3S 4 =2*S 3 *C 3 , C 4 =C 3 *C 3 −S 3 *S 3 ,

S5=2*S4*C4,C5=C4*C4-S4*S4S 5 =2*S 4 *C 4 , C 5 =C 4 *C 4 −S 4 *S 4 ,

S6=2*S5*C5,C6=C5*C5-S5*S5S 6 =2*S 5 *C 5 , C 6 =C 5 *C 5 −S 5 *S 5 ,

S7=2*S6*C6,C7=C6*C6-S6*S6S 7 =2*S 6 *C 6 , C 7 =C 6 *C 6 −S 6 *S 6 ,

S8=2*S7*C7,C8=C7*C7-S7*S7 S 8 =2*S 7 *C 7 , C 8 =C 7 *C 7 −S 7 *S 7

得到正弦细分信号S8和余弦细分信号C8,其中:S1、C1、S2、C2、S3、C3、S4、C4、S5、C5、S6、C6、S7和C7为中间变量;Sine subdivision signal S 8 and cosine subdivision signal C 8 are obtained, among which: S 1 , C 1 , S 2 , C 2 , S 3 , C 3 , S 4 , C 4 , S 5 , C 5 , S 6 , C 6 , S 7 and C 7 are intermediate variables;

3)参考图2c、2d,图2c、2d为分别为以n=8为例的正弦测量信号、正弦细分信号、正弦测量脉冲信号的示意图和余弦测量信号、余弦细分信号、余弦测量脉冲信号的示意图,将步骤2)中经过n次即8次迭代计算后得到的正弦细分信号S8和余弦细分信号C8进行过零点检测,生成1组正交测量脉冲信号:正弦测量脉冲信号A和余弦测量脉冲信号B;所述的正弦细分信号S8>0,则正弦测量脉冲信号A输出高电平,正弦细分信号S8<0,则正弦测量脉冲信号A输出低电平;所述的余弦细分信号C8>0,则余弦测量脉冲信号B输出高电平,余弦细分信号C8<0,则余弦测量脉冲信号B输出低电平。3) With reference to Figures 2c and 2d, Figures 2c and 2d are schematic diagrams of the sine measurement signal, sine subdivision signal, sine measurement pulse signal and cosine measurement signal, cosine subdivision signal, and cosine measurement pulse respectively taking n=8 as an example The schematic diagram of the signal, the sine subdivision signal S 8 and the cosine subdivision signal C 8 obtained after n times or 8 iterative calculations in step 2) are subjected to zero-crossing detection to generate a group of orthogonal measurement pulse signals: sine measurement pulse Signal A and cosine measurement pulse signal B; if the sine subdivision signal S 8 >0, the sine measurement pulse signal A outputs a high level, and the sine subdivision signal S 8 <0, then the sine measurement pulse signal A outputs a low level If the cosine subdivision signal C 8 >0, the cosine measurement pulse signal B outputs a high level, and if the cosine subdivision signal C 8 <0, then the cosine measurement pulse signal B outputs a low level.

4)参考图3a、3b,图3a检测在t时刻正弦测量脉冲信号A的脉冲数从0时刻计起为3个,代表的位移长度,正弦测量脉冲信号A的相位落后于余弦测量脉冲信号B的相位表示正向位移,故图3a表示t时刻相对于0时刻位移为+0.4143mm;图3b检测在t时刻余弦测量脉冲信号B的脉冲数从0时刻计起为4个,代表的位移长度,正弦测量脉冲信号A的相位提前于余弦测量脉冲信号B的相位表示反向位移,故图3b表示t时刻相对于0时刻位移为-0.5523mm。4) With reference to Figures 3a and 3b, Figure 3a detects that the number of pulses of the sinusoidal measurement pulse signal A at time t is 3 from time 0, representing The displacement length of the sine measurement pulse signal A lags behind the phase of the cosine measurement pulse signal B, indicating a positive displacement, so Figure 3a shows that the displacement at time t relative to time 0 is +0.4143mm; Figure 3b detects the cosine measurement pulse at time t The number of pulses of signal B is 4 from time 0, representing The displacement length of the sine measurement pulse signal A is ahead of the phase of the cosine measurement pulse signal B to indicate the reverse displacement, so Figure 3b shows that the displacement at time t relative to time 0 is -0.5523mm.

通过上述步骤,直接利用电机本身的正弦磁场信息,降低了系统复杂性,硬件安装方便,计算方法简单快速,不需成本高的光学器件,节约了成本,在保证能够检测过零点的情况下,保障实现高分辨率电机动子位移测量。Through the above steps, the sinusoidal magnetic field information of the motor itself is directly used to reduce the complexity of the system, the hardware installation is convenient, the calculation method is simple and fast, and high-cost optical devices are not required, which saves costs. Ensure the realization of high-resolution motor mover displacement measurement.

Claims (2)

1.一种电机动子位移测量方法,其特征在于,所述方法包括:1. A method for measuring displacement of an electric mover, characterized in that the method comprises: 1)在电机定子(1)磁钢阵列形成的正弦磁场中沿动子运动方向在动子(6)上布置两个磁感应强度传感器:正弦传感器(3)和余弦传感器(4),所述正弦传感器和余弦传感器相距τ/4,所述τ为电机正弦磁场的磁场极距,将所述正弦传感器的采样信号通过信号处理电路(8)量化并进行幅值归一化处理后得到正弦测量信号S0,将所述余弦传感器的采样信号通过所述信号处理电路(8)量化并进行幅值归一化处理后得到余弦测量信号C01) In the sinusoidal magnetic field formed by the magnetic steel array of the motor stator (1), two magnetic induction sensors are arranged on the mover (6) along the moving direction of the mover: a sine sensor (3) and a cosine sensor (4). The distance between the sensor and the cosine sensor is τ/4, and the τ is the magnetic field pole distance of the sinusoidal magnetic field of the motor. The sampling signal of the sinusoidal sensor is quantified by the signal processing circuit (8) and the amplitude normalization process is performed to obtain the sinusoidal measurement signal S 0 , quantizing the sampled signal of the cosine sensor through the signal processing circuit (8) and performing amplitude normalization processing to obtain a cosine measurement signal C 0 ; 2)通过所述信号处理电路(8)将所述正弦测量信号S0和余弦测量信号C0作n次倍频运算:2) by said signal processing circuit (8) said sine measurement signal S 0 and cosine measurement signal C 0 are done n times frequency multiplication operation: S1=2*S0*C0,C1=C0*C0-S0*S0S 1 =2*S 0 *C 0 , C 1 =C 0 *C 0 -S 0 *S 0 , S2=2*S1*C1,C2=C1*C1-S1*S1S 2 =2*S 1 *C 1 , C 2 =C 1 *C 1 −S 1 *S 1 , ...,..., Sn=2*Sn-1*Cn-1,Cn=Cn-1*Cn-1-Sn-1*Sn-1 S n =2*S n-1 *C n-1 , C n =C n-1 *C n-1 -S n-1 *S n-1 得到正弦细分信号Sn和余弦细分信号Cn,其中:S1、C1、S2、C2...Sn-1和Cn-1为中间变量,n=1,2,3,...;Obtain sine subdivision signal S n and cosine subdivision signal C n , wherein: S 1 , C 1 , S 2 , C 2 ... S n-1 and C n-1 are intermediate variables, n=1, 2, 3,...; 3)对所述正弦细分信号Sn和余弦细分信号Cn进行过零点检测,生成一组正交测量脉冲信号:正弦测量脉冲信号A和余弦测量脉冲信号B;所述正弦细分信号Sn>0,则所述正弦测量脉冲信号A输出高电平;所述正弦细分信号Sn<0,则所述正弦测量脉冲信号A输出低电平;所述余弦细分信号Cn>0,则所述余弦测量脉冲信号B输出高电平;所述余弦细分信号Cn<0,则所述余弦测量脉冲信号B输出低电平;3) Carry out zero-crossing detection to described sine subdivision signal S n and cosine subdivision signal C n , generate a group of orthogonal measurement pulse signals: sine measurement pulse signal A and cosine measurement pulse signal B; described sine subdivision signal If S n >0, the sine measurement pulse signal A outputs a high level; if the sine subdivision signal S n <0, the sine measurement pulse signal A outputs a low level; the cosine subdivision signal C n >0, the cosine measurement pulse signal B outputs a high level; the cosine subdivision signal C n <0, then the cosine measurement pulse signal B outputs a low level; 4)检测所述正弦测量脉冲信号A或余弦测量脉冲信号B的脉冲数,以及所述正弦测量脉冲信号A和所述余弦测量脉冲信号B的相位差,所述正弦测量脉冲信号A或余弦测量脉冲信号B的一个脉冲代表一个位移分辨率
Figure FDA0000136380940000011
n=1,2,3,...,所述正弦测量脉冲信号A的相位落后于所述余弦测量脉冲信号B的相位表示正向位移,所述正弦测量脉冲信号A的相位提前于所述余弦测量脉冲信号B的相位表示反向位移,从而实现电机动子的位移测量。
4) Detect the pulse number of the sine measurement pulse signal A or the cosine measurement pulse signal B, and the phase difference between the sine measurement pulse signal A and the cosine measurement pulse signal B, the sine measurement pulse signal A or the cosine measurement pulse signal One pulse of pulse signal B represents one displacement resolution
Figure FDA0000136380940000011
n=1, 2, 3,..., the phase of the sine measurement pulse signal A lagging behind the phase of the cosine measurement pulse signal B indicates positive displacement, and the phase of the sine measurement pulse signal A is ahead of the phase of the cosine measurement pulse signal B The phase of the cosine measurement pulse signal B represents the reverse displacement, thereby realizing the displacement measurement of the motor mover.
2.根据权利要求1所述的一种电机动子位移测量方法,其特征在于,步骤2)中倍频运算次数n的确定方法如下:2. a kind of motor mover displacement measuring method according to claim 1, is characterized in that, step 2) in the determination method of frequency multiplication operation times n as follows: 设BM为所述电机定子磁钢阵列形成的正弦磁场的磁感应强度幅值,vx为传感器测量噪声,噪声水平为
Figure FDA0000136380940000021
为保证能够顺利检测过零点,最大的倍频运算次数n为
Figure FDA0000136380940000022
Suppose B M is the magnetic induction intensity amplitude of the sinusoidal magnetic field formed by the stator magnetic steel array of the motor, v x is the sensor measurement noise, and the noise level is
Figure FDA0000136380940000021
In order to ensure that the zero-crossing point can be detected smoothly, the maximum number of multiplication operations n is
Figure FDA0000136380940000022
CN201210036378.8A 2012-02-17 2012-02-17 Motor rotor displacement measurement method Active CN102589405B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210036378.8A CN102589405B (en) 2012-02-17 2012-02-17 Motor rotor displacement measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210036378.8A CN102589405B (en) 2012-02-17 2012-02-17 Motor rotor displacement measurement method

Publications (2)

Publication Number Publication Date
CN102589405A true CN102589405A (en) 2012-07-18
CN102589405B CN102589405B (en) 2014-06-04

Family

ID=46478402

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210036378.8A Active CN102589405B (en) 2012-02-17 2012-02-17 Motor rotor displacement measurement method

Country Status (1)

Country Link
CN (1) CN102589405B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106849520A (en) * 2016-11-29 2017-06-13 广东德康威尔科技有限公司 A kind of linear electric motors track encoder, linear electric motors and its method for detecting position
CN107024170A (en) * 2017-04-01 2017-08-08 清华大学 A kind of maglev planar motor mover hoverheight measuring system and method
CN107063064A (en) * 2017-04-01 2017-08-18 清华大学 A kind of Three Degree Of Freedom position measuring method of large area levitation planar motor mover
CN107152904A (en) * 2016-03-02 2017-09-12 深圳市祈飞科技有限公司 A kind of magnetic railings ruler digital readout system
CN107576295A (en) * 2017-09-21 2018-01-12 北京机械设备研究所 A kind of electric mover high-speed straight-line displacement sensing detection means
CN108233816A (en) * 2017-12-20 2018-06-29 湖南省军民融合装备技术创新中心 A kind of method and apparatus for the processing of rotor position signal synthesis
CN109470133A (en) * 2018-11-05 2019-03-15 浙江大学 Electrostatic Self-Powered Strain Grid Sensor
CN109708673A (en) * 2019-01-17 2019-05-03 北京金钢科技有限公司 Separate type magnetic coder based on pattern
CN109916287A (en) * 2019-01-30 2019-06-21 西安维控自动化科技有限公司 A kind of in-plane displancement sensor, displacement detecting method and system based on magnetic induction
CN110530250A (en) * 2019-09-24 2019-12-03 天津捷力自动化设备有限公司 A kind of novel sense grid and its working method for displacement measurement
CN111969797A (en) * 2020-09-18 2020-11-20 张鹏鹏 Bilinear Hall detection system of linear motor
CN113029211A (en) * 2021-03-25 2021-06-25 浙江锐鹰传感技术有限公司 Implementation method of high-precision encoder with cable-free rotor
CN115930763A (en) * 2022-12-08 2023-04-07 楚瑞智能科技(苏州)有限公司 Displacement measurement method and device based on magnetic grid ruler

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0726448A1 (en) * 1995-02-09 1996-08-14 Festo KG Magnetic position sensor
DE102007021231A1 (en) * 2006-05-26 2007-11-29 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Position sensor for determining the position of a gear selector in an automatic gearbox comprises magnets arranged along a moving direction of a moving object, Hall sensors displaced in the moving direction and a control device
CN101660892A (en) * 2008-08-28 2010-03-03 S.N.R.鲁尔门斯公司 System and method for measuring axial movement of rotating mobile element
CN101769764A (en) * 2010-01-19 2010-07-07 清华大学 One-dimensional positioning method of motion platform based on linear magnetic steel array

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0726448A1 (en) * 1995-02-09 1996-08-14 Festo KG Magnetic position sensor
DE102007021231A1 (en) * 2006-05-26 2007-11-29 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Position sensor for determining the position of a gear selector in an automatic gearbox comprises magnets arranged along a moving direction of a moving object, Hall sensors displaced in the moving direction and a control device
CN101660892A (en) * 2008-08-28 2010-03-03 S.N.R.鲁尔门斯公司 System and method for measuring axial movement of rotating mobile element
CN101769764A (en) * 2010-01-19 2010-07-07 清华大学 One-dimensional positioning method of motion platform based on linear magnetic steel array

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘红丽等: "光栅尺在永磁直线同步电动机测速测位移中的应用", 《电气技术》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107152904A (en) * 2016-03-02 2017-09-12 深圳市祈飞科技有限公司 A kind of magnetic railings ruler digital readout system
CN106849520A (en) * 2016-11-29 2017-06-13 广东德康威尔科技有限公司 A kind of linear electric motors track encoder, linear electric motors and its method for detecting position
CN107024170A (en) * 2017-04-01 2017-08-08 清华大学 A kind of maglev planar motor mover hoverheight measuring system and method
CN107063064A (en) * 2017-04-01 2017-08-18 清华大学 A kind of Three Degree Of Freedom position measuring method of large area levitation planar motor mover
CN107063064B (en) * 2017-04-01 2018-11-30 清华大学 A kind of Three Degree Of Freedom position measurement method of large area levitation planar motor mover
CN107576295A (en) * 2017-09-21 2018-01-12 北京机械设备研究所 A kind of electric mover high-speed straight-line displacement sensing detection means
CN108233816A (en) * 2017-12-20 2018-06-29 湖南省军民融合装备技术创新中心 A kind of method and apparatus for the processing of rotor position signal synthesis
CN109470133A (en) * 2018-11-05 2019-03-15 浙江大学 Electrostatic Self-Powered Strain Grid Sensor
CN109708673A (en) * 2019-01-17 2019-05-03 北京金钢科技有限公司 Separate type magnetic coder based on pattern
CN109916287A (en) * 2019-01-30 2019-06-21 西安维控自动化科技有限公司 A kind of in-plane displancement sensor, displacement detecting method and system based on magnetic induction
CN109916287B (en) * 2019-01-30 2020-11-27 西安维控自动化科技有限公司 Planar displacement sensor based on magnetic induction, displacement detection method and system
CN110530250A (en) * 2019-09-24 2019-12-03 天津捷力自动化设备有限公司 A kind of novel sense grid and its working method for displacement measurement
CN111969797A (en) * 2020-09-18 2020-11-20 张鹏鹏 Bilinear Hall detection system of linear motor
CN113029211A (en) * 2021-03-25 2021-06-25 浙江锐鹰传感技术有限公司 Implementation method of high-precision encoder with cable-free rotor
CN113029211B (en) * 2021-03-25 2021-11-19 浙江锐鹰传感技术有限公司 Implementation method of high-precision encoder with cable-free rotor
CN115930763A (en) * 2022-12-08 2023-04-07 楚瑞智能科技(苏州)有限公司 Displacement measurement method and device based on magnetic grid ruler
CN115930763B (en) * 2022-12-08 2023-12-05 楚瑞智能科技(苏州)有限公司 Displacement measurement method and device based on magnetic grating ruler

Also Published As

Publication number Publication date
CN102589405B (en) 2014-06-04

Similar Documents

Publication Publication Date Title
CN102589405A (en) Motor rotor displacement measurement method
CN102607388B (en) Displacement measuring device and method of planar motor mover
CN205642281U (en) Two hall signal sampling magnetoelectric encoder
Wu et al. A rotary encoder with an eccentrically mounted ring magnet
KR101610473B1 (en) Apparatus and method for compensating for position error of resolver
CN103557782B (en) A kind of linear electric motors localization method based on switch Hall sensor sequential encoding
CN112504305B (en) Encoder, motor and method for detecting absolute position of encoder
CN102607391B (en) Method for measuring displacement of planar motor rotor
CN102288821B (en) Measuring method, measuring device, measuring procedure and carrier for phase difference of three-phase circuit
CN108196213A (en) Zero-bit angle test device, the method and system of a kind of rotary transformer
CN101769764B (en) One-dimensional positioning method of motion platform based on linear magnetic steel array
CN106441059A (en) Single-column double-row time grating linear displacement sensor
CN207780217U (en) A kind of zero-bit angle test device of rotary transformer
CN108871181A (en) A kind of multipair pole magnetoelectric encoder dynamic multiwindow interval prediction angle sorting method
CN108759658B (en) An Analysis and Compensation Method of Induction Synchronizer Angle Measurement Error
CN103604373A (en) Raster Moire striped wavelet fine dividing method and raster displacement measuring apparatus
CN104868812B (en) Large-scale spliced arc electric motor rotor exact position detecting system and its detection method
CN103915233A (en) Permanent magnet suitable for magnetic angle encoder
CN101865651B (en) Rotary transformer angle signal decoding method
Wang et al. Research on angle subdivision method of multi-pole magnetic encoder based on pole number quotient remainder
CN103162614A (en) Online self-calibration method for angular displacement sensor
Wang et al. Study on high precision magnetic encoder based on the arctangent cross-intervals tabulation method
JP5679575B2 (en) Position detection device
CN204613287U (en) The current sampling circuit of hall device under periodically strong variation magnetic field
JP7281778B1 (en) absolute position encoder

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20151111

Address after: 100084 Beijing, Haidian District, 100084 box office box office, Tsinghua University,

Patentee after: Tsinghua University

Patentee after: U-PRECISION TECH CO., LTD.

Address before: 100084 Beijing, Haidian District, 100084 box office box office, Tsinghua University,

Patentee before: Tsinghua University