CN102585888B - Oxidative desulfurization method for rare earth polyacid and ionic liquid extraction catalysis fuel oil - Google Patents

Oxidative desulfurization method for rare earth polyacid and ionic liquid extraction catalysis fuel oil Download PDF

Info

Publication number
CN102585888B
CN102585888B CN2012100524807A CN201210052480A CN102585888B CN 102585888 B CN102585888 B CN 102585888B CN 2012100524807 A CN2012100524807 A CN 2012100524807A CN 201210052480 A CN201210052480 A CN 201210052480A CN 102585888 B CN102585888 B CN 102585888B
Authority
CN
China
Prior art keywords
ionic liquid
desulfurization
rare earth
fuel
acid
Prior art date
Application number
CN2012100524807A
Other languages
Chinese (zh)
Other versions
CN102585888A (en
Inventor
宋宇飞
徐军华
赵燊
吉元春
Original Assignee
北京化工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京化工大学 filed Critical 北京化工大学
Priority to CN2012100524807A priority Critical patent/CN102585888B/en
Publication of CN102585888A publication Critical patent/CN102585888A/en
Application granted granted Critical
Publication of CN102585888B publication Critical patent/CN102585888B/en

Links

Abstract

本发明公开了属于燃料油催化氧化脱硫技术领域的一种稀土多酸与离子液体萃取催化燃料油氧化脱硫的方法。 The present invention discloses a rare earth Acid ionic liquid catalytic desulfurization technical field belonging to the catalytic oxidation of fuel oxidative desulfurization of fuel oil extraction. 本发明将高含硫的燃料油通过稀土多金属氧酸盐、离子液体与双氧水联用的催化体系下催化氧化,在常温下达到深度脱硫的效果,实现能源的高效清洁与利用。 The present invention is high-sulfur fuel oil by rare earth polyoxometalate, the ionic liquid catalyzed oxidation with hydrogen peroxide with the catalyst system, achieve deep desulfurization at normal temperature, clean and efficient use of energy. 而且催化剂和离子液体经过多次循环反应而不降解,是一种较为成功的脱硫方法。 And the ionic liquid and the catalyst after multiple cycles of reaction without degradation, is a more successful desulfurization process. 该催化体系中催化剂容易制备、检测手段精准、反应时间短,催化氧化转化率高,催化剂易回收利用。 The catalysts are readily prepared catalytic system, accurate detection means, short reaction time, the conversion rate of the catalytic oxidation, the catalyst is easy to recycle.

Description

一种稀土多酸与离子液体萃取催化燃料油氧化脱硫的方法 A method for catalytic oxidation of fuel desulfurization rare acid and extracted with the ionic liquid

技术领域 FIELD

[0001] 本发明属于燃料油催化氧化脱硫技术领域,特别涉及一种稀土多酸与离子液体萃取催化燃料油氧化脱硫的方法。 [0001] The present invention belongs to the field of catalytic oxidation of fuel desulfurization, and particularly relates to a process for rare earth with a catalytic fuel oxidation Acid ionic liquid extraction desulfurization.

背景技术 Background technique

[0002] 原油及石油馏分中的硫以元素硫、硫化氢以及有机硫化物的形式存在。 [0002] Crude oil and petroleum fractions in the presence of sulfur in the form of elemental sulfur, hydrogen sulfide and organic sulfides. 有机硫化合物一般可分为硫醇类、硫醚类、二硫化物类和噻吩类,这些含硫物质在原油的加工过程中分布于各馏分油中。 Organic sulfur compounds can generally be divided into thiols, thioethers, disulfides and thiophenes, these sulfur species distributed in all distillates of crude oil during processing. 汽油中的含硫化合物以硫醇、硫醚和单环噻吩为主,主要来源于FCC汽油。 Sulfur-containing compounds in gasoline mercaptan, sulfide and monocyclic thiophene, mainly from FCC gasoline. 柴油馏分中的含硫化合物有硫醇、硫醚、噻吩、苯并噻吩和二苯并噻吩等等,其中二苯并噻吩的4位和6位有烷基存在时,由于烷基的位阻作用而使脱硫更加困难。 When sulfur compounds in the diesel fraction are thiols, thioethers, thiophenes, benzothiophene and dibenzothiophene and the like, wherein the dibenzothiophene 4 and 6 alkyl group present, steric hindrance due to the alkyl group the role of the desulfurization more difficult. 油品的含硫化合物在燃烧后会生成硫氧化物,其中最主要的是二氧化硫。 Sulfur-containing compounds in the oil combustion generates sulfur oxides, sulfur dioxide is the most important. SOx被排放到大气中容易形成酸雨,破坏生态平衡,导致环境污染。 SOx is easily discharged to the atmosphere as acid rain, destruction of the ecological balance, leading to environmental pollution. 尽管我国酸雨的形成部分是由工业和生活燃用高硫煤造成的,但车用燃料中的硫化物对大气造成的污染也不容忽视;同时燃料油中硫的存在会使汽车尾气中有害物质的排放量增加,导致汽车尾气转化催化剂中毒,并会对汽车金属部件产生腐蚀。 Despite forming part of our acid rain caused by sulfur coal with industrial and domestic fuel, but the atmospheric pollution caused by vehicles with fuel sulfide can not be ignored; while the presence of sulfur in fuel oil will make vehicle exhaust harmful substances emissions increase, resulting in conversion of auto exhaust catalyst poisoning, and metal parts will corrode car.

[0003] 我国汽油、柴油与欧洲、美国、日本的汽油性质相比,主要特点是:硫含量较高;烯烃含量较高;油品中的芳烃水平低;油品的蒸汽压偏高;含氧化合物低;辛烷值分布不合理。 [0003] of gasoline, diesel fuel compared to gasoline properties in Europe, America, Japan, and the main features are: high sulfur content; high olefin content; low levels of aromatics in the oil; high vapor pressure oil; containing low oxygen compounds; octane irrational distribution. 我国规划燃料油质量到2010年与国际接轨,如何有效地脱除油品中硫化物,是保证国内炼油行业与欧美等发达国家相比具有竞争力的基础。 Fuel oil quality of planning and international standards by the year 2010, how to effectively remove sulfur compounds in the oil, is to ensure that the domestic refining industry with competitive basis, compared with Europe and America and other developed countries. 因此,选择有效的脱硫法是关键。 Therefore, the choice is the key to effective desulfurization. 根据油品所含硫化物的特点,目前采用的物理或化学脱硫方法主要有催化加氢、生化法、催化氧化法、吸附法、溶剂萃取等技术。 According to the characteristics of the sulfide contained in the oil, chemical, or physical methods currently used mainly desulfurization catalytic hydrogenation, biochemical, catalytic oxidation, adsorption, solvent extraction techniques. 无论是原料的加氢还是选择性加氢处理技术,它们的共同点都是需要高温高压、消耗氢气、油品辛烷值降低。 Whether a hydrogenation or selective hydrogenation treatment technology of feedstock, they have in common is the need for high temperature and pressure, hydrogen consumption, reduced oil octane. 选择性加氢虽然在催化剂选择,工艺流程上进行了许多改进,避免了氢气的大量消耗,辛烷值损失减小,但是提高了设备投资和操作费用,该技术并未大面积的推广。 Selective hydrogenation although a number of improvements in catalyst selection, process, avoiding the consumption of large quantities of hydrogen, to reduce the loss of octane number, but increase the investment in equipment and operating costs, the technology does not promote a large area. 所以要寻找一种操作条件温和,脱硫效果好,对环境无污染,耗能少,投资费用低, 易于再生的脱硫剂是非加氢脱硫技术的关键。 So to find the conditions for operating a mild, good desulfurization effect, environmental pollution, low energy consumption, low investment cost, easy-to-desulfurizer non-hydrodesulfurization regeneration of the key.

[0004] 多酸化合物是一类含有V、Mo、W等金属的多金属氧化物。 [0004] The acid compounds are a class of multimetal oxide containing V, Mo, W and other metals. 由同种含氧酸根离子缩合形成的叫同多阴离子,其酸叫同多酸。 A polyanion with isotype called oxygen acid ions formed by the condensation, with an acid called polyacid. 由不同种类的含氧酸根阴离子缩合形成的叫杂多阴离子,其酸叫杂多酸。 Called by the different kinds of negative ions formed by condensation heteropolyanion, an acid called heteropolyacids. 目前已知有近70种元素的原子可作为杂多酸中的杂原子,包括全部的第一系列过渡元素,几乎全部的第二、三系列过渡元素,再加上B、Al、Ga、S1、Ge、Sn、P、As、Sb、B1、Se、Te、I等。 Nearly 70 known atomic elements as the hetero atom in the heteropolyacid, including all of the first transition element series, almost all of the second and third series of transition elements, together with B, Al, Ga, S1 , Ge, Sn, P, As, Sb, B1, Se, Te, I and the like. 而每种杂原子又往往可以不同价态存在于杂多阴离子中,所以种类是相当繁多的。 And each heteroatom is often present in different valence states can heteropoly anions, it is quite variety of species. 多酸是具有拓扑结构的金属氧簇合物,在催化领域、生物学、电极、药物以及材料科学均有潜在应用,被称为无机高分子。 Acid having a metal oxide clusters topology, in catalysis, biological, electrodes, and materials science have potential pharmaceutical application, is referred to as inorganic polymer.

[0005] 近年来,杂多酸(盐)作为有机合成和石油化工中的催化剂已经愈来愈受到人们的关注。 [0005] In recent years, heteropoly acid (salt) as the organic and petrochemical synthesis catalyst has been more and more people's attention. 杂多酸(盐)具有结构确定的优点,不仅有配合物和金属氧化物的结构特征,又有酸性和氧化还原性能;既可作为均相或多相催化剂,又可作为能同时传递质子和电子的双功能催化剂。 Heteropoly acid (salt) has the advantage of determining the structure, not only the structural features and the metal oxide complexes, have acidic and redox properties; as either homogeneous or heterogeneous catalysts, but also as a proton transfer and simultaneously electronic bifunctional catalyst. 在某些反应中,杂多酸(盐)的催化活性和选择性超过复合氧化物和分子筛。 Catalytic activity and selectivity in some reactions, heteropolyacid (salt) exceeds a composite oxide and molecular sieves. 70年代以来,国外已有将杂多酸型催化剂用于工业化生产的实例,并逐渐开始了有关杂多酸的结构、性能与催化作用关系的系统研究。 Since the 1970s, foreign countries have been heteropoly acid catalyst for example industrial production, and gradually began research on heteropolyacid structure, performance and the relationship between the catalytic system. 日本、前苏联分别在杂多酸型催化剂的多相催化和均相催化方面做了大量的工作。 Japan, respectively, the former Soviet Union in a lot of heterogeneous catalysis heteropolyacid catalysts and homogeneous catalysis work. 日本在70年代已在丙烯水合生产上采用杂多酸催化齐U,成功地实现了工业化。 Japanese heteropoly acid-catalyzed homogeneous propylene hydration of the U in the 1970s, succeeded in industrialization. 国内对杂多酸型催化剂的应用研究也正在逐步开展。 Application of domestic heteropoly acid catalysts are also being gradually carried out. 目前,国内有些化工厂已在醋化反应和双酚A合成上应用了杂多酸型催化剂,取得了较好的经济效益和社会效益。 Currently, some domestic chemical has been applied heteropoly acid catalyst in the esterification reaction and bisphenol A synthesis, and achieved good economic and social benefits.

[0006] 与传统的Keggin型和Wells-Dawson型多酸阴离子相比,夹心型多酸阴离子具有更好的水解稳定性。 [0006] Compared with the traditional type of Keggin type and Wells-Dawson acid anion, sandwich-type acid anion having a better hydrolytic stability. 该多酸阴离子可以在室温下的水溶液中保存20年以上而不发生降解,同时,该类多酸在水相中pH = 6.0〜10的范围内可以稳定存在,与水滑石有很好的兼容性。 The acid anion can be stored in an aqueous solution at room temperature for more than 20 years without degradation occurs, while, in the aqueous phase of such acid in the range of pH = 6.0~10 may be stable, have good compatibility with the hydrotalcite sex.

[0007] 同传统的分子溶剂相比,离子液体具有更好的热稳定性和化学稳定性,更宽的液程,更低的蒸汽压,适于在较高温度下工作,并且还对多种有机无机材料具有良好的溶解度等特点。 [0007] compared to conventional molecular solvents, ionic liquids have better thermal and chemical stability, a wider fluid path, a lower vapor pressure, adapted to operate at higher temperatures, and also multi- organic inorganic material has good solubility characteristics. 更独特的是依据组成离子液体的阳离子和阴离子种类不同,室温离子液体的物理化学性质有很大的差别,理论上可以根据要求进行离子液体设计。 More unique is based on cationic and anionic species of the ionic liquid consisting of different physical and chemical properties of ionic liquids at room temperature are very different, in theory, an ionic liquid may be designed according to the requirements. 迄今为止,离子液体已经作为一种新型绿色介质和功能材料被广泛地应用在催化化学、有机合成、分离技术、电化学、材料科学、高分子合成和生命科学等领域。 To date, ionic liquids have been used as a new medium and the green functional materials are widely used in the fields of chemistry, organic synthesis, separation, electrochemistry, materials science, polymer synthesis and life sciences. 随着研究工作的深入,离子液体在化学中的应用研究,已由最初作为常规分子溶剂的绿色替代物,逐步向功能化离子液体或专用离子液体的设计和应用方面发展。 With further research work, the application of ionic liquids in the chemical, from the original molecule as a green alternative to conventional solvent, gradually to Design and Application of Ionic Liquids Ionic Liquid or special aspects.

发明内容 SUMMARY

[0008] 本发明的目的是将高含硫的燃料油通过稀土多金属氧酸盐、离子液体与双氧水联用的催化体系下催化氧化,在常温下实现深度脱硫,取得了目前为止脱硫方法中较为显著的脱硫效果。 [0008] The object of the present invention is high-sulfur fuel oil by rare earth polyoxometalate, the ionic liquid catalyzed oxidation with hydrogen peroxide with the catalyst system at ambient temperature to achieve deep desulfurization, desulfurization process achieved so far in more significant desulfurization.

[0009] 本发明的技术方案是将稀土元素引入到夹心型多酸化合物中形成含稀土的多酸化合物,然后与离子液体、双氧水联用,形成高效萃取催化氧化脱硫体系,达到油品深度脱硫的目的。 [0009] aspect of the present invention is a sandwich-type rare-earth element into the polyacid compound is formed in the rare earth-containing acid compound, then reacted with the ionic liquid, in combination with hydrogen peroxide to form the catalytic oxidative desulfurization system efficient extraction, to achieve deep desulfurization of oil the goal of.

[0010] 本发明使用稀土多酸与离子液体萃取催化燃料油氧化脱硫的方法,其具体步骤为: [0010] Acid and rare-earth ionic liquid catalyzed oxidative desulfurization of fuel oil extraction method of the present invention, including the following steps:

[0011] 1、将3.5-100mg稀土多酸、0.0l-1mL 20-30wt% H202、0.5-1.5mL离子液体、2-lOmL燃料油依次加入烧瓶中,25-70°C搅拌反应5-90min ; [0011] 1, the rare earth 3.5-100mg acid, 0.0l-1mL 20-30wt% H202,0.5-1.5mL ionic liquid, 2-lOmL fuel successively added to the flask, 25-70 ° C the reaction was stirred for 5-90min ;

[0012] 2、反应完成后,倾倒出的上层油相清液即为深度脱硫后的燃料油;烧瓶中残余的燃料油用氯仿萃取后,烧瓶中剩下的是稀土多酸、离子液体以及水,通过70-100°C静止油浴蒸发5-10小时除去水,然后加入0.0l-1mL 20-30wt% H202、2_10mL燃料油,按步骤I的条件进行下一轮的脱硫反应; [0012] 2, after the completion of the reaction, pour the upper oil phase is the supernatant after deep desulfurization of fuel oil; fuel remaining in the flask was extracted with chloroform, the flask remaining rare earth acids, ionic liquids and water, evaporated by an oil bath at 70-100 ° C for 5-10 hours still to remove water, followed by addition of 0.0l-1mL 20-30wt% H202,2_10mL fuel, desulfurizing reaction is carried out at a conditional step I;

[0013] 3、重复上述步骤2-15次,实现稀土多酸和离子液体重复利用。 [0013] 3. Repeat steps 2-15 above, rare earth achieve polyacid and an ionic liquid recycling.

[0014]所述稀土多酸为 Na9MWltlO36 • 32H20, M = Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb 或Lu。 [0014] The acid used as the rare earth Na9MWltlO36 • 32H20, M = Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or Lu.

[0015] 所述离子液体为所述离子液体为1- 丁基-3-甲基咪唑四氟硼酸盐([BMM]BF4)、1-丁基-3-甲基咪唑六氟磷酸盐([BMM]PF6)、1-辛基-3-甲基咪唑四氟硼酸盐([0MM]BF4)和1-辛基-3-甲基咪唑六氟磷酸盐([OMM]PF6)。 [0015] The ionic liquid of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMM] BF4), 1- butyl-3-methylimidazolium hexafluorophosphate ( [BMM] PF6), 1- octyl-3-methylimidazolium tetrafluoroborate ([0MM] BF4), and 1-octyl-3-methylimidazolium hexafluorophosphate ([OMM] PF6).

[0016] 本发明的优点在于:本发明将高含硫的燃料油通过稀土多金属氧酸盐、离子液体与双氧水联用的催化体系下催化氧化,在常温下达到深度脱硫的效果,实现能源的高效清洁与利用。 [0016] The advantage of the present invention is that: the present invention is a high sulfur fuel oil by rare earth polyoxometalate, the ionic liquid catalyzed oxidation with hydrogen peroxide with the catalyst system, achieve deep desulfurization at normal temperature, to achieve energy clean and efficient use. 而且催化剂和离子液体经过多次循环反应而不降解,是一种较为成功的脱硫方法。 And the ionic liquid and the catalyst after multiple cycles of reaction without degradation, is a more successful desulfurization process. 该催化体系中催化剂容易制备、检测手段精准、反应时间短,催化氧化转化率高,催化剂易回收利用。 The catalysts are readily prepared catalytic system, accurate detection means, short reaction time, the conversion rate of the catalytic oxidation, the catalyst is easy to recycle.

附图说明 BRIEF DESCRIPTION

[0017] 图1是本发明实施例1和实施例2得到的脱硫效果的柱状图。 [0017] FIG 1 1 is a bar graph desulfurization and obtained in Example 2 of the embodiment of the present invention.

[0018] 图2实施例2中循环十次反应后生成的DBTO2与购买的DBT、DBTO2核磁图谱。 DBTO2 purchase of DBT produced in the reaction after ten cycles Example 2 [0018] FIG. 2 embodiment, DBTO2 NMR spectrum.

具体实施方式 Detailed ways

[0019]【实施例1】 [0019] [Example 1]

[0020] 1、模拟燃料油的配制: [0020] 1, simulated fuel formulation:

[0021]取 1.4662g(7.793mmol,98%)的DBT 溶于正辛烷,配制成250mL硫含量为IOOOppm的模拟燃料油。 [0021] Take 1.4662g (7.793mmol, 98%) of DBT dissolved in n-octane, sulfur content formulated IOOOppm 250mL simulated fuel.

[0022] 2.催化氧化脱硫实验: [0022] 2. The catalytic oxidative desulfurization experiments:

[0023]将 26.5mg Na9Euff10O36 • 32H20、0.05mL 30wt % H2O2' ImL 离子液体[BMIM]BF4, 5mL模拟燃料油依次加入50mL双口圆底烧瓶中,在30°C下进行磁力搅拌反应0.5h ;其中每隔5min取一次样,每次静止后取出上层清液用气相色谱分析; [0023] The 26.5mg Na9Euff10O36 • 32H20,0.05mL 30wt% H2O2 'ImL ionic liquid [BMIM] BF4, 5mL analog dual port fuel successively added 50mL round bottom flask and magnetically stirred at 30 ° C the reaction 0.5H; wherein a sample taken every 5min, the supernatant removed per analysis by gas chromatography after resting;

[0024] 模拟燃料油中DBT的含量通过参考标准来确认,分析条件: [0024] Simulation of DBT in fuel oils confirmed by reference to standards, analysis condition:

[0025] 进样口温度=3400C ;检测器温度=2500C ;炉温=70°C ;载气:高纯氮;进样量为I u L0 [0025] Inlet temperature = 3400C; detector temperature = 2500C; oven temperature = 70 ° C; Carrier gas: high-purity nitrogen; injection volume was I u L0

[0026] 3.催化剂回收与循环: [0026] 3. The catalyst recovery and recycling:

[0027] 反应完成后,倾倒出的上层油相清液即为深度脱硫后的燃料油;烧瓶中残余的燃料油用氯仿萃取后,烧瓶中剩下的是稀土多酸、离子液体以及水,通过80°C静止油浴蒸发8小时除去水,然后加入0.05mL 30wt% H2O2,5mL模拟燃料油进行下一轮的脱硫反应。 [0027] After completion of the reaction, pour the upper oil phase is the supernatant after deep desulfurization of fuel oil; fuel remaining in the flask was extracted with chloroform, the flask remaining rare earth acids, ionic liquids, and water, water was removed by evaporation eight hours still 80 ° C oil bath, then added 0.05mL 30wt% H2O2,5mL the next round of simulated fuel desulfurization reaction.

[0028]【实施例2】 [0028] [Example 2]

[0029] 1.模拟燃料油的配制: [0029] 1. Preparation of simulated fuel:

[0030] 同实施例1。 [0030] The same as in Example 1.

[0031] 2•催化氧化脱硫实验: [0031] 2 • catalytic oxidative desulfurization experiments:

[0032]将 10.6Img Na9Laff10O36 • 32H20、0.03mL 30wt% H2O2UmL 离子液体[BMIM]BF4, 5mL模拟燃料油依次加入50mL双口圆底烧瓶中,在30°C下进行磁力搅拌反应0.6h ;其中每隔5min取一次样,每次静止后取出上层清液用气相色谱分析; [0032] The 10.6Img Na9Laff10O36 • 32H20,0.03mL 30wt% H2O2UmL ionic liquid [BMIM] BF4, 5mL analog dual port fuel successively added 50mL round bottom flask, with magnetic stirring 0.6h the reaction at 30 ° C; wherein each of 5min take a sample compartment, each still remove the supernatant analysis by gas chromatography;

[0033] 模拟燃料油中DBT的含量通过参考标准来确认,分析条件: [0033] Simulation of DBT in fuel oils confirmed by reference to standards, analysis condition:

[0034] 进样口温度=3400C ;检测器温度=2500C ;炉温=70°C ;载气:高纯氮;进样量为I u L0 [0034] Inlet temperature = 3400C; detector temperature = 2500C; oven temperature = 70 ° C; Carrier gas: high-purity nitrogen; injection volume was I u L0

[0035] 3.催化剂回收与循环: [0035] 3. The catalyst recovery and recycling:

[0036] 反应完成后,倾倒出的上层油相清液即为深度脱硫后的燃料油;烧瓶中残余的燃料油用氯仿萃取后,烧瓶中剩下的是稀土多酸、离子液体以及水,通过90°C静止油浴蒸发6小时除去水,然后加入0.03mL 30wt% H202、5mL模拟燃料油进行下一轮的脱硫反应; [0036] After completion of the reaction, pour the upper oil phase is the supernatant after deep desulfurization of fuel oil; fuel remaining in the flask was extracted with chloroform, the flask remaining rare earth acids, ionic liquids, and water, by an oil bath at 90 ° C stationary six hours to remove the water evaporated, and then added 0.03mL 30wt% H202,5mL the next round of simulated fuel desulfurization reaction;

[0037] 4.重复步骤2和3,10次,实现稀土多酸和离子液体重复利用。 [0037] 4. Repeat steps 2 and 3, 10 times, to achieve a rare earth polyacid and an ionic liquid recycling.

Claims (1)

1.一种稀土多酸与离子液体萃取催化燃料油氧化脱硫的方法,其特征在于,其具体操作步骤如下: 1)、将 3.5-100mg 稀土多酸、0.01-lmL20-30wt% H202、0.5-1.5mL 离子液体、2-lOmL 燃料油依次加入烧瓶中,25-70°C搅拌反应5-90min ; 2)、反应完成后,倾倒出的上层油相清液即为深度脱硫后的燃料油;烧瓶中残余的燃料油用氯仿萃取后,烧瓶中剩下的是稀土多酸、离子液体以及水,通过70-100°C静止油浴蒸发5-10小时除去水,然后加入0.01-lmL20-30wt% H2O2>2-1OmL燃料油,按步骤I)的条件进行下一轮的脱硫反应;稀土多酸和离子液体可重复使用2-15次; 所述稀土多酸为Na9MWltlO36 • 32H20, M=Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb 或Lu ; 所述离子液体为1- 丁基-3-甲基咪唑四氟硼酸盐、1- 丁基-3-甲基咪唑六氟磷酸盐、1-辛基-3-甲基咪唑四氟硼酸盐和1-辛基-3-甲基咪唑六氟磷酸 1. A rare Acid ionic liquid extraction method and the catalytic oxidation of fuel desulfurization, wherein the specific steps are as follows: 1), the rare earth 3.5-100mg acid, 0.01-lmL20-30wt% H202,0.5- 1.5mL ionic liquid, 2-lOmL fuel successively added to the flask, 25-70 ° C the reaction was stirred for 5-90min; 2), after the completion of the reaction, an upper oil phase decanted supernatant after fuel is the deep desulfurization; residual fuel oil in the flask was extracted with chloroform, the flask remaining rare earth acids, ionic liquids, and water, by evaporation an oil bath at 70-100 ° C for 5-10 hours still to remove water, followed by addition of 0.01-lmL20-30wt % H2O2> 2-1OmL fuel oil, according to step I) under the conditions of a desulfurization reaction; rare acid and the ionic liquid can be reused 2-15; acid as the rare earth Na9MWltlO36 • 32H20, M = Y , La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or Lu; the ionic liquid is 1-butyl-3- methylimidazolium tetrafluoroborate salt, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-octyl-3-methylimidazolium tetrafluoroborate and 1-octyl-3-methylimidazolium hexafluorophosphate .
CN2012100524807A 2012-03-02 2012-03-02 Oxidative desulfurization method for rare earth polyacid and ionic liquid extraction catalysis fuel oil CN102585888B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012100524807A CN102585888B (en) 2012-03-02 2012-03-02 Oxidative desulfurization method for rare earth polyacid and ionic liquid extraction catalysis fuel oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012100524807A CN102585888B (en) 2012-03-02 2012-03-02 Oxidative desulfurization method for rare earth polyacid and ionic liquid extraction catalysis fuel oil

Publications (2)

Publication Number Publication Date
CN102585888A CN102585888A (en) 2012-07-18
CN102585888B true CN102585888B (en) 2013-11-27

Family

ID=46475131

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012100524807A CN102585888B (en) 2012-03-02 2012-03-02 Oxidative desulfurization method for rare earth polyacid and ionic liquid extraction catalysis fuel oil

Country Status (1)

Country Link
CN (1) CN102585888B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9127214B2 (en) 2012-02-06 2015-09-08 Shun-Sheng Cheng Fuel desulfurization method
CN102863566B (en) * 2012-09-28 2014-02-19 南开大学 Application and preparation method for macroporous resin with polyoxometallate loaded by covalent bonds
CN104762101B (en) * 2015-04-17 2017-01-25 北京化工大学 A method of acid intercalation trimethylol hydrotalcite ionic liquid extraction using catalytic oxidative desulfurization of fuel oil
CN105061319A (en) * 2015-08-11 2015-11-18 泉州理工职业学院 Imidazole peroxy-molybdate and preparation method therefor
CN105802662B (en) * 2016-05-16 2018-05-15 辽宁大学 Oxidative desulfurization process utilizing an acidic catalyst based Janus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101220293A (en) 2007-09-26 2008-07-16 江苏大学 Method for ion liquid abstraction-catalytic oxidation desulfurization
CN101270299A (en) 2008-04-30 2008-09-24 武汉科技大学 Method for oxidation sweetening of light-end products
CN102076410A (en) 2008-04-30 2011-05-25 康宁股份有限公司 Catalysts on substrates and methods for providing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101220293A (en) 2007-09-26 2008-07-16 江苏大学 Method for ion liquid abstraction-catalytic oxidation desulfurization
CN101270299A (en) 2008-04-30 2008-09-24 武汉科技大学 Method for oxidation sweetening of light-end products
CN102076410A (en) 2008-04-30 2011-05-25 康宁股份有限公司 Catalysts on substrates and methods for providing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Amal H. Ismall.22-Isopolytungstate Fragment [H2W22O74]14-Coordinated to Lanthanide Ions.《Inorg.Chem.》.2009,第48卷(第4期),第1559-1565页.
周百斌.钼钨钒磷杂多酸稀土衍生物的合成、表征及催化性质.《中国稀土学报》.2001,第19卷(第5期),第393-397页.

Also Published As

Publication number Publication date
CN102585888A (en) 2012-07-18

Similar Documents

Publication Publication Date Title
Stanislaus et al. Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production
Zhu et al. Commercially available molybdic compound-catalyzed ultra-deep desulfurization of fuels in ionic liquids
Bataille et al. Alkyldibenzothiophenes hydrodesulfurization-promoter effect, reactivity, and reaction mechanism
JIANG et al. Oxidative desulfurization of fuel oils
Liu et al. Deep desulfurization of diesel oil oxidized by Fe (VI) systems
US8158843B2 (en) Deep desulfurization of hydrocarbon fuels
Lü et al. Ultra-deep desulfurization of diesel by selective oxidation with [C18H37N (CH3) 3] 4 [H2NaPW10O36] catalyst assembled in emulsion droplets
AU2005322059B2 (en) Oxidative desulfurization process
Şenol et al. Effect of sulphiding agents on the hydrodeoxygenation of aliphatic esters on sulphided catalysts
持田勲 et al. An overview of hydrodesulfurization and hydrodenitrogenation
Xiao et al. Effects of aromatics, diesel additives, nitrogen compounds, and moisture on adsorptive desulfurization of diesel fuel over activated carbon
Xiao et al. Effect of gasoline composition on oxidative desulfurization using a phosphotungstic acid/activated carbon catalyst with hydrogen peroxide
Wilfred et al. Extraction of dibenzothiophene from dodecane using ionic liquids
Sampanthar et al. A novel oxidative desulfurization process to remove refractory sulfur compounds from diesel fuel
Gao et al. Extraction and oxidative desulfurization of diesel fuel catalyzed by a Brønsted acidic ionic liquid at room temperature
Wang et al. Polyoxometalate as effective catalyst for the deep desulfurization of diesel oil
Bakar et al. Effect of transition metal oxides catalysts on oxidative desulfurization of model diesel
Nie et al. Fast oxidative desulfurization of fuel oil using dialkylpyridinium tetrachloroferrates ionic liquids
US7198712B2 (en) Processing for eliminating sulfur-containing compounds and nitrogen-containing compounds from hydrocarbon
Gao et al. Deep desulfurization from fuel oil via selective oxidation using an amphiphilic peroxotungsten catalyst assembled in emulsion droplets
Jia et al. Efficient oxidative desulfurization (ODS) of model fuel with H2O2 catalyzed by MoO3/γ-Al2O3 under mild and solvent free conditions
Ismagilov et al. Oxidative desulfurization of hydrocarbon fuels
US8663459B2 (en) Catalytic process for deep oxidative desulfurization of liquid transportation fuels
Li et al. Deep extractive and oxidative desulfurization of dibenzothiophene with C5H9NO· SnCl2 coordinated ionic liquid
Chen et al. Extractive desulfurization and denitrogenation of fuels using functional acidic ionic liquids

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model