CN102579033A - 一种恒流源驱动的生物电前置放大器及其控制方法 - Google Patents

一种恒流源驱动的生物电前置放大器及其控制方法 Download PDF

Info

Publication number
CN102579033A
CN102579033A CN2012100286870A CN201210028687A CN102579033A CN 102579033 A CN102579033 A CN 102579033A CN 2012100286870 A CN2012100286870 A CN 2012100286870A CN 201210028687 A CN201210028687 A CN 201210028687A CN 102579033 A CN102579033 A CN 102579033A
Authority
CN
China
Prior art keywords
signal
current source
constant
bioelectrical
human body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012100286870A
Other languages
English (en)
Other versions
CN102579033B (zh
Inventor
李刚
刘近贞
林凌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN2012100286870A priority Critical patent/CN102579033B/zh
Publication of CN102579033A publication Critical patent/CN102579033A/zh
Application granted granted Critical
Publication of CN102579033B publication Critical patent/CN102579033B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

本发明公开了一种恒流源驱动的生物电前置放大器及其控制方法,第一人体阻抗一端连接被测生物电信号,第一人体阻抗另一端和第一电极接触电阻的一端相连;第一电极接触电阻另一端分别与放大器的输入端和恒流源信号的一端相连;恒流源信号另一端接地;通过恒流源信号的驱动,放大器将第一放大后信号依次输入到抗混叠滤波电路、模数转换器和微处理器中进行处理,获取被测生物电信号和携带人体信息的阻抗信号;方法包括:微处理器将第一采集到信号的正半个周期数据之和与负半个周期数据之和相加,经过下抽样处理获取到被测生物电信号;将第一采集到信号的正半个周期数据之和与负半个周期数据之和相减,经过下抽样处理获取到携带人体信息的阻抗信号。

Description

一种恒流源驱动的生物电前置放大器及其控制方法
技术领域
本发明涉及放大器领域,特别涉及一种多功能、高精度以及小体积、低功耗的恒流源驱动的生物电前置放大器及其控制方法。
背景技术
人体生物电信号属于低频极微弱信号,采集一种信号必定要受到其它生物电信号的影响,增加了生物电前置放大器的设计难度。随着互联网的兴起,以及对人体健康信息的实时检测为人们关注的热点和焦点,健康信息的动态检测对生物电放大器提出了更加苛刻的要求:多功能、体积小、功耗低、动态范围宽和抗干扰能力强。
而目前所使用的便携式动态监护仪大多只能进行心电信号的监护,功能简单,结构传统。朱大援等设计的心电检测放大电路[1];张帷等设计的便携式心电监护仪[2];陈鎏等设计的基于DSP的心电信息检测系统[3],以上设计的几种生物电放大电路,都带有高低通以及陷波滤波器,放大倍数高,电路结构比较复杂。
国外的研究者也对生物电放大器的设计进行了深入的研究。例如:Kim JoongIl等[4],Corbishley Phil,Rodriguez-Villegas Esther[5],Liu Xin,Zheng Yuanjin,PhyuMyint Wai等[6]。以上的研究能够实现多种生物电信号的同步采集,但是大多是在放大电路的基础上应用了复杂的软件算法。
李刚等设计了多种生物电前置放大器[7]和高共模抑制比前置放大器[8],这些设计仅实现了单一生物电信号的高性能采集。
李刚等设计了一种多功能生物电放大器[9],但是通过这种放大器采集得到的除被测生物电信号以外的阻抗信号非常微弱,增加了信号提取的难度,同时降低了放大器的输入阻抗。
参考文献:
[1]便携式心电检测放大电路设计.医疗卫生装备,2008,29(5):21-23;
[2]便携式心电监护仪前置放大电路和抗干扰的设计.医疗设备信息,2005,20(10):7-9;
[3]电子测量技术,2008,30(8):99-102;
[4]Kim joong II,Park Hae-Jeong,Kim Tae-Sung,et al.Development of portabledevice for transmitting respiratory & ECG gating in list-mode PET data acquisition.World congress on medical physics and biomedical engineering 2006,no.14,pp.874-877,2007;
[5]Breathing detection:Towards a miniaturized,wearable,battery-operated monitoringsystem.IEEE Transaction on Biomedical Engineering,vol.55,no.1,pp.196-204,2008;
[6]Multiple Functional ECG Signal is Processign for Wearable Applications ofLong-Term Cardiac Monitoring.IEEE Transaction on Biomedical Engineering,vol.58,no.2,pp.380-289,2011;
[7]高性能多通道生物电放大器,天津大学学报,第33卷第5期,2000年9月;
[8]高共模抑制比前置放大器,专利号:ZL02129065.2,授权公告日:2009年7月22日;
[9]生物电放大器,申请号:200810154631.3,公开日:2009年6月10日,公开号:CN101449970A。
发明内容
本发明提供了一种恒流源驱动的生物电前置放大器及其控制方法,成形信号既用于过采样提高采集生物电信号的灵敏度和精度,又同时能够测量生物阻抗信号,而以“恒流源”的方式给出成形信号,可以提高检测信号的幅值,并且不降低放大器的输入阻抗,本发明设计的生物电前置放大器电路结构简单、放大倍数低、实现了对多种生物电信号的高性能采集以及降低了对多种生物电信号提取的难度,详见下文描述:
一种恒流源驱动的生物电前置放大器,所述生物电前置放大器包括:第一电极接触电阻、携带人体信息的第一人体阻抗、放大器、抗混叠滤波电路、模数转换器和微处理器,所述生物电前置放大器接入被测生物电信号和恒流源信号,
所述第一人体阻抗的一端连接所述被测生物电信号,所述第一人体阻抗的另一端和所述第一电极接触电阻的一端相连;所述第一电极接触电阻的另一端分别与所述放大器的输入端和所述恒流源信号的一端相连;所述恒流源信号的另一端接地;通过所述恒流源信号的驱动,所述放大器对叠加后的所述被测生物电信号与所述人体信息进行放大,将第一放大后信号依次输入到所述抗混叠滤波电路、所述模数转换器和所述微处理器中进行处理,获取所述被测生物电信号和携带人体信息的阻抗信号。
其中,通过所述恒流源信号的驱动,可以提高被测生物电信号的幅值,同时不降低放大器的输入阻抗;通过恒流源信号的驱动并结合过采样技术,既能提高采集被测生物电信号的灵敏度和精度,又能够检测到携带人体信息的阻抗信号。
当所述放大器为差动放大器时,所述生物电前置放大器接入第一被测生物电信号、第二被测生物电信号、第一恒流源信号和第二恒流源信号,所述生物电前置放大器还包括:第二电极接触电阻和携带人体信息的第二人体阻抗,其中,所述第一恒流源信号和所述第二恒流源信号幅值相等且方向相反,或所述第一恒流源信号和所述第二恒流源信号之和为恒定值;
所述第一人体阻抗的一端连接所述第一被测生物电信号,所述第一人体阻抗的另一端和所述第一电极接触电阻的一端相连;所述第一电极接触电阻的另一端分别与所述差动放大器的正向输入端和所述第一恒流源信号的一端相连;所述第一恒流源信号的另一端接地;所述第二人体阻抗的一端连接所述第二被测生物电信号,所述第二人体阻抗的另一端和所述第二电极接触电阻的一端相连;所述第二电极接触电阻的另一端分别与所述差动放大器的负向输入端和所述第二恒流源信号的一端相连;所述第二恒流源信号的另一端接地;通过所述第一恒流源信号和所述第二恒流源信号的驱动,所述差动放大器对叠加后的所述第一被测生物电信号、所述第二被测生物电信号与所述人体信息进行放大,将第二放大后信号依次输入到所述抗混叠滤波电路、所述模数转换器和所述微处理器中进行处理,获取所述第一被测生物电信号与所述第二被测生物电信号的差值和所述携带人体信息的阻抗信号。
所述恒流源信号为高频三角波、锯齿波或正弦波信号,所述恒流源信号由电流输出的高速数模转换器、三极管以及场效应管产生。
所述第一恒流源信号和所述第二恒流源信号为高频差动三角波、锯齿波或正弦波信号,所述第一恒流源信号和所述第二恒流源信号由电流输出的高速数模转换器、三极管以及场效应管产生。
一种恒流源驱动的生物电前置放大器的控制方法,所述方法包括以下步骤:
(1)所述抗混叠滤波电路对所述第一放大后信号进行滤波,将第一滤波后信号输入到所述模数转换器中;
(2)所述模数转换器将所述第一滤波后信号转换为数字信号,进行信号采集,将第一采集到信号输入到所述微处理器中;
(3)所述微处理器将所述第一采集到信号的正半个周期数据之和与负半个周期数据之和相加,经过下抽样处理获取到所述被测生物电信号;所述微处理器将所述第一采集到信号的正半个周期数据之和与负半个周期数据之和相减,经过下抽样处理获取到所述携带人体信息的阻抗信号。
一种恒流源驱动的生物电前置放大器的控制方法,所述方法包括以下步骤:
(1)所述抗混叠滤波电路对所述第二放大后信号进行滤波,将第二滤波后信号输入到所述模数转换器中;
(2)所述模数转换器将所述第二滤波后信号转换为数字信号,进行信号采集,将第二采集到信号输入到所述微处理器中;
(3)所述微处理器将所述第二采集到信号的正半个周期数据之和与负半个周期数据之和相加,经过下抽样处理获取到所述第一被测生物电信号与所述第二被测生物电信号的差值;所述微处理器将所述第二采集到信号的正半个周期数据之和与负半个周期数据之和相减,经过下抽样处理获取到所述携带人体信息的阻抗信号。
本发明提供的技术方案的有益效果是:
本发明提供了一种恒流源驱动的生物电前置放大器及其控制方法,本发明设计的生物电前置放大器电路结构简单,放大倍数较低,采用频率较高的恒流源驱动,将微弱的人体信息进行放大,实现了对被测生物电信号和携带人体信息的阻抗信号的同步采集;并且当放大器为差动放大器时,实现了对被测生物电信号的差值和携带人体信息的阻抗信号的同步采集;利用过采样技术结合叠加恒流源的原理,提高了信号的采集分辨率和精度,进一步降低了对放大器的要求,同时实现了一种体积小、功耗低、动态范围宽以及抗干扰能力强的生物电前置放大器。
附图说明
图1为本发明提供的一种恒流源驱动的生物电前置放大器的结构示意图;
图2为本发明提供的图1的等效电路原理图;
图3为本发明提供的信号分离原理的示意图;
图4为本发明提供的一种恒流源驱动的生物电前置放大器的控制方法的流程图;
图5为本发明提供的一种恒流源驱动的生物电前置放大器的另一结构示意图;
图6为本发明提供的图5的等效电路原理图;
图7为本发明提供的一种恒流源驱动的生物电前置放大器的控制方法的另一流程图。
附图中,各标号所代表的部件列表如下:
R1:第一电极接触电阻;  R3:第二电极接触电阻;
R2:第一人体阻抗;      R4:第二人体阻抗;
A:放大器;             RC:抗混叠滤波电路;
ADC:模数转换器;       MPU:微处理器;
IS:恒流源信号;        U:被测生物电信号;
U1:第一被测生物电信号;U2:第二被测生物电信号;
IS1:第一恒流源信号;   IS2:第二恒流源信号;
RA:第一电极接触电阻和第二电极接触电阻之和;
RB:第一人体阻抗和第二人体阻抗之和。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
为了实现电路结构简单、放大倍数低、对多种生物电信号的高性能采集以及降低对生物电信号提取的难度,本发明实施例提供了一种恒流源驱动的生物电前置放大器及其控制方法,详见下文描述:
实施例1
一种恒流源驱动的生物电前置放大器,参见图1,包括:第一电极接触电阻R1、携带人体信息的第一人体阻抗R2、放大器A、抗混叠滤波电路RC、模数转换器ADC和微处理器MPU,生物电前置放大器接入被测生物电信号U和恒流源信号IS
第一人体阻抗R2的一端连接被测生物电信号U,第一人体阻抗R2的另一端和第一电极接触电阻R1的一端相连;第一电极接触电阻R1的另一端分别与放大器A的输入端和恒流源信号IS的一端相连;恒流源信号IS的另一端接地;通过恒流源信号IS的驱动,放大器A对叠加后的被测生物电信号U与人体信息进行放大,将第一放大后信号依次输入到抗混叠滤波电路RC、模数转换器ADC和微处理器MPU中进行处理,获取被测生物电信号U和携带人体信息的阻抗信号。
进一步地,本发明实施例中的恒流源信号IS优选为内阻较高的高频三角波、锯齿波或正弦波信号,具体实现时可以由电流输出的高速数模转换器DAC、三极管以及场效应管产生。
进一步地,为了取得较高的采样率和分辨率,本发明实施例中的模数转换器ADC优选为AD7985。
进一步地,为了提高处理速度,本发明实施例中的微处理器MPU优选为LPC1768。
一种恒流源驱动的生物电前置放大器的控制方法,参见图2、图3和图4,该方法包括以下步骤:
101:抗混叠滤波电路RC对第一放大后信号进行滤波,将第一滤波后信号输入到模数转换器ADC中;
102:模数转换器ADC将第一滤波后信号转换为数字信号,进行信号采集,将第一采集到信号输入到微处理器MPU中;
103:微处理器MPU将第一采集到信号的正半个周期数据之和与负半个周期数据之和相加,经过下抽样处理获取到被测生物电信号U;微处理器MPU将第一采集到信号的正半个周期数据之和与负半个周期数据之和相减,经过下抽样处理获取到携带人体信息的阻抗信号。
下面以高频三角波为例对微处理器MPU获取到被测生物电信号U(本发明实施例以心电信号UECG为例进行说明)和携带人体信息的阻抗信号进行说明,详见下文描述:
如图1所示电路,在测量心电信号UECG时,加入一个高频三角波恒流信号,这个高频三角波恒流信号除了用于过采样外,还可以用于测量电极与皮肤的接触电阻(直流部分)和人体阻值的变化(交流部分)。
图1所示电路可以等效为如图2所示的电路,因此,从放大器A的输入端可同步测量心电信号UECG、第一电极接触电阻R1(用以判断导联脱落)和呼吸次数(第一人体阻抗R2的变化频率),按照线性叠加定律可以得到,其中第一人体阻抗R2以胸腔电阻为例(该胸腔电阻随呼吸而起伏变化)进行说明。
在一个高频三角波的周期内,当高频三角波信号的频率远远大于心电信号UECG的频率时,由于高频三角波信号与心电信号UECG是叠加在一起的,则有
U X = 1 R S + R 1 + R 2 ( ( R 1 + R 2 ) I S R S + R S U ECG ) - - - ( 1 )
其中,IS为高频三角波信号源;Rs为三角波信号源内阻设计电路时保证Rs>>R1以及Rs>>R2,则上式可以简化为:
UX=(R1+R2)IS+UECG                (2)
而在测量中,IS是给定值,UX通过后续电路可测量到的值,因而可以实现第一电极接触电阻R1、第一人体阻抗R2和心电信号UECG的测量。如果IS不是采用直流而是采用正弦波的交流,则应该通过测量正弦波的有效值、峰值或峰峰值来测量第一电极接触电阻R1、第一人体阻抗R2和心电信号UECG。更特别的是,如果采用交流的高频三角波作为IS,也可以通过测量高频三角波的有效值、峰值或峰峰值来测量第一电极接触电阻R1、第一人体阻抗R2和心电信号UECG
通过下述计算既可以把携带阻抗信息的高频三角波信号与心电信号UECG分离出来,又把携带人体信息的阻抗信号从高频三角波信号中解调出来。
参见图3,本发明实施例采用IS(UX)前、后半周期的平均值来计算,如果在每个高频三角波周期中采样2m次,定义:
I pp ‾ ( n ) = Σ j = 2 mn j = 2 mn + m - 1 I Sj - Σ j = 2 mn + m j = 2 mn + 2 m - 1 I Sj - - - ( 3 )
其中,m和n的取值为大于等于零的整数。
Figure BDA0000134863980000073
作为表示高频三角波幅值的一个量,因而,可以用来测量人体阻抗。而 I s ‾ ( n ) = Σ j = 2 mn j = 2 ( n + 1 ) m - 1 I sj n=0,1,2,......(4)
即每个高频三角波周期内的信号求和,相当于做低通滤波,由于携带呼吸信息(第一人体阻抗R2)的IS(R1+R2)信号的频率均高于心电信号UECG,因此分离出心电信号UECG
根据上述的原理分析可知,第一人体阻抗R2中携带有由于人体生理信号的产生或者变化引起的人体变化信息,通过恒流源信号IS的驱动,将微弱变化的人体信息与被测生物电信号UECG进行叠加,不仅可以检测到被测生物电信号UECG,而且可以同步的检测到携带人体信息的阻抗信号,实现了用阻抗法同步测量多种生理信号。同时,由于恒流源信号IS的幅值和频率远远高于人体信息,通过将采集得到的高频三角波、锯齿波或正弦波信号的正半个周期数据之和与负半个周期数据之和相加,再经过下抽样处理得到被测生物电信号UECG,而正半个周期数据之和与负半个周期数据之和相减,再经过下抽样处理得到携带人体信息的阻抗信号。其中,由于恒流源IS的内阻RS与放大器的输入端并联,因此,基本上不会降低放大器的输入阻抗(生物电放大器的输入阻抗要求很高,是生物电放大器的一个重要指标);再者,采用过采样的原理不仅可以提高分辨率和采样精度,还可以降低对放大器的放大倍数的要求,简化电路结构的设计。
实施例2
当放大器A为差动放大器时,参见图5,一种恒流源驱动的生物电前置放大器,包括:第一电极接触电阻R1、第二电极接触电阻R3、携带人体信息的第一人体阻抗R2、携带人体信息的第二人体阻抗R4、抗混叠滤波电路RC、模数转换器ADC和微处理器MPU,生物电前置放大器接入第一被测生物电信号U1、第二被测生物电信号U2、第一恒流源信号IS1和第二恒流源信号IS2,其中,第一恒流源信号IS1和第二恒流源信号IS2幅值相等且方向相反,或第一恒流源信号IS1和第二恒流源信号IS2之和为恒定值。
图5中的电路图可以等效为图6的原理图,其中第一电极接触电阻R1与第二电极接触电阻R3之和为RA,第一人体阻抗R2与第二人体阻抗R4之和为RB,第一被测生物电信号U1与第二被测生物电信号U2之差为心电信号UECG。在图5中,第一人体阻抗R2的一端连接第一被测生物电信号U1,第一人体阻抗R2的另一端和第一电极接触电阻R1的一端相连;第一电极接触电阻R1的另一端分别与差动放大器A的正向输入端和第一恒流源信号IS1的一端相连;第一恒流源信号IS1的另一端接地;第二人体阻抗R4的一端连接第二被测生物电信号U2,第二人体阻抗R4的另一端和第二电极接触电阻R3的一端相连;第二电极接触电阻R3的另一端分别与差动放大器A的负向输入端和第二恒流源信号IS2的一端相连;第二恒流源信号IS2的另一端接地;通过第一恒流源信号IS1和第二恒流源信号IS2的驱动,差动放大器A对叠加后的第一被测生物电信号U1、第二被测生物电信号U2与人体信息进行放大,将第二放大后信号依次输入到抗混叠滤波电路RC、模数转换器ADC和微处理器MPU中进行处理,获取第一被测生物电信号U1与第二被测生物电信号U2的差值和携带人体信息的阻抗信号。
通过图5中的电路结构和图6中的等效电路实现了对多种被测生物电信号的同步采集。
进一步地,本发明实施例中的第一恒流源信号IS1和第二恒流源信号IS2优选为内阻较高的高频差动三角波、锯齿波或正弦波信号,具体实现时可以由电流输出的高速数模转换器DAC、三极管以及场效应管产生。
其中,当放大器A为差动放大器时,一种恒流源驱动的生物电前置放大器的控制方法,参见图7,该方法包括以下步骤:
201:抗混叠滤波电路RC对第二放大后信号进行滤波,将第二滤波后信号输入到模数转换器ADC中;
202:模数转换器ADC将第二滤波后信号转换为数字信号,进行信号采集,将第二采集到信号输入到微处理器MPU中;
203:微处理器MPU将第二采集到信号的正半个周期数据之和与负半个周期数据之和相加,经过下抽样处理获取到第一被测生物电信号U1与第二被测生物电信号U2的差值;微处理器MPU将第二采集到信号的正半个周期数据之和与负半个周期数据之和相减,经过下抽样处理获取到携带人体信息的阻抗信号。
其中,步骤203中的原理详见实施例1中的步骤103,在此不再赘述。
其中,通过第一恒流源信号IS1和第二恒流源信号IS2的驱动,微弱的人体信息被放大。叠加有人体信息的高频信号经过差动放大器A差动放大后,通过高速模数转换器ADC进行信号采集,最后微处理器MPU通过将采集得到的高频差动三角波、锯齿波或正弦波信号的正半个周期数据之和与负半个周期数据之和相加,再经过下抽样处理得到第一被测生物电信号U1和第二被测生物电信号U2的差值,而正半个周期数据之和与负半个周期数据之和相减,再经过下抽样得到携带人体信息的阻抗信号。
综上所述,本发明实施例提供了一种恒流源驱动的生物电前置放大器及其控制方法,本发明实施例设计的生物电前置放大器电路结构简单,放大倍数较低,采用频率较高的恒流源驱动,将微弱的人体信息进行放大,实现了对被测生物电信号和携带人体信息的阻抗信号的同步采集;并且当放大器为差动放大器时,实现了对被测生物电信号的差值和携带人体信息的阻抗信号的同步采集;利用过采样技术结合叠加恒流源的原理,提高了信号的采集分辨率和精度,同步检测了人体阻抗信号,进一步降低了对放大器的要求,同时实现了一种体积小、功耗低、动态范围宽以及抗干扰能力强的生物电前置放大器。
本领域技术人员可以理解附图只是一个优选实施例的示意图,上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种恒流源驱动的生物电前置放大器,其特征在于,所述生物电前置放大器包括:第一电极接触电阻、携带人体信息的第一人体阻抗、放大器、抗混叠滤波电路、模数转换器和微处理器,所述生物电前置放大器接入被测生物电信号和恒流源信号。
所述第一人体阻抗的一端连接所述被测生物电信号,所述第一人体阻抗的另一端和所述第一电极接触电阻的一端相连;所述第一电极接触电阻的另一端分别与所述放大器的输入端和所述恒流源信号的一端相连;所述恒流源信号的另一端接地;通过所述恒流源信号的驱动,所述放大器对叠加后的所述被测生物电信号与所述人体信息进行放大,将第一放大后信号依次输入到所述抗混叠滤波电路、所述模数转换器和所述微处理器中进行处理,获取所述被测生物电信号和携带人体信息的阻抗信号。
2.根据权利要求1所述的一种恒流源驱动的生物电前置放大器,其特征在于,当所述放大器为差动放大器时,所述生物电前置放大器接入第一被测生物电信号、第二被测生物电信号、第一恒流源信号和第二恒流源信号,所述生物电前置放大器还包括:第二电极接触电阻和携带人体信息的第二人体阻抗,其中,所述第一恒流源信号和所述第二恒流源信号幅值相等且方向相反,或所述第一恒流源信号和所述第二恒流源信号之和为恒定值;
所述第一人体阻抗的一端连接所述第一被测生物电信号,所述第一人体阻抗的另一端和所述第一电极接触电阻的一端相连;所述第一电极接触电阻的另一端分别与所述差动放大器的正向输入端和所述第一恒流源信号的一端相连;所述第一恒流源信号的另一端接地;所述第二人体阻抗的一端连接所述第二被测生物电信号,所述第二人体阻抗的另一端和所述第二电极接触电阻的一端相连;所述第二电极接触电阻的另一端分别与所述差动放大器的负向输入端和所述第二恒流源信号的一端相连;所述第二恒流源信号的另一端接地;通过所述第一恒流源信号和所述第二恒流源信号的驱动,所述差动放大器对叠加后的所述第一被测生物电信号、所述第二被测生物电信号与所述人体信息进行放大,将第二放大后信号依次输入到所述抗混叠滤波电路、所述模数转换器和所述微处理器中进行处理,获取所述第一被测生物电信号与所述第二被测生物电信号的差值和所述携带人体信息的阻抗信号。
3.根据权利要求1所述的一种恒流源驱动的生物电前置放大器,其特征在于,所述恒流源信号为高频三角波、锯齿波或正弦波信号,所述恒流源信号由电流输出的高速数模转换器、三极管以及场效应管产生。
4.根据权利要求2所述的一种恒流源驱动的生物电前置放大器,其特征在于,所述第一恒流源信号和所述第二恒流源信号为高频差动三角波、锯齿波或正弦波信号,所述第一恒流源信号和所述第二恒流源信号由电流输出的高速数模转换器、三极管以及场效应管产生。
5.一种用于权利要求1所述的一种恒流源驱动的生物电前置放大器的控制方法,其特征在于,所述方法包括以下步骤:
(1)所述抗混叠滤波电路对所述第一放大后信号进行滤波,将第一滤波后信号输入到所述模数转换器中;
(2)所述模数转换器将所述第一滤波后信号转换为数字信号,进行信号采集,将第一采集到信号输入到所述微处理器中;
(3)所述微处理器将所述第一采集到信号的正半个周期数据之和与负半个周期数据之和相加,经过下抽样处理获取到所述被测生物电信号;所述微处理器将所述第一采集到信号的正半个周期数据之和与负半个周期数据之和相减,经过下抽样处理获取到所述携带人体信息的阻抗信号。
6.一种用于权利要求2所述的一种恒流源驱动的生物电前置放大器的控制方法,其特征在于,所述方法包括以下步骤:
(1)所述抗混叠滤波电路对所述第二放大后信号进行滤波,将第二滤波后信号输入到所述模数转换器中;
(2)所述模数转换器将所述第二滤波后信号转换为数字信号,进行信号采集,将第二采集到信号输入到所述微处理器中;
(3)所述微处理器将所述第二采集到信号的正半个周期数据之和与负半个周期数据之和相加,经过下抽样处理获取到所述第一被测生物电信号与所述第二被测生物电信号的差值;所述微处理器将所述第二采集到信号的正半个周期数据之和与负半个周期数据之和相减,经过下抽样处理获取到所述携带人体信息的阻抗信号。
CN2012100286870A 2012-02-09 2012-02-09 一种恒流源驱动的生物电前置放大器及其控制方法 Expired - Fee Related CN102579033B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012100286870A CN102579033B (zh) 2012-02-09 2012-02-09 一种恒流源驱动的生物电前置放大器及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012100286870A CN102579033B (zh) 2012-02-09 2012-02-09 一种恒流源驱动的生物电前置放大器及其控制方法

Publications (2)

Publication Number Publication Date
CN102579033A true CN102579033A (zh) 2012-07-18
CN102579033B CN102579033B (zh) 2013-11-13

Family

ID=46468678

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012100286870A Expired - Fee Related CN102579033B (zh) 2012-02-09 2012-02-09 一种恒流源驱动的生物电前置放大器及其控制方法

Country Status (1)

Country Link
CN (1) CN102579033B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110115575A (zh) * 2019-06-24 2019-08-13 首都医科大学附属北京中医医院 一种基于电生理技术的生物电放大器
CN110786848A (zh) * 2019-10-22 2020-02-14 天津大学 一种多生理参数信号单通道采集放大器
CN112057041A (zh) * 2020-08-07 2020-12-11 中国科学院深圳先进技术研究院 偏振光声成像探头及光声成像装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3524147B1 (en) * 2018-02-12 2023-09-13 Nokia Technologies Oy Body impedance measurement apparatus and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1835042A (zh) * 2006-04-14 2006-09-20 天津大学 高精度采集微弱信号的方法与电路
CN101449970A (zh) * 2008-12-29 2009-06-10 天津大学 生物电放大器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1835042A (zh) * 2006-04-14 2006-09-20 天津大学 高精度采集微弱信号的方法与电路
CN101449970A (zh) * 2008-12-29 2009-06-10 天津大学 生物电放大器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
何峰 等: "基于过采样的通用生物电检测系统的实现", 《天津大学学报》, vol. 41, no. 10, 31 October 2008 (2008-10-31) *
林凌 等: "基于过采样的多种生物信息同步数据采集电路", 《仪表技术》, no. 10, 31 December 2011 (2011-12-31) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110115575A (zh) * 2019-06-24 2019-08-13 首都医科大学附属北京中医医院 一种基于电生理技术的生物电放大器
CN110786848A (zh) * 2019-10-22 2020-02-14 天津大学 一种多生理参数信号单通道采集放大器
CN110786848B (zh) * 2019-10-22 2022-03-15 天津大学 一种多生理参数信号单通道采集放大器
CN112057041A (zh) * 2020-08-07 2020-12-11 中国科学院深圳先进技术研究院 偏振光声成像探头及光声成像装置
CN112057041B (zh) * 2020-08-07 2021-12-28 中国科学院深圳先进技术研究院 偏振光声成像探头及光声成像装置

Also Published As

Publication number Publication date
CN102579033B (zh) 2013-11-13

Similar Documents

Publication Publication Date Title
Yazicioglu et al. A 30$\mu $ W Analog Signal Processor ASIC for Portable Biopotential Signal Monitoring
CN102334981B (zh) 一种人体多路脉搏波信号采集系统
CN103584847B (zh) 一种非接触磁感应心率和呼吸率同步检测方法及系统
CN103027675A (zh) 新型便携式三导联实时无线心电监测系统及分析方法
CN102579033B (zh) 一种恒流源驱动的生物电前置放大器及其控制方法
CN101449970B (zh) 生物电放大器
CN110731764A (zh) 一种脉搏检测系统
CN110786848B (zh) 一种多生理参数信号单通道采集放大器
Xue et al. Design of amplifier for wearable human ECG sensor with low power and low noise
Murugappan et al. Development of cost effective ECG data acquisition system for clinical applications using LabVIEW
CN202589521U (zh) 一种测量肌电电极与皮肤接触阻抗的装置
CN204744156U (zh) 基于无线生物医学传感的监护装置
KR20100124409A (ko) 맥파 전달시간 계측 시스템 및 그 방법
CN105411606A (zh) 一种医疗血氧饱和度测量系统
CN105615872B (zh) 用于测量人体信息的装置
Hermann et al. A ballistocardiogram acquisition system for respiration and heart rate monitoring
CN105232041A (zh) 人体体表电特性分布的测量装置、数据终端及方法
CN103654742A (zh) 一种监测人体健康状态的多参数识别系统
Zhu et al. A multi-channel ECG acquisition system based on FPGA
Chu et al. Non-invasive optical heart rate monitor base on one chip integration microcontroller solution
CN102440773A (zh) 一种肌电信号采集装置
Lee et al. Low-power unobtrusive ECG sensor system for wireless power transfer
CN102274008A (zh) 一种基于压电电缆传感器的呼吸和心跳计数及预警电路
CN105105744A (zh) 心电信号采集器
CN115192005A (zh) 一种便携式心电图和心震图联合采集系统及数据处理方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20131113

Termination date: 20220209