CN102568839A - 一种用于敏化类太阳能电池的碳对电极及制备方法 - Google Patents

一种用于敏化类太阳能电池的碳对电极及制备方法 Download PDF

Info

Publication number
CN102568839A
CN102568839A CN2011103891790A CN201110389179A CN102568839A CN 102568839 A CN102568839 A CN 102568839A CN 2011103891790 A CN2011103891790 A CN 2011103891790A CN 201110389179 A CN201110389179 A CN 201110389179A CN 102568839 A CN102568839 A CN 102568839A
Authority
CN
China
Prior art keywords
fto
carbon
electrode
flame
counter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011103891790A
Other languages
English (en)
Inventor
魏翠柳
邹小平
孙哲
于肇贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Information Science and Technology University
Original Assignee
Beijing Information Science and Technology University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Information Science and Technology University filed Critical Beijing Information Science and Technology University
Priority to CN2011103891790A priority Critical patent/CN102568839A/zh
Publication of CN102568839A publication Critical patent/CN102568839A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明涉及了一种用于敏化类太阳能电池的碳对电极及制备方法,该碳对电极的结构为在掺氟的导电玻璃FTO上生长了一层由三维无序网络海绵状结构的碳纳米颗粒组成的催化层。其制备方法是,将少量噻吩添加到无水乙醇中,然后将混合液体注入酒精灯中;配制过渡金属盐水溶液并添加少量十二烷基硫酸钠,涂敷到FTO上,自然干燥后将FTO固定在升降台上;点燃火焰,FTO在火焰中停留数分钟,之后熄灭火焰,可在FTO上获得三维无序网络海绵状结构的碳纳米颗粒层。该碳对电极催化活性高,其特有的三维网络海绵状结构使碳颗粒与敏化类太阳能电池中的液体电解质有较大的有效接触面积,应用到染料敏化太阳能电池和量子点敏化太阳能电池中具有较高的光电转换效率。该方法简单有效。

Description

一种用于敏化类太阳能电池的碳对电极及制备方法
技术领域
本发明涉及太阳能电池技术,特别是涉及一种敏化类太阳能电池碳对电极及其制备方法,属于纳米材料技术领域,也属于新能源技术领域。
背景技术
近年来,能源问题与全球经济发展之间的矛盾日益突出,成为制约社会发展的关键因素。敏化类太阳能电池是九十年代开发的一种新型化学太阳能电池,具有低廉的成本和简单的制备工艺,且性能稳定、衰减少,具有很好的应用前景。
在敏化类太阳能电池中,光生电子通过外电路流向对电极,氧化态的染料分子通过电解质中的电子给体恢复为还原态,同时被氧化的电子给体扩散到对电极,通过电极界面上的I-/I3 -的氧化还原反应回到溶液,实现电池的循环工作。因此,作为电池的重要组成部分,对电极的催化性能对整个电池的光电转化效率有着重要的影响。目前采用最多的是Pt对电极,虽然Pt对电极电阻低、催化活性好。但是Pt是贵金属,价格昂贵,不适合大规模生产低成本染料敏化太阳能电池及大规模应用,人们开始致力于碳材料的研究。潘春旭等人在NEW CARBONMATERIALS(2005,20:261-269)上报道了染料和基板对火焰法制备碳纳米材料的影响,他们以乙醇、甲醇等作为碳源,用低碳钢及含镍的合金钢经过研磨抛光,然后插入火焰中得到含有纤维状的碳纳米材料,但没有应用到电池中。Easwaramoorthi Ramasamy等人在APPLIEDPHYSICS LETTERS(2007,90,173103)上报道了一种纳米碳对电极,他们将30nm的碳粉末调制成浆料然后涂覆到FTO上,经过高温煅烧得到纳米碳对电极,应用到染料敏化太阳能电池中,取得了良好的效果,但是该制备工艺复杂,需要高温设备。而本发明方法,原料低廉,工艺简单,采用此碳对电极的DSSC的光电性能略高于Pt对电极的DSSC的光电性能。
发明内容
为了解决上述问题,本发明提供了一种敏化类太阳能电池的碳对电极及其简单的制备方法,其可以取代敏化类太阳能电池的Pt对电极,同时制备工艺简单,不需要高温设备,从而降低了敏化类太阳能电池的制作成本。
所述敏化类太阳能电池的碳对电极的结构是在掺氟的导电玻璃FTO上生长了一层由三维无序网络碳纳米颗粒组成的催化层,碳纳米颗粒粒径在10~50nm之间,碳层厚度在20~200μm之间。
所述敏化类太阳能电池的碳对电极的制备方法,通过下列步骤实现:
(1)配制燃料,在无水乙醇中添加少量噻吩,然后注入酒精灯中;添加噻吩的浓度为0.1%~10%,该浓度为噻吩与无水乙醇的体积比;
(2)将过渡金属盐和少量的十二烷基硫酸钠溶解到去离子水中,配成催化剂先体溶液;过渡金属盐和十二烷基硫酸钠的浓度分别为0.01~10mol/L;
(3)将步骤(2)中的溶液涂覆到FTO上,自然晾干;
(4)将步骤(3)中的FTO固定到升降台上,调节FTO与酒精灯灯芯顶端之间的距离,使FTO在制备过程中始终处于火焰中;
(5)点燃步骤(4)中的酒精灯,将FTO放入火焰中,停留一段时间,然后熄灭火焰,待样品冷却后取下,在FTO上有黑色沉淀物生成,即得到碳对电极。
所述的过渡金属盐为过渡金属铁、钴、镍的可溶性盐中的任意一种。
所述FTO与酒精灯灯芯顶端之间的距离为3~6.5cm。
所述的FTO在火焰中停留时间为1~10min。
本发明的优点在于:该碳对电极对氧化还原电对有高的催化活性,能够提高光的吸收率,与Pt对电极相比,降低该电池生产成本的同时,保持了该电池高的光电转化效率。基于该碳对电极的染料敏化太阳能电池的光电转化效率与基于传统Pt对电极的电池相当。本发明的制备方法是乙醇催化燃烧法,原料成本低廉,设备工艺简单,避免了高温和高真空条件的相应设备,这有效的降低了染料敏化太阳能电池制作的前期投资成本和生产成本,有利于促进该电池的商业化生产。
本发明将通过下面实例来进行举例说明,但是,本发明并不限于这里所描述的实施方案,本发明的实施例仅用于进一步阐述本发明。对于本领域的技术人员对本发明的内容所进行的替代、改动或变更,这些等价形式同样落入本申请所限定的范围内。
附图说明
图1为三维网络碳纳米颗粒对电极的扫描电子显微镜照片,(a)为俯视图,(b)为剖面图。
图2为三维网络碳纳米颗粒对电极的透射电于显微镜照片。
图3为三维网络碳纳米颗粒对电极的Raman光谱。
图4为本发明碳对电极和热分解法的Pt对电极组装的染料敏化太阳能电池的电流-电压曲线对比图;A曲线对应于本发明的三维网络碳纳米颗粒对电极;B曲线对应于Pt对电极。
具体实施方式
下面将结合附图和实施例具体描述本发明的碳对电极和制备方法
实施例1
表1中3种实施例的碳对电极的具体制备过程如下:
(1)量取0.5mL的噻吩添加到100mL无水乙醇中,然后注入酒精灯中;
(2)称取0.06g的分析纯硝酸镍、0.06g的分析纯硝酸钴、0.08g的分析纯硝酸铁分别加入到20mL去离子水中,搅拌使其完全溶解;再分别加入0.06g的十二烷基硫酸钠,搅拌使其溶解,分别制成催化剂先体溶液;
(3)将步骤(2)中的催化剂先体溶液分别涂覆到FTO上,自然晾干;
(4)将步骤(3)中的FTO固定到升降台上,调节FTO与酒精灯灯芯之间的距离为6cm;
(5)点燃步骤(4)中的酒精灯,将FTO放入火焰中,停留3min,然后熄灭火焰,待样品冷却后取下,在FTO上有黑色沉淀物生成,即得到碳对电极1-3。
将制备的碳对电极组装成染料敏化太阳能电池。选用100目的丝网印刷版在FTO上印刷一层20nm的TiO2浆料,静置10min,在125℃下热处理6min;然后再印刷一层200nm的TiO2浆料,使薄膜厚度约为6μm,静置10min,再在450℃下退火30min。再将TiO2薄膜放到0.2M的TiCl4溶液中,在70℃下持温30min,然后在450℃下退火30min,当温度降到80℃时,将TiO2薄膜取出,泡入0.3mM的N719染料中12h,作为染料敏化太阳能电池的光阳极。对电极为本发明的碳对电极。为了衡量该碳对电极的光电性能,采用传统的热分解法制备Pt对电极作对比。光阳极与对电极之间为碘电解质。组装好的电池在氙灯下测量电流与电压的电流-电压曲线。电池的各个参数列于表1。
表1
Figure BSA00000624806200031
实施例2
表2中4种实施例的碳对电极的具体制备过程如下:
(1)量取0.5mL的噻吩添加到100mL无水乙醇中,然后注入酒精灯中;
(2)称取0.06g的分析纯硝酸钴加入到20mL去离子水中,搅拌使其溶解;再分别加入0.06g的十二烷基硫酸钠,使其完全溶解,制成催化剂先体溶液;
(3)将步骤(2)中的催化剂先体溶液涂覆到FTO上,自然晾干;
(4)将步骤(3)中的FTO固定到升降台上,调节FTO与酒精灯灯芯顶端之间的距离分别为4.5cm、5cm、5.5cm、6cm、6.5cm;
(5)点燃步骤(4)中的酒精灯,将FTO放入火焰中,停留3min,然后熄灭火焰,待样品冷却后取下,在FTO上有黑色沉淀物生成,即得到碳对电极1-5,Pt对电极作为对比电极。将其组装成染料敏化太阳能电池,组装方法同实施例1。
当FTO与酒精灯灯芯顶端之间的距离为6cm时,制备的碳对电极的扫描电子显微镜照片如图1所示,(a)为碳对电极的顶视图,可以清楚的看到碳对电极的无序网络结构,(b)为碳对电极的截面图,可以看到碳对电极的海绵状结构;图2是碳对电极的透射电子显微镜照片,可以看出碳纳米颗粒的粒径在10~30nm;图3为碳对电极的激光拉曼光谱;图4为以该碳对电极和Pt对电极组装成染料敏化太阳能电池的I-V曲线,其中A曲线对应于本发明的三维网络碳纳米颗粒对电极,B曲线对应于Pt对电极。
碳对电极及组装的染料敏化太阳能电池的各个参数列于表2。
表2
Figure BSA00000624806200041
实施例3
表3中4种实施例的碳对电极的具体制备过程如下:
(1)量取0.5mL的噻吩添加到100mL无水乙醇中,然后注入酒精灯中;
(2)称取0.06g的分析纯硝酸钴加入到20mL去离子水中,搅拌使其溶解;再分别加入0.06g的十二烷基硫酸钠,搅拌使其充分溶解,制成催化剂先体溶液;
(3)将步骤(2)中的催化剂先体溶液涂覆到FTO上,自然晾干;
(4)将步骤(3)中的FTO固定到升降台上,调节FTO与酒精灯灯芯顶端之间的距离为6cm;
(5)点燃步骤(4)中的酒精灯,将FTO放入火焰中,分别停留1min、3min、5min、7min,然后熄灭火焰,待样品冷却后取下,在FTO上有黑色沉淀物生成,即得到碳对电极1-4。
将其组装成染料敏化太阳能电池,组装方法同实施例1。碳对电极及组装的染料敏化太阳能电池的各个参数列于表3。
表3
Figure BSA00000624806200051
实施例4
(1)量取0.5mL的噻吩添加到100mL无水乙醇中,然后注入酒精灯中;
(2)称取0.06g的分析纯硝酸钴加入到20mL去离子水中,搅拌使其溶解;再分别加入0.06g的十二烷基硫酸钠,搅拌使其充分溶解,制成催化剂先体溶液;
(3)将步骤(2)中的催化剂先体溶液涂覆到FTO上,自然晾干;
(4)将步骤(3)中的FTO固定到升降台上,调节FTO与酒精灯灯芯顶端之间的距离为6cm;
(5)点燃步骤(4)中的酒精灯,将FTO放入火焰中,停留3min,然后熄灭火焰,待样品冷却后取下,在FTO上有黑色沉淀物生成,即得到碳对电极。
将丝网印刷好的TiO2薄膜在30℃下,先浸入的0.3M Cd(NO3)2的乙醇与水的混合溶液中5min,然后取出用去离子水冲洗,然后在0.3M的Na2S的乙醇与水的混合溶液中5min,取出用去离子水冲洗。接着重复循环4次,得到敏化后的TiO2光阳极,其中乙醇与水的体积比为1∶1;将其组装成量子点敏化太阳能电池,电解质采用多硫化物电解质,组装方法同实施例1。
获得的量子点敏化太阳能电池的开路电压为0.21V,短路电流密度为1.3mA/cm2,填充因子为0.34,光电转换效率为0.09%。

Claims (7)

1.一种用于敏化类太阳能电池的碳对电极,其特征在于,所述敏化类太阳能电池的碳对电极的结构为在掺氟的导电玻璃FTO上生长了一层由三维无序网络海绵状结构的碳纳米颗粒组成的催化层。
2.根据权利要求1所述的敏化类太阳能电池的碳对电极,其特征在于所述的碳纳米颗粒粒径在10~50nm之间。
3.根据权利要求1所述的敏化类太阳能电池的碳对电极,其特征在于所述的碳层厚度为20~200μm。
4.一种敏化类太阳能电池碳对电极的制备方法,其特征在于包括如下步骤:
(1)在无水乙醇中添加少量噻吩,然后注入酒精灯中;
(2)在步骤(1)中的溶液中,添加噻吩的浓度为0.1%~10%,该浓度为噻吩和无水乙醇的体积比;
(3)将过渡金属盐和少量的十二烷基硫酸钠溶解到去离子水中,配成催化剂先体溶液;
(4)在步骤(3)中的溶液中,过渡金属盐和十二烷基硫酸钠的浓度分别为0.01~10mol/L;
(5)将步骤(3)中的溶液涂覆到FTO上,自然晾干;
(6)将步骤(5)中的FTO固定到升降台上,调节FTO与酒精灯灯芯顶端之间的距离,使FTO在制备过程中始终处于火焰中;
(7)点燃步骤(6)中的酒精灯,将FTO放入火焰中,停留一段时间,然后熄灭火焰,待样品冷却后取下,在FTO上有黑色沉淀物生成,即得到碳对电极。
5.按权利要求4所述的方法,其特征在于:所述的过渡金属盐为过渡金属铁、钴、镍的可溶性盐,或他们的混合物。
6.按权利要求4所述的方法,其特征在于:FTO与酒精灯灯芯顶端之间的距离为3~6.5cm。
7.按权利要求4所述的方法,其特征在于:所述的FTO在火焰中停留时间为1~10min。
CN2011103891790A 2011-11-30 2011-11-30 一种用于敏化类太阳能电池的碳对电极及制备方法 Pending CN102568839A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011103891790A CN102568839A (zh) 2011-11-30 2011-11-30 一种用于敏化类太阳能电池的碳对电极及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011103891790A CN102568839A (zh) 2011-11-30 2011-11-30 一种用于敏化类太阳能电池的碳对电极及制备方法

Publications (1)

Publication Number Publication Date
CN102568839A true CN102568839A (zh) 2012-07-11

Family

ID=46414008

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011103891790A Pending CN102568839A (zh) 2011-11-30 2011-11-30 一种用于敏化类太阳能电池的碳对电极及制备方法

Country Status (1)

Country Link
CN (1) CN102568839A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104445147A (zh) * 2014-11-20 2015-03-25 东南大学 一种简易且能大量制备纳米碳颗粒的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388294A (zh) * 2008-08-07 2009-03-18 中国科学院物理研究所 一种用于染料敏化太阳能电池的全碳对电极及制备方法
CN101939875A (zh) * 2008-02-25 2011-01-05 株式会社藤仓 对电极和具有该对电极的光电转换元件
CN102176386A (zh) * 2011-01-12 2011-09-07 南开大学 染料敏化太阳能电池对电极及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101939875A (zh) * 2008-02-25 2011-01-05 株式会社藤仓 对电极和具有该对电极的光电转换元件
CN101388294A (zh) * 2008-08-07 2009-03-18 中国科学院物理研究所 一种用于染料敏化太阳能电池的全碳对电极及制备方法
CN102176386A (zh) * 2011-01-12 2011-09-07 南开大学 染料敏化太阳能电池对电极及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EASWARAMOORTHI RAMASAMY等: "Nanocarbon counterelectrode for dye sensitized solar cells", 《APPLIED PHYSICS LETTERS》 *
李飞等: "Preparation of carbon nanotubes by ethanol catalytic combustion technique using nickel salt as catalyst precursor", 《TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA》 *
李飞等: "Synthesis of Y-junction carbon nanofibres by ethanol catalytic combustion techique", 《TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104445147A (zh) * 2014-11-20 2015-03-25 东南大学 一种简易且能大量制备纳米碳颗粒的方法

Similar Documents

Publication Publication Date Title
Zhang et al. Snowflake-Like Cu2S/MoS2/Pt heterostructure with near infrared photothermal-enhanced electrocatalytic and photoelectrocatalytic hydrogen production
Wang et al. Colloidal carbon quantum dots as light absorber for efficient and stable ecofriendly photoelectrochemical hydrogen generation
Vuong et al. H: ZnO nanorod-based photoanode sensitized by CdS and carbon quantum dots for photoelectrochemical water splitting
Balis et al. Quantum dot sensitized solar cells based on an optimized combination of ZnS, CdS and CdSe with CoS and CuS counter electrodes
Ma et al. Bioinspired photoelectric conversion system based on carbon-quantum-dot-doped dye–semiconductor complex
Yang et al. Porous Sn3O4 nanosheets on PPy hollow rod with photo-induced electrons oriented migration for enhanced visible-light hydrogen production
Xu et al. N, Cu-codoped carbon nanosheet/Au/CuBi2O4 photocathodes for efficient photoelectrochemical water splitting
Bao et al. One-pot solvothermal in situ growth of 1D single-crystalline NiSe on Ni foil as efficient and stable transparent conductive oxide free counter electrodes for dye-sensitized solar cells
Ding et al. ZIF-8 derived ZnO/TiO2 heterostructure with rich oxygen vacancies for promoting photoelectrochemical water splitting
Lepleux et al. Simple and reproducible procedure to prepare self-nanostructured NiO films for the fabrication of p-type dye-sensitized solar cells
CN103560014B (zh) 染料敏化电池用对电极、其制备方法及染料敏化电池
Qian et al. A highly efficient photocatalytic methanol fuel cell based on non-noble metal photoelectrodes: Study on its energy band engineering via experimental and density functional theory method
Jiang et al. Synergetic effect of surface plasmon resonance and Schottky junction to drastically boost solar-driven photoelectrochemical hydrogen production and photocatalytic performance of CdS/Al nanorod arrays
Khan et al. Improved photovoltaic performance of dye-sensitized solar cells by Au-ion implantation of titania film electrodes
Jennifer et al. A quaternary nanocomposite as an efficient counter electrode for Pt-free Dye-sensitized solar cells (DSSC)
Li et al. ZIF‐67 derived hollow double‐shell core Co3O4 modified g‐C3N4 to construct p‐n heterojunction for efficient photocatalytic hydrogen evolution
Wang et al. Efficient solar water splitting via enhanced charge separation of the BiVO4 photoanode
Ramanarayanan et al. The deterministic role of resonance energy transfer in the performance of bio-inspired colloidal silver nanoparticles incorporated dye sensitized solar cells
Zhuang et al. Construction of CdSe@ TiO2 core‐shell nanorod arrays by electrochemical deposition for efficient visible light photoelectrochemical performance
Wang et al. Application of ZIF-67 based nitrogen-rich carbon frame with embedded Cu and Co bimetallic particles in QDSSCs
Luo et al. β-Ni (OH) 2/NiS/TiO2 3D flower-like pnp heterostructural photocatalysts for high-efficiency removal of soluble anionic dyes and hydrogen releasing
Liu et al. In-doped Sn3O4 flower-like nanosheets for efficient visible-light photocatalytic hydrogen production
Narayanan et al. A CdS/Bi2S3 bilayer and a poly (3, 4-ethylenedioxythiophene)/S2− interface control quantum dot solar cell performance
Lu et al. Sb2Se3 nanorods in the confined space of TiO2 nanotube arrays facilitating photoelectrochemical hydrogen evolution
Wu et al. Enhanced solar-light-driven photoelectrochemical water splitting performance of type II 1D/0D CdS/In2S3 nanorod arrays

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120711