CN102561395B - Three-dimensional fine modeling method oriented to immersed tube tunnel seismic design - Google Patents
Three-dimensional fine modeling method oriented to immersed tube tunnel seismic design Download PDFInfo
- Publication number
- CN102561395B CN102561395B CN201210055548.7A CN201210055548A CN102561395B CN 102561395 B CN102561395 B CN 102561395B CN 201210055548 A CN201210055548 A CN 201210055548A CN 102561395 B CN102561395 B CN 102561395B
- Authority
- CN
- China
- Prior art keywords
- node
- tunnel
- unit
- tube coupling
- joint
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 239000000463 material Substances 0.000 claims abstract description 17
- 238000010276 construction Methods 0.000 claims abstract description 8
- 239000002689 soil Substances 0.000 claims description 37
- 238000004088 simulation Methods 0.000 claims description 25
- 238000006073 displacement reaction Methods 0.000 claims description 5
- 238000012916 structural analysis Methods 0.000 claims description 5
- 238000002788 crimping Methods 0.000 claims description 2
- 230000008878 coupling Effects 0.000 claims 25
- 238000010168 coupling process Methods 0.000 claims 25
- 238000005859 coupling reaction Methods 0.000 claims 25
- 238000010205 computational analysis Methods 0.000 claims 2
- 230000000694 effects Effects 0.000 claims 1
- 238000004364 calculation method Methods 0.000 abstract description 21
- 238000004458 analytical method Methods 0.000 abstract description 14
- 238000007906 compression Methods 0.000 abstract description 10
- 230000006835 compression Effects 0.000 abstract description 8
- 230000009471 action Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
Images
Landscapes
- Excavating Of Shafts Or Tunnels (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
一种沉管隧道三维简化建模方法,包括:对沉管隧道进行结构分析,确定需建模部分;定义该沉管隧道模型轴线上的节点;定义该沉管隧道模型所需单元;定义材料性质、界面属性;定义模拟接头部位的节点与该管节端点之间的约束关系;将上述各部件组装为沉管隧道模型,并用于计算分析。本发明能够模拟沉管隧道施工时水力压接产生的接头初始压缩,精确计算接头的受力与张开量,实现了对接头部位的精细化计算。本发明既充分考虑了分析的精度要求,又满足了计算效率方面的要求,具有很好的工程实用性。
A three-dimensional simplified modeling method for an immersed tunnel, comprising: analyzing the structure of the immersed tunnel to determine the part to be modeled; defining the nodes on the axis of the immersed tunnel model; defining the units required for the immersed tunnel model; defining the material Properties and interface attributes; define the constraint relationship between the nodes of the simulated joint and the end points of the pipe joint; assemble the above-mentioned components into an immersed tunnel model and use it for calculation and analysis. The invention can simulate the initial compression of joints produced by hydraulic pressure bonding during the construction of immersed tube tunnels, accurately calculate the stress and opening amount of the joints, and realize the fine calculation of joint positions. The invention not only fully considers the analysis accuracy requirement, but also meets the calculation efficiency requirement, and has good engineering practicability.
Description
技术领域 technical field
本发明属于水下隧道工程领域,涉及可用于沉管隧道抗震设计的建模方法。The invention belongs to the field of underwater tunnel engineering and relates to a modeling method that can be used for the seismic design of immersed tube tunnels.
背景技术 Background technique
沉管法是20世纪初发展起来的一种修建水下隧道的新工法。由于其独特的优势,近年来沉管法已成为水下隧道建设的首选工法。在沉管隧道的纵向抗震分析中,所建立的三维分析模型是否合适,涉及到计算的效率与结果的可靠性,因此合理的沉管隧道三维模型对抗震分析十分重要。The immersed tube method is a new construction method developed in the early 20th century to build underwater tunnels. Due to its unique advantages, the immersed tube method has become the preferred construction method for underwater tunnel construction in recent years. In the longitudinal seismic analysis of immersed tube tunnels, whether the established 3D analysis model is suitable or not involves the efficiency of calculation and the reliability of the results. Therefore, a reasonable 3D model of immersed tube tunnels is very important for seismic analysis.
以往用于沉管隧道抗震分析的模型多采用弹簧-质量模型,个别工程采用了全三维精细化模型。沉管隧道接头部位由于刚度小于管节,往往是隧道的薄弱部位,其受力、变形情况是工程中重点关注的部分,尤其是Gina止水带与剪切键等构造措施在地震作用下的性能直接影响隧道的安全性。Gina止水带是超弹性材料,为保证其水密性需满足最小压缩量的要求。地震作用下,随着接头的变形,压缩量有可能减小,导致止水失效。剪切键是接头部位的主要抗震构造,其受力与变形直接关系到隧道的抗震能力。以往用于沉管隧道抗震分析的模型多采用弹簧-质量模型,个别工程采用了全三维精细化模型。弹簧-质量模型虽然计算量小,但对接头的模拟较粗糙,抗拉压、抗弯、抗剪简单的各用一个弹簧模拟,无法计算Gina止水带的真实压缩量与张开量,也无法分析剪切键的受力情况。该模型无法考虑施工中水力压接产生的管体滑移,以及由此产生的接头初始压缩量,这将导致后续抗震分析中无法精确计算接头的张开量等重要控制条件,同时该模型也无法计算地震作用下隧道与土体可能产生的滑动。因此,弹簧-质量模型不适用于接头部位的精确计算。全三维精细化模型虽然可以精确计算分析隧道接头部位的受力、变形与张开,但计算成本太高,不适于世纪工程中的计算分析。In the past, most of the models used for seismic analysis of immersed tunnels used spring-mass models, and individual projects used full 3D refined models. Since the joints of immersed tube tunnels are less rigid than the pipe joints, they are often the weakest parts of the tunnel, and their stress and deformation are the key points in the project, especially the structural measures such as Gina waterstops and shear keys under the action of earthquakes. Performance directly affects the security of the tunnel. Gina waterstop is a super elastic material, in order to ensure its watertightness, it needs to meet the minimum compression requirement. Under the action of an earthquake, with the deformation of the joint, the amount of compression may decrease, resulting in the failure of the water seal. The shear key is the main anti-seismic structure of the joint, and its stress and deformation are directly related to the anti-seismic capacity of the tunnel. In the past, most of the models used for seismic analysis of immersed tunnels used spring-mass models, and individual projects used full 3D refined models. Although the calculation amount of the spring-mass model is small, the simulation of the joint is relatively rough, and the tension and compression, bending and shearing are simply simulated with one spring each, so the real compression and opening of the Gina waterstop cannot be calculated, nor can it be analyzed The force of the shear bond. This model cannot take into account the slippage of the pipe body caused by hydraulic compression during construction and the resulting initial compression of the joint, which will lead to the inability to accurately calculate important control conditions such as the opening of the joint in the subsequent seismic analysis, and the model cannot calculate Possible sliding of tunnel and soil under earthquake action. Therefore, the spring-mass model is not suitable for accurate calculation of joint locations. Although the full three-dimensional refined model can accurately calculate and analyze the force, deformation and opening of the tunnel joint, the calculation cost is too high and it is not suitable for the calculation and analysis in the century project.
发明内容 Contents of the invention
针对现有弹簧-质量模型无法模拟沉管隧道水力压接的不足、现有弹簧-质量模型无法精确计算接头部位受力与张开量的不足、现有弹簧-质量模型无法模拟剪切键与Gina止水带的不足以及全三维精细化模型计算成本过高的弊端,本发明的目的在于提供一种沉管隧道三维简化建模方法。The existing spring-mass model cannot simulate the hydraulic crimping of immersed tube tunnels, the existing spring-mass model cannot accurately calculate the force and opening of the joints, and the existing spring-mass model cannot simulate the shear bond and Gina stop. Due to the shortage of water strips and the disadvantages of high calculation cost of the full three-dimensional refined model, the purpose of the present invention is to provide a three-dimensional simplified modeling method for immersed tube tunnels.
为解决上述技术问题,本发明的技术方案包括以下步骤:In order to solve the problems of the technologies described above, the technical solution of the present invention comprises the following steps:
步骤1,对沉管隧道进行结构分析,确定需建模部分;
步骤2,定义该沉管隧道模型轴线上的节点;
步骤3,定义该沉管隧道模型所需单元,包括:用于模拟管节的梁单元、模拟Gina止水带的非线性弹簧单元、用于模拟土体的弹簧与粘壶单元、用于模拟隧道与土体接触的滑动单元、用于模拟剪切键的弹簧单元等;
步骤4,设定管节材料的弹性模量、泊松比,确定横断面尺寸,设置土弹簧、粘壶、剪切键、Gina止水带的参数;
步骤5,定义模拟接头部位的节点与该管节端点之间的约束关系;
步骤6,将上述各部件组装为沉管隧道模型,并用于计算分析。
进一步,步骤1中包括:确定其轴线的几何位置、隧道的埋深,周围土层的分布,取拟用沉埋管段法施工的隧道部分为建模范围。Further,
步骤2中节点包括三部分:管节轴线上的节点、用于模拟土体行为的地基弹簧与粘壶的节点以及管节端部沿横断面周长的节点,管节轴线上节点的数量与表征管节的梁单元的几何尺寸有关。The nodes in
步骤3中所述单元包括:用于模拟管节的梁单元、模拟Gina止水带的非线性弹簧单元、用于模拟土体的弹簧与粘壶单元、用于模拟隧道与土体接触的滑动单元、用于模拟剪切键的弹簧单元。The units described in
步骤4中包括:设定管节材料的弹性模量、泊松比,确定横断面尺寸,设置土弹簧、粘壶、剪切键、Gina止水带的参数。
步骤5中:将沿接头周长方向的节点与该管节端部节点设置为刚体约束,保持这些节点不产生相对位移。Step 5: set the nodes along the circumference of the joint and the end nodes of the pipe joint as rigid body constraints, and keep these nodes from generating relative displacement.
更进一步,一种用于沉管隧道抗震设计的建模方法,包括:Further, a modeling method for the seismic design of immersed tube tunnels, including:
步骤1,对拟设计的隧道结构进行结构分析,包括:确定其轴线的几何位置、隧道的埋深,周围土层的分布,取拟用沉埋管段法施工的隧道部分为建模范围,该沉管隧道模型包括管节、地基弹簧、粘壶、滑动单元、Gina止水带、剪切键;Step 1: Structural analysis of the tunnel structure to be designed, including: determining the geometric position of the axis, the buried depth of the tunnel, and the distribution of the surrounding soil layers. The immersed tube tunnel model includes pipe joints, foundation springs, sticky pots, sliding units, Gina waterstops, and shear keys;
步骤2,定义该沉管隧道模型的控制节点。控制节点包括三部分:管节轴线上的节点、用于模拟土体行为的地基弹簧与粘壶的节点以及管节端部沿横断面周长的节点。管节轴线上节点的数量与表征管节的梁单元的几何尺寸有关;
步骤3,定义用于模拟该沉管隧道的单元;
1)管节的模拟:在步骤2所定义的沉管隧道管节轴线节点的基础上将管节离散为三维线性梁单元,即以每个管节轴线上相邻两节点为单元的端点定义三维线性梁单元;1) Simulation of pipe joints: Discretize the pipe joints into three-dimensional linear beam units on the basis of the joint axis nodes of the immersed tube tunnel defined in
2)管节接头的模拟:a)Gina止水带的模拟:用若干非线性弹簧单元模拟Gina止水带的作用,在步骤2中已设置各管节端部沿横断面周长的节点,以接头两侧管节端部沿横断面周长的对应节点为单元端点,将每对节点之间定义为非线性弹簧单元;2) Simulation of pipe joints: a) Simulation of Gina waterstop: Use several nonlinear spring elements to simulate the function of Gina waterstop. In
b)剪切键的模拟:根据各剪切键在接头的实际布置位置,找出接头两侧管节端面沿周长的节点的对应节点,以每对对应节点为单元端点定义Cartesian连接单元;若该单元用于模拟水平剪切键则在该单元中应定义水平方向的剪切键刚度;若为竖直剪切键则定义相应的竖直剪切键刚度;若拟设计的隧道在接头横断面中部亦有数值剪切键,则同样采用此方法根据具体几何位置设置剪切键的节点并在对应节点之间定义笛卡尔连接单元;b) Simulation of the shear bond: According to the actual arrangement position of each shear bond in the joint, find out the corresponding nodes of the nodes along the perimeter of the end faces of the pipe joints on both sides of the joint, and define the Cartesian connection element with each pair of corresponding nodes as the element endpoint; If the unit is used to simulate a horizontal shear bond, the shear bond stiffness in the horizontal direction should be defined in the unit; if it is a vertical shear bond, then the corresponding vertical shear bond stiffness should be defined; If there is also a numerical shear bond in the middle of the cross section, this method is also used to set the nodes of the shear bond according to the specific geometric position and define Cartesian connection elements between the corresponding nodes;
3)土体的模拟:以步骤2中定义的模拟土体行为的单元的节点为端点,在空间三个方向分别定义并联的弹簧单元与粘壶单元,以此模拟土体的行为;3) Soil simulation: take the node of the unit simulating soil behavior defined in
4)土体-隧道相互作用的模拟:以管节轴线上节点及与其位置对应的模拟土体行为的单元之靠近管节侧的节点为单元端点定义Cartesian & Cardan连接单元,除沿隧道水平纵向的自由度外,其余自由度均设置为刚性,在水平纵向设置适当的土体-隧道的摩擦系数,法向力的方向定义为竖直方向,该单元允许管节在水力压接及地震作用下产生可能的纵向滑动;4) Simulation of soil-tunnel interaction: define the Cartesian & Cardan connection unit with the node on the axis of the pipe joint and the node on the side of the simulated soil behavior corresponding to its position near the pipe joint as the unit end point, except along the horizontal and longitudinal direction of the tunnel Except for the degrees of freedom, the rest of the degrees of freedom are set as rigid, and the friction coefficient of the soil-tunnel is set appropriately in the horizontal and vertical directions, and the direction of the normal force is defined as the vertical direction. A possible vertical slide is generated under;
步骤4,定义材料性质、界面属性;
1)设置关节材料的弹性模量、泊松比等材料常数;1) Set material constants such as elastic modulus and Poisson's ratio of the joint material;
2)通过计算确定管节横断面的面积、对形心轴的惯性矩、惯性积、扭转常数以及剪切中心位置等参数;2) Determine the cross-sectional area of the pipe joint, the moment of inertia about the centroid axis, the product of inertia, the torsion constant, and the shear center position and other parameters through calculation;
3)采用适当的理论计算确定用于模拟土体行为的弹簧-粘壶并联单元中弹簧及粘壶各自的系数;3) Use appropriate theoretical calculations to determine the respective coefficients of the spring and the pot in the spring-pot parallel unit used to simulate the behavior of the soil;
4)确定Gina材料的力-压缩量非线性关系曲线;4) Determine the force-compression nonlinear relationship curve of the Gina material;
步骤5,定义约束关系:将沿接头周长方向的节点(包括各剪切键对应节点)与该关节端部节点设置为刚体约束,保持这些节点无相对位移;所述沿接头周长方向的节点包括各剪切键对应节点;
步骤6,将上述各部件组装为沉管隧道模型,并用于计算分析。
本发明弥补了上述两模型的不足,能够模拟沉管隧道施工时水力压接产生的接头初始压缩,精确计算接头的受力与张开量。该发明中接头Gina止水带模拟为沿实际周长布置的若干弹簧,剪切键模拟为相应位置的弹簧,实现了对接头部位的精细化计算。本发明既充分考虑了分析的精度要求,又满足了计算效率方面的要求,具有很好的工程实用性。The invention makes up for the deficiencies of the above two models, can simulate the initial compression of joints produced by hydraulic pressure bonding during the construction of immersed tunnels, and accurately calculate the stress and opening of the joints. In this invention, the joint Gina waterstop is simulated as a number of springs arranged along the actual perimeter, and the shear key is simulated as a spring at the corresponding position, which realizes the refined calculation of the joint position. The invention not only fully considers the analysis accuracy requirement, but also meets the calculation efficiency requirement, and has good engineering practicability.
附图说明 Description of drawings
图1为本发明实例的沉管隧道抗震设计的三维精细化建模方法流程图。Fig. 1 is a flowchart of a three-dimensional refined modeling method for the seismic design of an immersed tunnel in an example of the present invention.
图2为本发明实例用于沉管隧道抗震设计模型的三维视图。Fig. 2 is a three-dimensional view of the example of the present invention used in the seismic design model of the immersed tube tunnel.
图3为沉管隧道管节接头模型的三维视图。Fig. 3 is a three-dimensional view of the pipe joint model of the immersed tunnel.
附图中标号说明:Explanation of the numbers in the accompanying drawings:
1-沉管隧道管节;2-地基弹簧;3-粘壶;4-滑动单元;5-剪切键;6-Gina止水带;7-接头左侧管节;8-接头右侧管节;9-左侧管节右端点;10-右侧管节左端点;11-剪切键左侧节点;12-剪切键右侧节点;13-刚性连接1-Immersed tube tunnel pipe joint; 2-Foundation spring; 3-Stick pot; 4-Sliding unit; 5-Shear key; 6-Gina waterstop; Node; 9-right end point of left pipe joint; 10-left end point of right pipe joint; 11-left node of shear key; 12-right node of shear key; 13-rigid connection
具体实施方式 Detailed ways
以下结合附图和实施例,以通用有限元软件ABAQUS为基础,对本发明的具体实施方式做进一步详细描述。Below in conjunction with the accompanying drawings and embodiments, based on the general finite element software ABAQUS, the specific implementation of the present invention will be further described in detail.
步骤1,对拟设计的隧道结构进行结构分析,包括:确定其轴线的几何位置、隧道的埋深,周围土层的分布等。取拟用沉埋管段法施工的隧道部分为建模范围。Step 1: Structural analysis of the tunnel structure to be designed, including: determining the geometric position of its axis, the buried depth of the tunnel, and the distribution of surrounding soil layers. The part of the tunnel to be constructed by the buried pipe segment method is taken as the modeling range.
如图1所示,该沉管隧道模型包括管节1、地基弹簧2、粘壶3、滑动单元4、剪切键5、Gina止水带6等部分。As shown in Figure 1, the immersed tunnel model includes
步骤2,如图1所示定义该沉管隧道模型的控制节点。控制节点包括三部分:管节轴线上的节点、用于模拟土体行为的地基弹簧与粘壶的节点以及管节端部沿横断面周长的节点。管节轴线上节点的数量与表征管节的梁单元的几何尺寸有关,这取决于分析精度与管节长度,同时还要考虑计算成本。一般说来,节点数量越多精度越高,但计算成本越高。每隔五米取一个节点,能够较好的平衡计算精度与计算成本。。本实施例中每根管节长度为180米,划分为32个梁单元,因此每个管节轴线上设置了33个节点。用于模拟土体行为的地基弹簧与粘壶的节点可由各管节轴线上的节点在空间平移得到。管节端部沿横断面周长可每隔一段距离设置一个节点,本实施例中每米设置一个节点。
步骤3,定义用于模拟该沉管隧道的单元;
1)管节的模拟:如图1所示,在步骤2所定义的沉管隧道管节轴线节点的基础上将管节离散为三维线性梁单元,即以每个管节轴线上相邻两节点为单元的端点定义三维线性梁单元;1) Simulation of pipe joints: as shown in Figure 1, the pipe joints are discretized into three-dimensional linear beam units on the basis of the joint axis nodes of immersed tunnel tunnels defined in
2)管节接头的模拟:a)Gina止水带的模拟:用若干非线性弹簧单元模拟Gina止水带的作用。如图1、2所示,在步骤2中已设置各管节端部沿横断面周长的节点,以接头两侧管节端部沿横断面周长的对应节点为单元端点,将每对节点之间定义为非线性弹簧单元;2) Simulation of pipe joints: a) Simulation of Gina waterstop: use several nonlinear spring elements to simulate the function of Gina waterstop. As shown in Figures 1 and 2, the nodes along the circumference of the cross-section at the ends of the pipe joints have been set in
b)剪切键的模拟:如图2所示,剪切键是接头部位除Gina止水带外的另一主要构件。根据各剪切键在接头的实际布置位置,找出接头两侧管节端面沿周长的节点的对应节点,以每对对应节点为单元端点定义Cartesian(笛卡尔单元)连接单元。如果该单元用于模拟水平剪切键则在该单元中应定义水平方向的剪切键刚度;如为竖直剪切键则定义相应的竖直剪切键刚度。如拟设计的隧道在接头横断面中部亦有数值剪切键,则同样采用此方法根据具体几何位置设置剪切键的节点并在对应节点之间定义笛卡尔连接单元。b) Simulation of the shear bond: As shown in Figure 2, the shear bond is another main component of the joint except the Gina waterstop. According to the actual arrangement position of each shear bond in the joint, the corresponding nodes of the nodes along the perimeter of the pipe joint end faces on both sides of the joint are found, and each pair of corresponding nodes is used as the unit end point to define the Cartesian (Cartesian unit) connection unit. If the unit is used to simulate a horizontal shear key, the shear key stiffness in the horizontal direction should be defined in the unit; if it is a vertical shear key, the corresponding vertical shear key stiffness should be defined. If the tunnel to be designed also has numerical shear bonds in the middle of the joint cross-section, this method is also used to set the nodes of the shear bonds according to the specific geometric positions and define Cartesian connection elements between the corresponding nodes.
3)土体的模拟:如图1所示,以步骤2中定义的模拟土体行为的单元的节点为端点,在空间三个方向分别定义并联的弹簧单元与粘壶单元,以此模拟土体的行为;3) Soil simulation: As shown in Figure 1, take the node of the unit simulating soil behavior defined in
4)土体-隧道相互作用的模拟:如图1所示,以管节轴线上节点及与其位置对应的模拟土体行为的单元之靠近管节侧的节点为单元端点定义Cartesian & Cardan(笛卡尔单元和万向接头单元)连接单元。除沿隧道水平纵向的自由度外,其余自由度均设置为刚性。在水平纵向设置适当的土体-隧道的摩擦系数,法向力的方向定义为竖直方向。该单元允许管节在水力压接及地震作用下产生可能的纵向滑动;4) Simulation of soil-tunnel interaction: as shown in Figure 1, the node on the axis of the pipe joint and the node on the side of the simulated soil behavior corresponding to the position of the unit near the pipe joint are used as the end points of the unit to define the Cartesian & Cardan (Flute Karl unit and universal joint unit) connection unit. Except for the degrees of freedom along the horizontal and longitudinal directions of the tunnel, the rest of the degrees of freedom are set as rigid. The appropriate soil-tunnel friction coefficient is set in the horizontal and vertical directions, and the direction of the normal force is defined as the vertical direction. This unit allows the possible longitudinal sliding of pipe joints under hydraulic pressure and earthquake;
步骤4,定义材料性质、界面属性等;
1)设置关节材料的弹性模量、泊松比等材料常数;1) Set material constants such as elastic modulus and Poisson's ratio of the joint material;
2)通过计算确定管节横断面的面积、对形心轴的惯性矩、惯性积、扭转常数以及剪切中心位置等参数。2) Determine the cross-sectional area of the pipe joint, the moment of inertia about the centroid axis, the product of inertia, the torsion constant, and the shear center position and other parameters through calculation.
3)采用适当的理论计算确定用于模拟土体行为的弹簧-粘壶并联单元中弹簧及粘壶各自的系数;3) Use appropriate theoretical calculations to determine the respective coefficients of the spring and the pot in the spring-pot parallel unit used to simulate the behavior of the soil;
4)确定Gina材料的力-压缩量非线性关系曲线;4) Determine the force-compression nonlinear relationship curve of the Gina material;
步骤5,定义约束关系:将沿接头周长方向的节点与该管节端部节点设置为刚体约束(如有中部竖直剪切键则应包括该剪切键的对应端点),保持这些节点不产生相对位移;
步骤6,将上述各部件组装为沉管隧道模型,并用于计算分析。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于这里的实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。The above description of the embodiments is for those of ordinary skill in the art to understand and apply the present invention. It is obvious that those skilled in the art can easily make various modifications to these embodiments, and apply the general principles described here to other embodiments without creative efforts. Therefore, the present invention is not limited to the embodiments herein. Improvements and modifications made by those skilled in the art according to the disclosure of the present invention without departing from the scope of the present invention should fall within the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210055548.7A CN102561395B (en) | 2012-03-05 | 2012-03-05 | Three-dimensional fine modeling method oriented to immersed tube tunnel seismic design |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210055548.7A CN102561395B (en) | 2012-03-05 | 2012-03-05 | Three-dimensional fine modeling method oriented to immersed tube tunnel seismic design |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102561395A CN102561395A (en) | 2012-07-11 |
CN102561395B true CN102561395B (en) | 2014-06-25 |
Family
ID=46407874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210055548.7A Expired - Fee Related CN102561395B (en) | 2012-03-05 | 2012-03-05 | Three-dimensional fine modeling method oriented to immersed tube tunnel seismic design |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102561395B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103792139B (en) * | 2012-10-29 | 2016-01-20 | 同济大学 | A kind of measuring method of Joints in Immersed Tunnel bendind rigidity |
CN103912016B (en) * | 2012-12-31 | 2016-02-03 | 中交一航局第二工程有限公司 | A kind of tube coupling drawing compression bonding method |
CN105069195B (en) * | 2015-07-21 | 2018-03-27 | 深圳市置华机电设备有限公司 | A kind of electromechanical antidetonation Deepen Design method and system |
CN108385727B (en) * | 2018-02-05 | 2020-02-14 | 山东大学 | Method for calculating reasonable buried depth of submarine tunnel constructed by immersed tube method |
CN112084610A (en) * | 2020-08-31 | 2020-12-15 | 广船国际有限公司 | Immersed tube tunnel pipe joint pre-carrying method, device, equipment and storage medium |
CN112064680A (en) * | 2020-08-31 | 2020-12-11 | 广船国际有限公司 | Manufacturing method of immersed tunnel steel shell pipe joint and immersed tunnel steel shell pipe joint |
CN112632659A (en) * | 2020-12-08 | 2021-04-09 | 株洲时代新材料科技股份有限公司 | Analysis method for GINA waterstop for immersed tunnel |
CN112632837B (en) * | 2020-12-31 | 2024-05-14 | 华中科技大学 | Method for determining longitudinal earthquake-resistant numerical value of underground structure |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4301354B2 (en) * | 2000-07-10 | 2009-07-22 | 横浜ゴム株式会社 | Structure of water-stopping material |
CN101918644A (en) * | 2007-12-20 | 2010-12-15 | 斯特拉顿大众项目有限责任公司 | Apparatus for positioning a sinking tunnel section |
-
2012
- 2012-03-05 CN CN201210055548.7A patent/CN102561395B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4301354B2 (en) * | 2000-07-10 | 2009-07-22 | 横浜ゴム株式会社 | Structure of water-stopping material |
CN101918644A (en) * | 2007-12-20 | 2010-12-15 | 斯特拉顿大众项目有限责任公司 | Apparatus for positioning a sinking tunnel section |
Non-Patent Citations (6)
Title |
---|
单圆盾构隧道抗震计算的惯性力法;商金华等;《华南地震》;20090315;第29卷(第01期);第79-86页 * |
商金华等.单圆盾构隧道抗震计算的惯性力法.《华南地震》.2009,第29卷(第01期), |
张旭等.沉管接头简化方法及三维抗震有限元分析.《地下空间与工程学报》.2011,第7卷(第增刊1期), |
沉管接头简化方法及三维抗震有限元分析;张旭等;《地下空间与工程学报》;20111031;第7卷(第增刊1期);第1292-1402页 * |
沉管隧道有限元与等效质点抗震分析比较;王艳宁等;《地下空间与工程学报》;20111031;第7卷(第05期);第870-872页 * |
王艳宁等.沉管隧道有限元与等效质点抗震分析比较.《地下空间与工程学报》.2011,第7卷(第05期), |
Also Published As
Publication number | Publication date |
---|---|
CN102561395A (en) | 2012-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102561395B (en) | Three-dimensional fine modeling method oriented to immersed tube tunnel seismic design | |
Tubaldi et al. | Three-dimensional mesoscale modelling of multi-span masonry arch bridges subjected to scour | |
US10571603B2 (en) | Method implemented in a computer for the numerical simulation of a porous medium | |
Caselunghe et al. | Structural element approaches for soil-structure interaction | |
CN102368277B (en) | Building method of load-structure model in view of arch effect of tunnel stress | |
Armstrong et al. | Liquefaction effects on piled bridge abutments: Centrifuge tests and numerical analyses | |
CN108197345B (en) | A dynamic time-history analysis and modeling method for long-line water conveyance structures based on coupling theory | |
CN108385727B (en) | Method for calculating reasonable buried depth of submarine tunnel constructed by immersed tube method | |
Farinha et al. | Small displacement coupled analysis of concrete gravity dam foundations: static and dynamic conditions | |
Aron et al. | Structural element approaches for soil-structure interaction | |
CN106932484B (en) | A kind of measurement method of the bed characteristics based on fibre optical sensor | |
WO2023124664A1 (en) | Rock mass stability limit analysis method | |
CN114595600A (en) | Foundation vibration reference quality analysis method for large power machine foundation | |
Arici et al. | Comparison of 2D versus 3D modeling approaches for the analysis of the concrete faced rock‐fill Cokal Dam | |
Cocking et al. | Interpretation of the dynamic response of a masonry arch rail viaduct using finite-element modeling | |
Ghadimi et al. | Effects of geometrical parameters on numerical modeling of pavement granular material | |
Feng et al. | Three-dimensional finite element modelling for seismic response analysis of pile-supported bridges | |
CN103882849B (en) | A kind of argument and analysis and method for processing foundation containing vertical weak foundation for nuclear power plant | |
Fan et al. | A hybrid algorithm of partitioned finite element and interface element for dynamic contact problems with discontinuous deformation | |
CN115146513B (en) | Simulation early warning method and system for pipeline leakage collapse | |
CN116882023A (en) | A method for predicting the lateral settlement of the overlying soil layer during underground excavation construction of subway tunnels | |
CN116305455A (en) | A Simulation Method of Shield Tunnel-Soil Dynamic Interaction Based on OpenSees | |
Li et al. | An interactive method of interface boundary elements and partitioned finite elements for local continuous/discontinuous deformation problems | |
Ferdousi et al. | Earthquake analysis of arch dams including the effects of foundation discontinuities and proper boundary conditions | |
CN107066744A (en) | The Aseismic Analytical Method of subway station in water rich strata |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140625 Termination date: 20170305 |
|
CF01 | Termination of patent right due to non-payment of annual fee |