CN102546510B - Method for decreasing peak-to-average power ratio of orthogonal frequency division multiplexing (OFDM) signal - Google Patents

Method for decreasing peak-to-average power ratio of orthogonal frequency division multiplexing (OFDM) signal Download PDF

Info

Publication number
CN102546510B
CN102546510B CN201210006605.2A CN201210006605A CN102546510B CN 102546510 B CN102546510 B CN 102546510B CN 201210006605 A CN201210006605 A CN 201210006605A CN 102546510 B CN102546510 B CN 102546510B
Authority
CN
China
Prior art keywords
mrow
msup
msub
signal
munderover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210006605.2A
Other languages
Chinese (zh)
Other versions
CN102546510A (en
Inventor
江涛
李海波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN201210006605.2A priority Critical patent/CN102546510B/en
Publication of CN102546510A publication Critical patent/CN102546510A/en
Application granted granted Critical
Publication of CN102546510B publication Critical patent/CN102546510B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmitters (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

The invention discloses a method for decreasing a peak-to-average power ratio (PAPR) of an orthogonal frequency division multiplexing (OFDM) signal. The method comprises the following steps of: clipping a time-domain sequence x, projecting a clipped signal to a linear space consisting of all time-domain sub-sequences, calculating a phase rotation factor al<(v)> of each time-domain sub-sequence x<(v)>, multiplying each time-domain sub-sequence x<(v)> by using a corresponding phase rotation factor al<(v)>, superposing results, calculating a new linear combination signal xSLC, judging whether PAPRSLC is less than or equal to PAPR0 or not according to the PAPRSLC of the xSLC, finishing iteration if PAPRSLC is less than or equal to PAPR0, performing repeated iteration if PAPRSLC is not less than or equal to PAPR0, performing parallel/serial conversion on the time-domain sequence of which the PAPR is decreased, and transmitting the time-domain sequence to a receiver. The phase rotation factors are generated by iteration and projection, the PAPR can be decreased to a certain extent by the iteration of each time, and computational complexity is linearly increased along with the increasing of the number V of the phase rotation factors; and compared with the conventional method, the invention can greatly reduce required computational complexity when the PAPR is required to be decreased to a great extent.

Description

Method for reducing peak-to-average power ratio of OFDM signal
Technical Field
The invention belongs to the technical field of wireless communication by adopting Orthogonal Frequency Division Multiplexing (OFDM) signals, and particularly relates to a method for reducing the peak-to-average power ratio of an OFDM signal based on grouping linear combination.
Background
In a mobile radio channel, time-and frequency-selective fading occurs when a signal passes from a transmitting antenna through a time-varying multipath channel to a receiving antenna. The time-varying nature of the channel causes a broadening of the signal spectrum, resulting in the Doppler (Doppler) effect, causing the signal to fade selectively over time. Orthogonal Frequency Division Multiplexing (OFDM) techniques have been proposed in view of the frequency selective fading characteristics exhibited by multipath channels in the frequency domain. The OFDM technique is a technique of dividing a frequency domain into a plurality of subchannels, and orthogonally overlapping adjacent subchannels with each other to improve spectrum utilization efficiency. Therefore, on one hand, OFDM can overcome frequency selective fading; on the other hand, a time interval smaller than the coherence time is taken as the duration of one OFDM symbol, so that the influence of time-selective fading of the channel on the transmission system can be greatly reduced.
However, there are still some important problems with OFDM technology that are not well solved. One of the difficulties and key techniques is how to control the peak-to-average power ratio (ratio of peak power to average power). Because the OFDM signal is formed by superimposing a plurality of subcarrier signals, the peak-to-average power ratio of the OFDM signal is very high compared to a constant envelope signal such as a single carrier signal. The linear dynamic range of the transmitter power amplifier will require a wide range if the peak-to-average power ratio of the signal is high. A power amplifier with a wide linear dynamic range will increase the cost of the transmitter greatly. Although the power amplifier with low linear dynamic range can reduce the cost, the transmission signal will be seriously distorted, thereby causing the serious reduction of the system performance. Therefore, in order to reduce the requirement of the OFDM signal for the transmission power amplifier, it is necessary to reduce the peak-to-average power ratio of the OFDM signal.
Currently, many methods have been proposed to reduce the peak-to-average power ratio of OFDM signals. Among them, Partial Transmit Sequences (Partial Transmit Sequences) is an effective method. Assuming that the number of subcarriers of the OFDM system is N, one OFDM frequency domain signal X includes N modulation symbols, X ═ X (0), X (1),.., X (N-1)]. The main idea of a partial transmission sequence can be summarized as: dividing the modulated frequency domain signal X into V mutually disjoint frequency domain subsequences, being { X(v)V-0, 1., V-1}, each subsequence is still N in length, i.e., each subsequence contains
Figure BDA0000129644390000021
One modulation symbol being non-zero and the others being filled with zeros, i.e.
<math> <mrow> <mi>X</mi> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>v</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>V</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msup> <mi>X</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msup> </mrow> </math>
Here, the number of subsequences V is greater than or equal to 2, the value of V is determined by the required reduction of the peak-to-average power ratio of the OFDM system signal, and generally, V is 4, 8 or 16. Then, an Inverse Fast Fourier Transform (IFFT) operation of N points, i.e., x, is performed on each frequency domain subsequence(v)=IFFT(X(v)). For each x(v)Multiplied by a phase rotation factor b(v)And are summed, then
<math> <mrow> <mi>x</mi> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>v</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>V</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msup> <mi>b</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msup> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msup> </mrow> </math>
To facilitate the transmission of the phase rotation factor to the receiving end, b(v)Typically selected from four discrete values {1, -1, j, -j }, wherein
Figure BDA0000129644390000024
Traverse all possible 4VA phase rotation factor b(v)To obtain different time domain signals x, and selecting the signal with the minimum peak-to-average power ratio in the time domain signals to transmit.
It can be seen that, although the partial transmission sequence method can effectively reduce the peak-to-average power ratio, when a relatively large reduction of the peak-to-average power ratio is required, the number of packets V needs to be increased to generate a large number of candidate signals, and the peak-to-average power ratio of each candidate signal is calculated and the smallest candidate signal is selected as the transmission. This makes the computation complexity high, since it increases exponentially with the number of packets V.
Disclosure of Invention
Aiming at the defect of high complexity of a method for reducing the peak-to-average power ratio in the prior art, the invention provides a novel method for reducing the peak-to-average power ratio of an OFDM system signal, and the method greatly reduces the calculation complexity while reducing the peak-to-average power ratio.
The invention provides a method for reducing the peak-to-average power ratio of OFDM system signals, which comprises the following steps:
(1) coding, interleaving and modulating an input bit stream to obtain a frequency domain data signal;
(2) inserting pilot symbols in a frequency domain data signal according to a comb pattern to obtain a frequency domain sequence X { X (k) }, k 0, 1., N-1}, wherein N is the total subcarrier number of an OFDM system, and k represents a subcarrier sequence number; performing N-point fast Fourier inverse transformation on the frequency domain sequence X to obtain a time domain sequence X ═ X (0), X (1),.., X (N-1) ];
(3) after the frequency domain sequence X is subjected to serial-parallel conversion, the frequency domain sequence X is divided into V frequency domain subsequences { X ] with equal length in an adjacent mode(v)V-1, where V denotes the number of frequency domain subsequences, and V is 2 ≦ V < N;
X(v)=[X(v)(0),X(v)(1),...,X(v)(N-1)],
Figure BDA0000129644390000031
(4) for each frequency domain subsequence X(v)Performing N-point fast Fourier inverse transformation to obtain corresponding time domain subsequence x(v)=[x(v)(0),x(v)(1),...x(v)(N-1)];
(5) The peak-to-average power ratio reduction processing is carried out on the time domain sequence x, and specifically comprises the following substeps:
(5.1) let xlX, the iteration number l is 0;
(5.2) for xlShearing to obtain shearing signal xc,l=[xc,l(0),xc,l(1),...,xc,l(N-1)];
(5.3) shearing the signal xc,lProjection onto all time-domain subsequences { x }(v)V-0, 1, V-1} in a linear space L (x)(0),x(1),....,x(V-1)) Then as followsCalculating by a formula to obtain each time domain subsequence x(v)By a phase rotation factor ofl (v)
<math> <mrow> <msup> <msub> <mi>a</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msup> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>x</mi> <mrow> <mi>c</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>*</mo> </msup> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msup> <mrow> <mo>[</mo> <mo>|</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>]</mo> </mrow> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <mo>|</mo> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>x</mi> <mrow> <mi>c</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>*</mo> </msup> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msup> <mrow> <mo>[</mo> <mo>|</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>]</mo> </mrow> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </mfrac> </mrow> </math>
Wherein N-0, 1.., N-1, represents a conjugate;
(5.4) dividing each time domain subsequence x(v)Are multiplied by the corresponding phase rotation factors a respectivelyl (v)And the results are superposed to obtain a linear combination signal
Figure BDA0000129644390000042
(5.5) calculating a new linear combination signal <math> <mrow> <msub> <mi>x</mi> <mi>SLC</mi> </msub> <mo>=</mo> <msub> <mi>x</mi> <mi>l</mi> </msub> <mo>+</mo> <msub> <mi>&lambda;</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>SLC</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math> Relaxation factor lambdalCalculated according to the following formula:
wherein f (n) xc,1(N) -x (N), N-0, 1.., N-1, I is the set maximum number of iterations, λcIs a constant, λc∈[1,2];
(5.6) calculating a new linear combination signal xSLCPAPR ofSLCDetermine whether the PAPR is presentSLC≤PAPR0Wherein the PAPR0If the target peak-to-average power ratio is set, the iteration is terminated, and the step (6) is carried out; if not, let l be l +1, xl=xSLCAnd (5.2) turning to the step;
(6) and after the time domain sequence with the reduced peak-to-average power ratio is subjected to parallel-serial conversion, the time domain sequence is sent to a receiving end.
The invention provides a method for reducing the signal peak-to-average power ratio of an OFDM system, which generates a phase rotation factor sequence through iterative projection, wherein each iteration can have a certain peak-to-average power ratio reduction amount, a larger peak-to-average power ratio reduction amount is obtained after a plurality of iterations, and compared with the traditional partial sequence transmission method, the required calculation complexity is greatly reduced when a larger peak-to-average power ratio reduction amount is required. At the receiving end, the phase rotation factor sequence used by the transmitting end is recovered by using the existing segmented channel estimation method, so that the bit error rate is not influenced. Simulation experiments prove that the calculation complexity of the method can be greatly reduced when a larger peak-to-average power ratio reduction is required.
Drawings
Fig. 1 is a system block diagram at a transmitter end of an OFDM system according to the present invention;
FIG. 2 is a block diagram of an iterative OFDM signal peak-to-average power ratio reduction method described in the present invention;
fig. 3 is a system block diagram at a receiver end of the OFDM system according to the present invention.
Detailed Description
The invention is further illustrated with reference to the figures and examples.
As shown in fig. 1, the total number of subcarriers of the OFDM system is N, k represents a subcarrier number, and a system frequency domain signal is defined as X { X (k) ═ 0,1, and N-1}, where the signal is divided into V subblocks (V is greater than or equal to 2 and less than N), and the value of V is determined by the reduction required by the peak-to-average power ratio of the OFDM system signal, and generally V is 4, 8, or 16.
The method for reducing the average peak power ratio of the OFDM system comprises the following steps:
(1) coding, interleaving and modulating an input bit stream to obtain a frequency domain data signal;
(2) inserting pilot symbols in comb pattern (comb type) in the frequency domain data signal, i.e. when
Figure BDA0000129644390000061
When (i ═ 1, 2., 2V), a pilot symbol is inserted to obtain a frequency domain sequence X, and N-point inverse fast fourier transform is performed on X to obtain a time domain sequence X ═ X (0), X (1),.., X (N-1)];
(3) After the X is converted in a serial-parallel mode, the X is divided into V frequency domain subsequences X with equal length in an adjacent mode(v)Wherein X is(v)=[X(v)(0),X(v)(1),...,X(v)(N-1)],
Figure BDA0000129644390000062
Thus is provided withFrequency domain subsequence X(v)Including the data signal, pilot symbols, and 0.
(4) Performing fast Fourier inverse transformation of N points on each frequency domain subsequence to obtain a corresponding time domain subsequence x(v)Wherein
x(v)=[x(v)(0),x(v)(1),...x(v)(N-1)];
(5) As shown in fig. 2, the peak-to-average power ratio reduction processing is performed on the time-domain sequence x according to steps (5.1) to (5.6). Setting PAPR0The target peak-to-average power ratio is usually set within the range of 5-9 dB; a. the0The preset shearing threshold is usually set to be 5-15 dB, is determined according to the selected modulation mode, I is the corresponding maximum iteration number and is generally determined by a simulation experiment, and lambda iscIs a constant number, satisfies lambdac∈[1,2];
(5.1) let xlX, the iteration number l is 0;
(5.2) for the sequence xlShearing to obtain shearing signal xc,l,xc,l=[xc,l(0),xc,l(1),...,xc,l(N-1)]The shearing treatment is as follows:
<math> <mrow> <msub> <mi>x</mi> <mrow> <mi>c</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>,</mo> </mtd> <mtd> <mo>|</mo> <msub> <mi>x</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>&le;</mo> <msub> <mi>A</mi> <mn>0</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>A</mi> <mn>0</mn> </msub> <msup> <mi>e</mi> <mrow> <mi>j&theta;</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </msup> <mo>,</mo> </mtd> <mtd> <mo>|</mo> <msub> <mi>x</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>></mo> <msub> <mi>A</mi> <mn>0</mn> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein x isl(n) is xlN-1, N represents the total number of subcarriers in the OFDM system, and θ (N) is xlPhase of (n), A0Is a clipping threshold;
Figure BDA0000129644390000065
xc,land (n) is a time domain sequence after shearing.
(5.3) shearing the signal xc,1Projection onto all time-domain subsequences { x }(v)V-0, 1, V-1} in a linear space L (x)(0),x(1),....,x(V-1)) Then, the phase rotation factor of each time-domain subsequence is calculated as follows:
<math> <mrow> <msup> <msub> <mi>a</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msup> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>x</mi> <mrow> <mi>c</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>*</mo> </msup> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msup> <mrow> <mo>[</mo> <mo>|</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>]</mo> </mrow> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <mo>|</mo> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>x</mi> <mrow> <mi>c</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>*</mo> </msup> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msup> <mrow> <mo>[</mo> <mo>|</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>]</mo> </mrow> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </mfrac> </mrow> </math>
wherein N-0, 1.., N-1, represents a conjugate; | represents an absolute value;
(5.4) dividing each time domain subsequence x(v)Are multiplied by the corresponding phase rotation factors a respectivelyl (v)And are superposed to obtain a linear combined signal
Figure BDA0000129644390000072
Namely, it is <math> <mrow> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>SLC</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>v</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>V</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msubsup> <mi>a</mi> <mi>l</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msubsup> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msup> <mo>;</mo> </mrow> </math>
(5.5) calculating a new linear combination signal <math> <mrow> <msub> <mi>x</mi> <mi>SLC</mi> </msub> <mo>=</mo> <msub> <mi>x</mi> <mi>l</mi> </msub> <mo>+</mo> <msub> <mi>&lambda;</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>x</mi> <mo>^</mo> </mover> <mi>SLC</mi> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math> Relaxation factor lambdalCalculated according to the following formula,
wherein f (n) xc,1(n)-x(n),n=0,1,...,N-1,λcIs a constant, λc∈[1,2];
(5.6) calculating a new linear combination signal xSLCPAPR ofSLCDetermine whether the PAPR is presentSLC≤PAPR0If yes, stopping iteration and entering the step (6); if not, let l be l +1, xl=xSLCAnd (5) transferring to the step (5.2).
(6) And after the time domain sequence with the reduced peak-to-average power ratio is subjected to parallel-serial conversion, the time domain sequence is sent to a receiving end.
The following describes an information processing method at the receiving end, as shown in fig. 3.
(a) After the received signal is subjected to serial-parallel conversion, Fast Fourier Transform (FFT) and parallel-serial conversion, a receiving end frequency domain sequence Y is obtained,
Y={Y(k),k=0,1,...,N-1};
(b) dividing Y into V receiving end frequency domain subsequences { Y) in the same way as in the step (3)(v),v=0,1,...,V-1},
Figure BDA0000129644390000081
Wherein, h (k) represents a channel frequency domain response value on the k-th sub-carrier, and w (k) is a frequency domain value of gaussian white noise on the k-th sub-carrier;
(c) and V takes values from 0 to V-1, and all data symbols in the frequency domain subsequences of the V receiving ends are calculated according to the steps (c1) to (c 2):
(c1) defining virtual channel frequency response
Figure BDA0000129644390000082
Is composed of
Figure BDA0000129644390000083
Figure BDA0000129644390000084
Calculated using equation (c 1):
<math> <mrow> <msup> <mi>H</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <msubsup> <mi>k</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>Y</mi> <mi>v</mi> </msup> <mrow> <mo>(</mo> <msubsup> <mi>k</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>/</mo> <mi>P</mi> <mrow> <mo>(</mo> <msubsup> <mi>k</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mi>c</mi> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,
Figure BDA0000129644390000086
is shown in
Figure BDA0000129644390000087
The frequency domain signal values on the sub-carriers,denotes the ith pilot symbol (i ═ 1, 2.,. 2V) in the vth receiving end frequency domain subsequence, and the positions and values of all pilot symbols are known at the receiving end;
calculating the virtual channel frequency response at all pilot frequency symbol positions in the v-th receiving end frequency domain subsequence by using the formula (c1), obtaining the virtual channel frequency response at the subcarrier where the data symbol of the v-th receiving end frequency domain subsequence is located by interpolation by using the obtained virtual channel frequency response value at the pilot frequency symbol position, and obtaining the virtual channel frequency response on the data symbol subcarrier of the v-th receiving end frequency domain subsequence by the following formula if linear interpolation is adopted, namely the virtual channel frequency response on the data symbol subcarrier of the v-th receiving end frequency domain subsequence is obtained by the following formula
<math> <mrow> <msup> <mi>H</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <msup> <mi>k</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msup> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>H</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <msubsup> <mi>k</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <msup> <mi>H</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <msubsup> <mi>k</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <msup> <mi>H</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <msubsup> <mi>k</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> </mrow> <mi>L</mi> </mfrac> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msup> <mi>k</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msup> <mo>-</mo> <msubsup> <mi>k</mi> <mi>i</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
= a I ( v ) [ H ( k i ( v ) ) + ( H ( k i + 1 ( v ) ) - H ( k i ( v ) ) L ) ( k ( v ) - k i ( v ) ) ] , ( k i ( v ) < k ( v ) < k i + 1 ( v ) )
Wherein k isvIs the position of the data symbol in the v-th receiving end frequency domain sub-sequence,
Figure BDA0000129644390000093
if other interpolation methods are adopted, the calculation formulas are different, and the interpolation method is not required;
(c2) receiving end using virtual channel frequency responseTo calculate the data symbol D' (k) of the v-th receiving end frequency domain sub-sequence(v)):
D′(k(v))=Yv(k(v))/H′(k(v));
(d) Combining the data symbols in the V receiving end frequency domain sub-sequences obtained in the step (c) into a sequence according to the size of the sub-carrier serial number, and then demodulating, de-interleaving and decoding the sequence to obtain an output bit stream.
According to the process of generating the phase twiddle factors in the method, the method provided by the invention directly calculates the value of the V phase twiddle factors, the complexity of the method is linearly increased along with the increase of V, and through analysis, the complexity required by each iteration is not very high, the iteration times are not very large, and thus the total calculation complexity is much lower than the complexity of the traditional partial sequence transmission method which is exponentially increased along with the increase of V.
The embodiment of the invention adopts the following specific parameter scheme: the number of subcarriers of the OFDM system is 64, the number of packets is 8, the number of pilots is 16, the input signal is a Quadrature Phase Shift Keying (QPSK) modulated signal, the clipping threshold is set to 2.0, λ is set toc1.95, target peak-to-average power ratio (PAPR)06.0dB, corresponding to a maximum number of iterations I of 20.
The simulation result shows that the complementary cumulative distribution function CCDF is 10-3When the peak-to-average power ratio of the OFDM signal is reduced to 4.3dB, the required real number addition times and the required partial sequence transmission method ratio of the method are reduced by 99.68%, and the required real number multiplication times and the required partial sequence transmission method ratio are reduced by 97.66%.
The above is an example of the present invention, but the present invention should not be limited to the disclosure of the example and the drawings. Therefore, it is intended that all equivalents and modifications which do not depart from the spirit of the invention disclosed herein are deemed to be within the scope of the invention.

Claims (2)

1. A method for reducing the peak-to-average power ratio of a signal in an OFDM system, the method comprising the steps of:
(1) coding, interleaving and modulating an input bit stream to obtain a frequency domain data signal;
(2) inserting a pilot symbol in a frequency domain data signal according to a comb pattern to obtain a frequency domain sequence X (k), wherein k is 0,1, N-1, and k represents a subcarrier sequence number of an OFDM system; performing N-point fast Fourier inverse transformation on the frequency domain sequence X to obtain a time domain sequence X ═ X (0), X (1),.., X (N-1) ];
(3) after the frequency domain sequence X is subjected to serial-parallel conversion, the frequency domain sequence X is divided into V frequency domain subsequences { X ] with equal length in an adjacent mode(v)V-1, where V is equal to or greater than 2 < N,
X(v)=[X(v)(0),X(v)(1),...,X(v)(N-1)],
Figure FDA0000430175540000011
(4) for each frequency domain subsequence X(v)Performing N-point fast Fourier inverse transformation to obtain corresponding time domain subsequence x(v)=[x(v)(0),x(v)(1),...x(v)(N-1)];
(5) The peak-to-average power ratio reduction processing is carried out on the time domain sequence x, and comprises the following substeps:
(5.1) let xlX, the iteration number l is 0;
(5.2) for xlShearing to obtain shearing signal xc,l=[xc,l(0),xc,l(1),...,xc,l(N-1)];
(5.3) shearing the signal xc,lProjection onto all time-domain subsequences { x }(v)V-0, 1, V-1} in a linear space L (x)(0),x(1),....,x(V-1)) Then, each time domain subsequence x is obtained by calculation according to the following formula(v)By a phase rotation factor ofl (v)
<math> <mrow> <msup> <msub> <mi>a</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msup> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>x</mi> <mrow> <mi>c</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>*</mo> </msup> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msup> <mrow> <mo>[</mo> <mo>|</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>]</mo> </mrow> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <mo>|</mo> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>x</mi> <mrow> <mi>c</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>*</mo> </msup> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msup> <mrow> <mo>[</mo> <mo>|</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>]</mo> </mrow> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>|</mo> </mrow> </mfrac> </mrow> </math>
Wherein N-0, 1.., N-1, represents a conjugate;
(5.4) dividing each time domain subsequence x(v)Are multiplied by the corresponding phase rotation factors a respectivelyl (v)And the results are superposed to obtain a linear combination signal xSLC
(5.5) calculating a new linear combination signal xSLC=xll(xSLC-xl) (ii) a Relaxation factor lambdalCalculated according to the following formula,
Figure FDA0000430175540000022
wherein f (n) xc,1(N) -x (N), N-0, 1.., N-1, I is the set maximum number of iterations, λcIs a constant, λc∈[1,2];
(5.6) calculating a new linear combination signal xSLCPAPR ofSLCDetermine whether the PAPR is presentSLC≤PAPR0Wherein the PAPR0If the target peak-to-average power ratio is set, the iteration is terminated, and the step (6) is carried out; if not, let l be l +1, xl=xSLCAnd (5.2) turning to the step;
(6) and after the time domain sequence with the reduced peak-to-average power ratio is subjected to parallel-serial conversion, the time domain sequence is sent to a receiving end.
2. The method of claim 1, wherein the time domain sequence x is represented by the following equationl(n) carrying out shearing,
<math> <mrow> <msub> <mi>x</mi> <mrow> <mi>c</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>x</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>,</mo> </mtd> <mtd> <mo>|</mo> <msub> <mi>x</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>&le;</mo> <msub> <mi>A</mi> <mn>0</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>A</mi> <mn>0</mn> </msub> <msup> <mi>e</mi> <mrow> <mi>j&theta;</mi> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </msup> <mo>,</mo> </mtd> <mtd> <mo>|</mo> <msub> <mi>x</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>></mo> <msub> <mi>A</mi> <mn>0</mn> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein N is 0,1,.., N-1; n represents the total number of subcarriers of the OFDM system, and theta (N) is xlPhase of (n), A0Is a clipping threshold;
Figure FDA0000430175540000031
xc,land (n) is a time domain sequence after shearing.
CN201210006605.2A 2012-01-09 2012-01-09 Method for decreasing peak-to-average power ratio of orthogonal frequency division multiplexing (OFDM) signal Active CN102546510B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210006605.2A CN102546510B (en) 2012-01-09 2012-01-09 Method for decreasing peak-to-average power ratio of orthogonal frequency division multiplexing (OFDM) signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210006605.2A CN102546510B (en) 2012-01-09 2012-01-09 Method for decreasing peak-to-average power ratio of orthogonal frequency division multiplexing (OFDM) signal

Publications (2)

Publication Number Publication Date
CN102546510A CN102546510A (en) 2012-07-04
CN102546510B true CN102546510B (en) 2014-05-07

Family

ID=46352487

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210006605.2A Active CN102546510B (en) 2012-01-09 2012-01-09 Method for decreasing peak-to-average power ratio of orthogonal frequency division multiplexing (OFDM) signal

Country Status (1)

Country Link
CN (1) CN102546510B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102932289B (en) * 2012-09-07 2015-07-15 重庆邮电大学 Cyclic shifting-based method for estimating shifting number and channel response in orthogonal frequency division multiplexing (OFDM) system
CN103326986B (en) * 2013-07-15 2016-12-28 浙江师范大学 A kind of method reducing ofdm system PAPR
CN106027452B (en) * 2016-05-19 2019-11-12 重庆邮电大学 A kind of PTS bilayer searching method reducing FBMC-OQAM PAR peak to average ratio
WO2022267847A1 (en) * 2021-06-21 2022-12-29 华为技术有限公司 Sequence transmission method and apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101958873A (en) * 2010-10-11 2011-01-26 华中科技大学 Information transmission method for reducing peak to average power ratio of orthogonal frequency division multiplexing signal
CN102075222A (en) * 2011-01-27 2011-05-25 华中科技大学 Method for reducing peak-to-average power ratio of multiple input multiple output (MIMO) - orthogonal frequency division multiplexing (OFDM) signal for space-frequency coding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101958873A (en) * 2010-10-11 2011-01-26 华中科技大学 Information transmission method for reducing peak to average power ratio of orthogonal frequency division multiplexing signal
CN102075222A (en) * 2011-01-27 2011-05-25 华中科技大学 Method for reducing peak-to-average power ratio of multiple input multiple output (MIMO) - orthogonal frequency division multiplexing (OFDM) signal for space-frequency coding

Also Published As

Publication number Publication date
CN102546510A (en) 2012-07-04

Similar Documents

Publication Publication Date Title
CN102932289B (en) Cyclic shifting-based method for estimating shifting number and channel response in orthogonal frequency division multiplexing (OFDM) system
CN101783781B (en) Information transmission method for lowering peak to average power ratio of OFDM system signal
Ma et al. A low complexity MMSE for OFDM systems over frequency-selective fading channels
CN101951353B (en) Channel estimation method for orthogonal frequency division multiplexing (OFDM) system under interference environment
CN105530217A (en) Signal emission and reception method of GFDM system based on weight fraction Fourier transform
CN107682297A (en) A kind of mobile underwater sound communication method
CN101771652B (en) Amplitude limiting reserved sub carrier wave reduction PAPR method and system based on amplitude proportion factors
CN113206813B (en) OFDM system peak-to-average power ratio suppression method based on improved selective mapping method
CN102769595B (en) Method for reducing PAPR (Peak To Average Power Ratio) under APSK (Amplitude Phase Shift Keying) constellation diagram
CN102497350B (en) OFDM (Orthogonal Frequency Division Multiplexing) peak-to-average power ratio lowering method based on constellation linear expansion
Kaiming et al. PAPR reduction for FBMC-OQAM systems using P-PTS scheme
CN102546510B (en) Method for decreasing peak-to-average power ratio of orthogonal frequency division multiplexing (OFDM) signal
CN103326987B (en) Based on the method for inhibiting peak-to-average ratio of circulation constellation displacement
CN100477651C (en) High-performance OFDM channel estimation method based on combined pilot
CN101958866B (en) Pilot frequency insertion method and module
CN111641576B (en) Method for reducing peak-to-average ratio of OFDM (orthogonal frequency division multiplexing) signal based on index modulation
CN1984109A (en) Channel estimater and channel estimating method in telecommunication system
CN103139111A (en) Method and device for low complexity signal detection in orthogonal frequency division multiplexing (OFDM) system
CN107566311B (en) Transmission method based on resource block filtering RB F-OFDM system
CN105119861A (en) BER improvement method of interleaved carrier index modulation N-order continuous OFDM system
CN110071889B (en) Peak-to-average power ratio suppression method suitable for multi-path OFDM system
Li et al. A low complexity partition dummy sequence insertion PAPR reduction method for the OFDM system
CN111628953A (en) Method for reducing peak-to-average ratio of OFDM signal
Sudha et al. Performance analysis of PAPR reduction in OFDM system with distortion and distortion less methods
Luo et al. A PTS Optimization Scheme with Superimposed Training for PAPR Reduction in OFDM System

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant