CN102531090A - 一种铁改性凹凸棒石吸附剂处理多西环素废水的方法 - Google Patents

一种铁改性凹凸棒石吸附剂处理多西环素废水的方法 Download PDF

Info

Publication number
CN102531090A
CN102531090A CN2010105825271A CN201010582527A CN102531090A CN 102531090 A CN102531090 A CN 102531090A CN 2010105825271 A CN2010105825271 A CN 2010105825271A CN 201010582527 A CN201010582527 A CN 201010582527A CN 102531090 A CN102531090 A CN 102531090A
Authority
CN
China
Prior art keywords
vibravenos
waste water
modified attapulgite
iron modified
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010105825271A
Other languages
English (en)
Inventor
王金生
李剑
鲍文菊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Normal University
Original Assignee
Beijing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Normal University filed Critical Beijing Normal University
Priority to CN2010105825271A priority Critical patent/CN102531090A/zh
Publication of CN102531090A publication Critical patent/CN102531090A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明为一种铁改性凹凸棒石吸附剂处理多西环素废水的方法,其特征在于:所述的废水中多西环素的浓度为5-150mg/L;在所述的多西环素废水中加入铁改性凹凸棒石吸附剂,所述的多西环素废水与所述的吸附剂的质量比为1∶(4-6);所述的吸附过程在温度为0-50℃的条件下、采用静态和/或振荡、搅拌作用方式进行。本发明针对受多西环素污染的废水,通过在废水中加入铁改性凹凸棒石吸附剂进行吸附去除,本发明的有益效果是对多西环素化合物的吸附效率高,操作过程简单,吸附条件要求低,吸附材料成本低廉、再生效率高、易于推广。本发明应用于去除水体中多西环素化合物,具有良好的经济和环保效益。

Description

一种铁改性凹凸棒石吸附剂处理多西环素废水的方法
技术领域
本发明涉及一种废水中多西环素化合物的吸附处理方法,特别是涉及利用铁改性凹凸棒石吸附剂对医药污水中多西环素化合物进行吸附去除方法。
背景技术
四环素类抗生素(tetracycline antibiotics,TCs,以下简称四环素类)是由链霉菌产生的一类广谱抗生素,使用频率高、范围广。据报道,此类抗生素生产和使用量世界排名第二,中国排名第一。四环素类包括天然四环素类和半合成四环素类,天然四环素类是从链丝菌属培养液中提取,多西环素(Doxycycline,又称为脱氧土霉素、强力霉素)是半合成四环素类的一种。它是以土霉素为原料经过氯代、脱水、氢化成盐和置换等多步化学反应后,再经过净化、脱色、过滤、结晶和干燥而制成。
我国自20世纪90年代初以来,多西环素在医药、畜牧业和水产养殖等行业中广泛应用,其产量和用量一直呈上升趋势。但其在上述行业中的生产与使用而产生的大量废水未经处理或处理不彻底使多西环素随水进入生态环境,因此,多西环素在水环境中的含量与日俱增,对人类和生态环境的负面作用也日益凸显。
对于生态系统而言,滥用多西环素可直接引起个体的耐药性。同时越来越多的资料表明,自然界的一些细菌对多西环素的耐药性比预期的要高得多,即细菌的耐药性基因可能在自然界中发生了转移。多西环素的耐药性可能从非致病细菌传到致病细菌,甚至可能会进一步传播,发展为生态层次上的耐药性,而使没有直接接触到多西环素的个体也产生耐药性。
水环境中多西环素的残留能够影响水体微生物的组成和活性,从而改变微生物生态结构,影响土壤的硝化、矿化作用和土壤的养分循环等等。此外,多西环素的残留会对植物、水生生物和土壤生物造成影响,因残留浓度的不同产生抑制生长或变异和致畸等危害。由于多西环素化合物能够穿过细胞膜的亲脂性基团,且具有较高的稳定性,因此,易于生物累积并在环境中长期稳定存在等,从而加剧其的毒性和危害性。
为降低水环境中多西环素化合物的生态风险,需要去除污水或高浓度地表水体中的多西环素化合物。目前常规的水处理方法有:物理、化学和生物法以及上述方法的组合处理方法,但由于多西环素化合物结构复杂,其毒性和抗性浓度会影响生化处理的效果,污水厂的常规水处理工艺很难对其去除。与各种高级氧化、催化氧化等复杂工艺相比,吸附工艺具有工艺简单、处理效果稳定、价格相对低廉等优点。
常用吸附材料有活性炭、活性污泥、粘土类等,活性炭是一种高性能吸附材料,专利公开号CN101333011介绍了一种利用中孔炭吸附去除水中四环素的方法,专利公开号CN101337706利用粉末活性炭处理含四环素类抗生素水体的方法,两种方法均对四环素化合物有较高的吸附去除率,充分说明了活性炭的高吸附性能,但两者均不是针对于多西环素化合物进行研究的,且该吸附材料制备成本较高,根据我国目前的经济状况,不能得到广泛的应用。活性污泥是污水处理厂常用的处理工艺,但活性污泥法不能将多西环素化合物彻底去除,随着水中多西环素浓度的增加,吸附去除率降低且处理过程将产生大量具有抗药性的微生物,排入环境后将形成潜在危险。因此,开发一种新型、廉价的粘土类吸附材料是十分必要的。目前国内外有关水体中多西环素的去除吸附研究还鲜见报道。
凹凸棒石是一种天然的粘土矿物,由于具有独特的层链状晶体结构和十分细小(约0.01μm×1μm)的棒状、纤维状晶体形态和较大的比表面积(内表面积可高达300-400m2/g,而外表面积取决于凹凸棒石晶体颗粒的大小,根据实测,苏皖凹凸棒石外表面积约为23m2/g),决定了其具有良好的吸附性能。据已有文献报道凹凸棒石是重金属和有机物的强吸附材料,且处理费用仅为活性炭的5-10%,并且再生操作简单,再生率高,属于一种高效、经济、环保类的非金属类粘土矿物,具有广阔应用前景。目前的文献已经报道了凹凸棒石对污水COD的去除,去除率可高达90%以上,有的甚至达到100%,且再生率高,可重复使用,但将凹凸棒石应用于多西环素化合物的吸附去除并未见报道。
发明内容
本发明的目的是提供一种经济、高效的铁改性凹凸棒石吸附剂吸附废水中多西环素化合物的方法。
本发明的铁改性凹凸棒石吸附剂处理多西环素废水的方法,其特征在于:
所述的多西环素在废水中的浓度为5-150mg/L;
在所述的多西环素废水加入铁改性凹凸棒石吸附剂,所述的多西环素废水与所述的吸附剂的质量比为1∶(4-6),优选1∶5;
所述的吸附过程在温度为0-50℃的条件下、采用静态和/或振荡、搅拌作用方式进行。
在具体实施中,
所述的多西环素废水的pH值范围为3-7。
所述的吸附时间为1-24h。
所述的铁改性凹凸棒石吸附剂处理多西环素废水的方法还包括吸附剂的再生;
所述的吸附剂的再生是将吸附饱和的吸附剂与NaOH混合、浸泡、清水洗涤即可,其中
所述的NaOH浓度可以为5%-15%,优选5%;
所述的浸泡时间为2-3h。
本发明的铁改性凹凸棒石吸附剂是针对凹凸棒石原矿改性生成的一种新型吸附材料,该材料对多西环素的吸附效率更高,经再生后可重复利用,经济性强,操作简单。
所述的铁改性凹凸棒石吸附剂的制备过程为:
(1)凹凸棒石提纯
a.将原凹凸棒石粉碎、研磨得到粒径≤100目的粉末;
b.向凹凸棒石粉末中加水,配成浓度为5-10wt%的悬浮液,搅拌,使凹凸棒石粉末分散均匀;
c.向分散处理后的悬浮液中加入六偏磷酸钠,其与凹凸棒石的质量比为1-5∶100,搅拌0.5h,超声1h,静置2h,脱水至泥饼状,105℃干燥3h,得到提纯后的凹凸棒石;
(2)提纯后凹凸棒石改性
a.将5g提纯后的凹凸棒石中加入150-200mL水,搅拌,使提纯后的凹凸棒石粉末分散均匀,
b.加入0.2-5.0g的FeCl3·6H2O,
c.加入适量1mol/L的HCl或1mol/L的NaOH将pH值调节为中性,
d.磁力搅拌2-3h,离心洗涤2-3次,40℃烘干36-48h,研磨得到粒径≤100目的铁改性凹凸棒石吸附剂。
所述的吸附受多西环素本身分子结构特点限制,多西环素在酸、碱条件下均易发生变性反应,可知pH值值对吸附具有重要影响,实验证明多西环素溶液优选pH值范围为3-7。吸附受温度、振荡速度影响小,可根据实际情况进行选择,吸附优选时间为1-24h,吸附效果随着时间的增长而增加,吸附24h后完全达到吸附平衡,平衡后吸附去除率达99%以上。
所述铁改性凹凸棒石再生,NaOH浓度为5%-15%,优选NaOH浓度为5%,浸泡2-3h,清水洗涤后可继续用于吸附水中多西环素,再生后吸附去除率达74.8%。
本发明针对受多西环素污染的废水,通过在废水中加入铁改性凹凸棒石吸附剂进行吸附去除,本发明的有益效果:
1.对多西环素化合物的吸附效率高,
2.操作过程简单,
3.吸附条件要求低,
4.吸附材料成本低廉、再生效率高、易于推广。
因此,本发明应用于去除水体中多西环素化合物具有良好的经济和环保效益。
附图说明
图1时间对吸附去除率的影响
图2多西环素初始浓度对吸附去除率的影响
图3温度对吸附去除率的影响
图4振荡速率对吸附去除率的影响
图5溶液pH值对吸附去除率的影响
图6不同铁量改性凹凸棒石吸附剂对吸附去除率的影响
具体实施方式
下面结合具体实例对发明进行详细描述。本发明的范围并不以具体实施方式为限,而是由权利要求的范围加以限定。
具体实施方式
实施例1
称取5g提纯后的凹凸棒石置于500mL烧杯中,加入250mL蒸馏水,磁力搅拌0.5h后,加入0.724g的FeCl3·6H2O(相当于0.15gFe),磁力搅拌30min,保证FeCl3·6H2O完全溶解,调节pH值=7,继续搅拌1h,离心洗涤3次后于40℃干燥36-48h,研磨至粒径≤100目,制得铁改性凹凸棒石吸附剂。
精确称量经铁改性凹凸棒石吸附剂0.1000g(±0.0005g),置于250mL具塞锥形瓶中,加入20mL浓度为100mg/L的多西环素溶液中,置于恒温振荡器内,在25℃温度下150r/min的速率振荡,分别在1h、3h、6h、12h、24h取上清液过0.45μm的微孔滤膜,用液相色谱测试残留多西环素浓度,每组实验设置三个平行,结果以算术平均值表示,并计算标准偏差,保证测试精度。经计算,多西环素吸附去除率分别为85.4%、95.7%、98.3%、99.3%、99.4%。附图1,时间对吸附去除率的影响。
可见,吸附在1h去除率达到85.4%,3h去除率已经达到95%以上,随时间的增长,去除率逐渐增大,吸附平衡后去除率可达99%以上。吸附优选时间为1-24h。
实施例2
同实施例1制得铁改性凹凸棒石吸附剂。
精确称量经铁改性凹凸棒石吸附剂0.1000g(±0.0005g),置于250mL具塞锥形瓶中,加入20mL浓度分别为10、20、50、100mg/L的多西环素溶液中,置于恒温振荡器内,在25℃温度下150r/min的速率振荡24h至吸附平衡,取上清液过0.45μm的微孔滤膜,用液相色谱测试残留多西环素浓度,每组实验设置三个平行,结果以算术平均值表示,并计算标准偏差,保证测试精度。经计算,多西环素吸附去除率分别为99.9%、99.2%、99.6%、99.4%。附图2,多西环素初始浓度对吸附去除率的影响。
可见,铁改性凹凸棒石吸附剂对5-150mg/L浓度的多西环素污染水体都有很高的去除率。
实施例3
同实施例1制得铁改性凹凸棒石吸附剂。
精确称量经铁改性凹凸棒石吸附剂0.1000g(±0.0005g),置于250mL具塞锥形瓶中,加入20mL浓度为100mg/L的多西环素溶液中,置于恒温振荡器内,分别在5、15、25、40℃温度下150r/min的速率振荡24h至吸附平衡,取上清液过0.45μm的微孔滤膜,用液相色谱测试残留多西环素浓度,每组实验设置三个平行,结果以算术平均值表示,并计算标准偏差,保证测试精度。经计算,多西环素吸附去除率分别为99.1%、99.3%、99.4%、99.8%。附图3,温度对吸附去除率的影响。
可见,铁改性凹凸棒石吸附剂吸附多西环素化合物受温度影响小,适用于0-50℃温度条件下的水体多西环素污染的去除。
实施例4
同实施例1制得铁改性凹凸棒石吸附剂。
精确称量经铁改性凹凸棒石吸附剂0.1000g(±0.0005g),置于250mL具塞锥形瓶中,加入20mL浓度为100mg/L的多西环素溶液中,置于恒温振荡器内,在25℃温度下,分别以0、50、100、150、200r/min的速率振荡24h至吸附平衡,取上清液过0.45μm的微孔滤膜,用液相色谱测试残留多西环素浓度,每组实验设置三个平行,结果以算术平均值表示,并计算标准偏差,保证测试精度。经计算,多西环素吸附去除率分别为99.2%、99.5%、99.5%、99.4%、99.6%。附图4,振荡速率对吸附去除率的影响。
可见,铁改性凹凸棒石吸附剂吸附多西环素化合物使用要求低,可直接投加使用。
实施例5
同实施例1制得铁改性凹凸棒石吸附剂。
精确称量经铁改性凹凸棒石吸附剂0.1000g(±0.0005g),置于250mL具塞锥形瓶中,加入20mL浓度为100mg/L的多西环素溶液中,调节溶液pH值分别为1、3、5、7、9置于恒温振荡器内,在25℃温度下150r/min的速率振荡24h至吸附平衡,取上清液过0.45μm的微孔滤膜,用液相色谱测试残留多西环素浓度,每组实验设置三个平行,结果以算术平均值表示,并计算标准偏差,保证测试精度。经计算,多西环素吸附去除率分别为35.3%、99.4%、98.8%、94.9%、77.2%。附图5,溶液pH值对吸附去除率的影响。
可见,溶液pH值对吸附影响比较大,优选溶液pH值范围为3-7。
实施例6
称取5g提纯后的凹凸棒石粘土置于500mL烧杯中,加入250mL蒸馏水,磁力搅拌0.5h后,分别加入0.241g、0.483g、0.724g、1.207g、2.414g、3.620g的FeCl3·6H2O(分别相当于0.05g、0.10g、0.15g、0.25g、0.50g、0.75gFe),磁力搅拌30min,保证FeCl3·6H2O完全溶解,调节pH值=7,继续搅拌1h,离心洗涤3次后于40℃干燥36-48h,研磨至粒径≤100目,制得不同铁量的铁改性凹凸棒石吸附剂。
分别精确称量经铁改性凹凸棒石吸附剂0.1000g(±0.0005g),置于250mL具塞锥形瓶中,加入20mL浓度为100mg/L的多西环素溶液中,置于恒温振荡器内,在25℃温度下,以150r/min的速率振荡24h至吸附平衡,取上清液过0.45μm的微孔滤膜,用液相色谱测试残留多西环素浓度,每组实验设置三个平行,结果以算术平均值表示,并计算标准偏差,保证测试精度。经计算,多西环素吸附去除率分别98.7%、99.2%、99.4%、99.1%、96.7%、97.4%。附图6,不同铁量改性凹凸棒石吸附剂对吸附去除率的影响。

Claims (7)

1.一种铁改性凹凸棒石吸附剂处理多西环素废水的方法,其特征在于:
所述的多西环素在废水中的浓度为5-150mg/L;
在所述的多西环素废水加入铁改性凹凸棒石吸附剂,所述的多西环素废水与所述的吸附剂的质量比为1∶(4-6);
所述的吸附过程在温度为0-50℃的条件下、采用静态和/或振荡、搅拌作用方式进行。
2.如权利要求1的铁改性凹凸棒石吸附剂处理多西环素废水的方法,其特征在于:
所述的多西环素废水与所述的吸附剂的质量比为1∶5。
3.如权利要求2的铁改性凹凸棒石吸附剂处理多西环素废水的方法,其特征在于:
所述的多西环素废水的pH值范围为3-7。
4.如权利要求3的铁改性凹凸棒石吸附剂处理多西环素废水的方法,其特征在于:
所述的吸附时间为1-24h。
5.如权利要求1的铁改性凹凸棒石吸附剂处理多西环素废水的方法,其特征在于:
所述的铁改性凹凸棒石吸附剂处理多西环素废水的方法还包括吸附剂的再生;
所述的吸附剂的再生是将吸附饱和的吸附剂与NaOH混合、浸泡、清水洗涤即可,其中
所述的NaOH浓度为5%-15%;所述的浸泡时间为2-3h。
6.如权利要求5的铁改性凹凸棒石吸附剂处理多西环素废水的方法,其特征在于:
所述的NaOH浓度优选为5%。
7.如权利要求1~6之一的铁改性凹凸棒石吸附剂处理多西环素废水的方法,其特征在于所述的铁改性凹凸棒石吸附剂的制备过程为:
(1)凹凸棒石提纯
a.将原凹凸棒石粉碎、研磨得到粒径≤100目的粉末;
b.向凹凸棒石粉末中加水,配成浓度为5-10wt%的悬浮液,搅拌,使凹凸棒石粉末分散均匀;
c.向分散处理后的悬浮液中加入六偏磷酸钠,其与凹凸棒石的质量比为1-5∶100,搅拌0.5h,超声1h,静置2h,脱水至泥饼状,105℃干燥3h,得到提纯后的凹凸棒石;
(2)提纯后凹凸棒石改性
a.将5g提纯后的凹凸棒石中加入150-200mL水,搅拌,使提纯后的凹凸棒石粉末分散均匀;
b.加入0.2-5.0g的FeCl3·6H2O;
c.加入适量1mol/L的HCl或1mol/L的NaOH将pH值调节为中性;
d.磁力搅拌2-3h,离心洗涤2-3次,40℃烘干36-48h,研磨得到粒径≤100目的铁改性凹凸棒石吸附剂。
CN2010105825271A 2010-12-10 2010-12-10 一种铁改性凹凸棒石吸附剂处理多西环素废水的方法 Pending CN102531090A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105825271A CN102531090A (zh) 2010-12-10 2010-12-10 一种铁改性凹凸棒石吸附剂处理多西环素废水的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105825271A CN102531090A (zh) 2010-12-10 2010-12-10 一种铁改性凹凸棒石吸附剂处理多西环素废水的方法

Publications (1)

Publication Number Publication Date
CN102531090A true CN102531090A (zh) 2012-07-04

Family

ID=46339311

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105825271A Pending CN102531090A (zh) 2010-12-10 2010-12-10 一种铁改性凹凸棒石吸附剂处理多西环素废水的方法

Country Status (1)

Country Link
CN (1) CN102531090A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110921805A (zh) * 2019-12-13 2020-03-27 北京化工大学 一种凹凸棒粘土还原-磁分离耦合连续除铁转白提纯方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110921805A (zh) * 2019-12-13 2020-03-27 北京化工大学 一种凹凸棒粘土还原-磁分离耦合连续除铁转白提纯方法
CN110921805B (zh) * 2019-12-13 2021-07-16 北京化工大学 一种凹凸棒粘土还原-磁分离耦合连续除铁转白提纯方法

Similar Documents

Publication Publication Date Title
CN102531084B (zh) 一种铁改性凹凸棒石吸附剂处理四环素废水的方法
Ahmad et al. Removal of methylene blue dye using rice husk, cow dung and sludge biochar: Characterization, application, and kinetic studies
Kumar et al. Remediation strategies for heavy metals contaminated ecosystem: A review
Velusamy et al. Advanced techniques to remove phosphates and nitrates from waters: a review
Ali Water treatment by adsorption columns: evaluation at ground level
Kurniawan et al. Resource recovery from landfill leachate: an experimental investigation and perspectives
Yin et al. Dual removal of phosphate and ammonium from high concentrations of aquaculture wastewaters using an efficient two-stage infiltration system
Zhuang et al. Advanced treatment of biologically pretreated coal gasification wastewater by a novel heterogeneous Fenton oxidation process
Liu et al. Treatment of recalcitrant organic silicone wastewater by fluidized-bed Fenton process
Zhuang et al. Treatment of British Gas/Lurgi coal gasification wastewater using a novel integration of heterogeneous Fenton oxidation on coal fly ash/sewage sludge carbon composite and anaerobic biological process
Sharma et al. Study of removal techniques for azo dyes by biosorption: a review
CN101913676A (zh) 利用铁盐改性蛋壳去除水中磷的方法
Almazán-Sánchez et al. Adsorption-regeneration by heterogeneous Fenton process using modified carbon and clay materials for removal of indigo blue
Zhao et al. Removal of Levofloxacin from aqueous solution by Magnesium-impregnated Biochar: batch and column experiments
CN102190343B (zh) 一种利用蛋壳吸附污水中磷的方法
CN102531086B (zh) 一种铝改性凹凸棒石吸附剂处理四环素废水的方法
Edokpayi et al. Batch adsorption study of methylene blue in aqueous solution using activated carbons from rice husk and coconut shell
CN102531083B (zh) 一种铁改性凹凸棒石吸附剂处理金霉素废水的方法
Guo et al. Experimental study of the remediation of acid mine drainage by Maifan stones combined with SRB
Kulkarni et al. Sustainable wastewater management via biochar derived from industrial sewage sludge
CN102531085A (zh) 一种铁改性凹凸棒石吸附剂处理土霉素废水的方法
CN102527325B (zh) 铝改性凹凸棒石吸附剂及制法和应用
CN102531087B (zh) 一种铝改性凹凸棒石吸附剂处理多西环素废水的方法
CN102531090A (zh) 一种铁改性凹凸棒石吸附剂处理多西环素废水的方法
CN106186314A (zh) 一种采用改性凹凸棒土处理工业园区印染废水的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120704