CN102521886B - Three-dimensional simulation method for chemical vapor deposition process - Google Patents
Three-dimensional simulation method for chemical vapor deposition process Download PDFInfo
- Publication number
- CN102521886B CN102521886B CN201110391099.9A CN201110391099A CN102521886B CN 102521886 B CN102521886 B CN 102521886B CN 201110391099 A CN201110391099 A CN 201110391099A CN 102521886 B CN102521886 B CN 102521886B
- Authority
- CN
- China
- Prior art keywords
- deposition
- particles
- simulation
- calculate
- triangular plane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004088 simulation Methods 0.000 title claims abstract description 88
- 238000000034 method Methods 0.000 title claims abstract description 67
- 230000008569 process Effects 0.000 title claims abstract description 20
- 238000005229 chemical vapour deposition Methods 0.000 title claims abstract description 13
- 238000000151 deposition Methods 0.000 claims abstract description 186
- 230000008021 deposition Effects 0.000 claims abstract description 186
- 239000002245 particle Substances 0.000 claims abstract description 108
- 239000000463 material Substances 0.000 claims abstract description 46
- 238000005516 engineering process Methods 0.000 claims abstract description 16
- 238000004364 calculation method Methods 0.000 claims abstract description 12
- 238000012545 processing Methods 0.000 claims abstract description 10
- 238000005019 vapor deposition process Methods 0.000 claims abstract description 5
- 150000002500 ions Chemical class 0.000 claims description 18
- 230000005684 electric field Effects 0.000 claims description 17
- 238000009826 distribution Methods 0.000 claims description 13
- 230000007935 neutral effect Effects 0.000 claims description 13
- 239000013049 sediment Substances 0.000 claims description 7
- 230000004907 flux Effects 0.000 claims description 6
- 238000001179 sorption measurement Methods 0.000 claims description 6
- 238000004422 calculation algorithm Methods 0.000 claims description 4
- 230000001133 acceleration Effects 0.000 claims description 2
- 230000005672 electromagnetic field Effects 0.000 claims description 2
- 238000005290 field theory Methods 0.000 claims description 2
- 238000005137 deposition process Methods 0.000 abstract description 12
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 abstract description 4
- 238000004518 low pressure chemical vapour deposition Methods 0.000 abstract description 3
- 201000004569 Blindness Diseases 0.000 abstract description 2
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 abstract description 2
- 238000004377 microelectronic Methods 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000000342 Monte Carlo simulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明涉及一种化学气相沉积过程的三维模拟方法,属于微电子加工中沉积过程模拟领域,该方法包括用元胞方法(CM)来表示模拟区域Ω中各个位置的材料分布并将沉积图形表面剖分成若干个三角平面;用蒙特卡罗(MC)方法结合空间八叉树非均匀剖分技术实现快速跟踪沉积粒子的输运过程,计算到达沉积图形表面的三角平面,再结合当前位置材料所对应的沉积模型和三角平面的面积等,计算得到沉积图形表面各三角平面沉积速度,避免了沉积速度计算的盲目性;根据计算获得沉积速度,用水平集方法(LS)实现化学气相沉积(CVD)过程沉积表面运动的准确跟踪。该方法可以模拟低压化学气相沉积、等离子体增强化学气相沉积、大气压下化学气相沉积等多种气相沉积过程,实现复杂多种材料构成的沉积图形的沉积模拟。
The invention relates to a three-dimensional simulation method of a chemical vapor deposition process, which belongs to the field of deposition process simulation in microelectronic processing. Divide into several triangular planes; use the Monte Carlo (MC) method combined with the spatial octree non-uniform subdivision technology to quickly track the transport process of sedimentary particles, calculate the triangular planes that reach the surface of the depositional graphics, and combine According to the corresponding deposition model and the area of the triangular plane, etc., the deposition rate of each triangular plane on the surface of the deposition figure is calculated, which avoids the blindness of the calculation of the deposition rate; the deposition rate is obtained according to the calculation, and the chemical vapor deposition (CVD) is realized by the level set method (LS). ) process for accurate tracking of the motion of the deposited surface. The method can simulate various vapor deposition processes such as low-pressure chemical vapor deposition, plasma-enhanced chemical vapor deposition, and atmospheric pressure chemical vapor deposition, and realizes deposition simulation of deposition patterns composed of complex and various materials.
Description
技术领域technical field
本发明属于微电子加工中沉积过程模拟领域,提供了一种用元胞方法(CM)来表示模拟区域Ω材料分布,用蒙特卡罗方法(MC)实现沉积粒子的输运,用水平集方法(LS)实现表面运动的化学气相沉积(CVD)过程的模拟方法。The invention belongs to the field of deposition process simulation in microelectronic processing, and provides a method of expressing the distribution of Ω materials in the simulation area by using the cell method (CM), realizing the transportation of deposited particles by using the Monte Carlo method (MC), and using the level set method (LS) Simulation method for chemical vapor deposition (CVD) process to achieve surface motion.
背景技术Background technique
目前,集成电路已经应用到各个领域,其产业已经成为未来经济发展的基本组成部分,全球竞争日益激烈。这些无疑给大规模集成电路发展的带来新的挑战。随着集成电路的特征尺寸不断缩小,而其生产基石半导体晶片不断增大,导致集成电路的集成度越来越高,对集成电路的加工工艺提出了新的挑战。为了提高集成电路的集成度,对刻蚀提出新的要求,其中之一就是更高的高宽比。但高宽比的增加给沉积带来了更大的挑战,影响沉积质量因素增多,阴影效应影响增大。At present, integrated circuits have been applied to various fields, and its industry has become a basic part of future economic development, and global competition is becoming increasingly fierce. These undoubtedly bring new challenges to the development of large-scale integrated circuits. With the continuous shrinking of the feature size of integrated circuits and the continuous increase of semiconductor wafers, the cornerstone of its production, the integration of integrated circuits is getting higher and higher, which poses new challenges to the processing technology of integrated circuits. In order to increase the integration level of integrated circuits, new requirements are placed on etching, one of which is a higher aspect ratio. However, the increase of the aspect ratio brings greater challenges to the deposition, the factors affecting the deposition quality increase, and the influence of the shadow effect increases.
为了提高沉积质量,需要深刻理解沉积过程加工工艺的机理,用其指导沉积过程参数设计和设备设计。目前关于此方面的研究主要是通过试错法实现,即通过大量沉积实验找出合适的参数,这种方法一方面费时费力代价高,另一方面实验得出的合适参数并不是最优的。另一种方法是通过模拟来实现,即通过一定加工工艺参数来预测特征图形上的沉积形貌,和试错法相比,可以降低试验成本,找出主要优化参数。因此,沉积过程的模拟是认识和理解沉积加工机理的有效方法。目前,沉积过程模拟方法主要是线算法、元胞方法和水平集方法等,并已从二维发展到三维,以实现更复杂图形的沉积过程的模拟。In order to improve the deposition quality, it is necessary to deeply understand the mechanism of the deposition process and process, and use it to guide the design of deposition process parameters and equipment. The current research on this aspect is mainly realized through trial and error, that is, to find out the appropriate parameters through a large number of deposition experiments. On the one hand, this method is time-consuming, laborious and costly, and on the other hand, the appropriate parameters obtained by experiments are not optimal. Another method is to realize it by simulation, that is, to predict the deposition morphology on the characteristic pattern through certain processing parameters. Compared with the trial and error method, it can reduce the test cost and find out the main optimization parameters. Therefore, the simulation of the deposition process is an effective method to recognize and understand the mechanism of deposition processing. At present, the simulation methods of deposition process are mainly line algorithm, cell method and level set method, etc., and have been developed from two-dimensional to three-dimensional to realize the simulation of deposition process with more complex graphics.
线算法主要适用于二维模拟,当沉积图形表面形貌变化平缓时可以实现界面的准确跟踪,但当时间步长较大或表面起伏不平时,易出现不稳定或不准确的运动界面,同时很难表示沉积过程影响沉积的物理化学性质和表面材料;水平集方法是准确稳健追踪复杂运动界面的一种有效方法,适用于二维和三维模拟,可以对表面变化剧烈的情况实现准确跟踪,但它也不能表示沉积过程中物理化学性质和表面材料,不适用于多种材料模拟图形的界面演化;元胞表示方法通过将模拟区域Ω划分成元胞,可以表示任意位置的材料及物理化学性质,但不能实现运动界面的准确跟踪。而沉积过程不仅受到加工条件和工艺的影响,也受到沉积位置材料的影响,目前模拟工具仍不能满足复杂多材料构成沉积图形的模拟要求。The line algorithm is mainly suitable for two-dimensional simulation. When the surface morphology of the deposition pattern changes smoothly, the interface can be accurately tracked. However, when the time step is large or the surface is undulating, it is easy to appear unstable or inaccurate motion interface. It is difficult to express that the deposition process affects the physical and chemical properties of the deposition and the surface material; the level set method is an effective method for accurately and robustly tracking the complex motion interface, suitable for two-dimensional and three-dimensional simulations, and can accurately track the situation of severe surface changes, However, it cannot represent the physical and chemical properties and surface materials in the deposition process, and is not suitable for the interface evolution of various material simulation graphics; the cell representation method can represent materials and physical chemistry at any position by dividing the simulation area Ω into cells properties, but cannot achieve accurate tracking of motion interfaces. The deposition process is not only affected by processing conditions and processes, but also by the material at the deposition location. Current simulation tools still cannot meet the simulation requirements for complex multi-material deposition patterns.
发明内容Contents of the invention
本发明的目的是为克服已有技术的不足之处,提出一种化学气相沉积过程的三维模拟方法,该方法具有可以模拟低压化学气相沉积、等离子体增强化学气相沉积、大气压下化学气相沉积等多种气相沉积过程,实现复杂多种材料构成的沉积图形的沉积模拟。The purpose of the present invention is to overcome the deficiencies of the prior art, and propose a three-dimensional simulation method of chemical vapor deposition process, which has the advantages of simulating low-pressure chemical vapor deposition, plasma enhanced chemical vapor deposition, chemical vapor deposition under atmospheric pressure, etc. A variety of vapor deposition processes can realize the deposition simulation of complex deposition patterns composed of various materials.
本发明提出的一种化学气相沉积过程的三维模拟方法,其特征在于,包括以下步骤:A three-dimensional simulation method of a chemical vapor deposition process proposed by the present invention is characterized in that it comprises the following steps:
1)获取初始参数:根据实际加工设备和沉积气体,估计计算电场边界参数,参与沉积粒子的类型、数量及速度分布;输入模拟区域和沉积图形;设定元胞边长;设定模拟时间T;设定最大前进距离;1) Obtain initial parameters: According to the actual processing equipment and deposition gas, estimate and calculate the boundary parameters of the electric field, the type, quantity and velocity distribution of particles participating in the deposition; input the simulation area and deposition graphics; set the cell side length; set the simulation time T ;Set the maximum forward distance;
2)对模拟区域进行元胞划分,分成多个元胞,每个元胞对应该元胞位置的材料,并获得对应的材料沉积模型;对沉积图形表面进行三角剖分,分成多个三角平面,以计算每个三角平面的沉积速度,来获得整个沉积图形的运动;2) Divide the simulation area into multiple cells, each cell corresponds to the material at the position of the cell, and obtain the corresponding material deposition model; triangulate the surface of the deposition graph, and divide it into multiple triangular planes , to calculate the deposition velocity of each triangular plane to obtain the motion of the entire deposition pattern;
3)用水平集函数表示模拟区域中各点到沉积图形的最短距离,并初始化水平集函数使之满足公式(1)3) Use the level set function to represent the shortest distance from each point in the simulation area to the deposition pattern, and initialize the level set function so that it satisfies formula (1)
公式(1)中表示t=0时刻时0水平集,即沉积图形,Ω表示模拟区域,Ω1(t)表示气体,Ω2(t)表示材料;Ω=Ω1(t)∪Ω2(t)∪Γ(t);表示模拟区域中的点,在笛卡尔坐标系下表示模拟区域Ω中的点到沉积图形Γ(t)的距离;In formula (1) Indicates the 0 level set at time t=0, that is, the deposition pattern, Ω represents the simulation area, Ω 1 (t) represents the gas, Ω 2 (t) represents the material; Ω=Ω 1 (t)∪Ω 2 (t)∪Γ (t); Represents a point in the simulation domain, in Cartesian coordinates represents a point in the simulation region Ω The distance to the deposition pattern Γ(t);
4)利用空间八叉树非均匀剖分技术对模拟区域进行网格剖分,每个网格由多个元胞组成,以实现快速跟踪沉积粒子运动轨迹,得到沉积粒子与沉积图形表面的接触位置;根据沉积粒子类型、数量和速度分布,用蒙特卡罗MC方法对沉积粒子进行随机采样得到要模拟的沉积粒子;根据要模拟的沉积粒子类型,利用空间八叉树技术实现快速跟踪要模拟的沉积粒子的输运过程,计算到达沉积位置的沉积粒子参数;根据沉积位置的材料和到达沉积位置的沉积粒子参数,选择相应的沉积模型,计算并更新沉积位置的三角平面的沉积量;达到规定的沉积粒子数转步骤5);4) Use the spatial octree non-uniform subdivision technology to divide the simulation area into grids. Each grid is composed of multiple cells, so as to quickly track the motion trajectory of the deposition particles and obtain the contact between the deposition particles and the surface of the deposition graph. Position; according to the type, quantity and velocity distribution of sedimentary particles, use the Monte Carlo MC method to randomly sample the sedimentary particles to obtain the sedimentary particles to be simulated; according to the type of sedimentary particles to be simulated, use the spatial octree technology to realize fast tracking to be simulated According to the transportation process of the deposited particles, the parameters of the deposited particles arriving at the deposition position are calculated; according to the materials at the deposition position and the parameters of the deposition particles arriving at the deposition position, the corresponding deposition model is selected, and the deposition amount of the triangular plane of the deposition position is calculated and updated; The specified number of deposited particles turns to step 5);
5)根据各个三角平面的沉积量、面积和表面单位法向量来计算每个三角平面沉积速度;根据三角平面沉积速度和最大前进距离计算步进时间间隔ΔT;根据各个三角平面沉积速度,利用数值计算方法求解水平集控制方程来实现沉积图形表面的运动;重新初始化水平集函数;重新对当前沉积图形表面进行三角剖分,并根据当前沉积图形,更新元胞中信息,将状态发生变化的元胞用新沉积材料来代替;5) Calculate the deposition rate of each triangular plane according to the deposition amount, area and surface unit normal vector of each triangular plane; calculate the stepping time interval ΔT according to the deposition rate of the triangular plane and the maximum forward distance; according to the deposition rate of each triangular plane, use the value The calculation method solves the level set governing equation to realize the movement of the surface of the depositional graph; reinitializes the level set function; re-triangulates the surface of the current depositional graph, and updates the information in the cell according to the current depositional graph; Cells are replaced with freshly deposited material;
6)更新模拟时间T=T-ΔT后,若T=0,则转步骤7),否则转步骤4);6) After updating the simulation time T=T-ΔT, if T=0, go to step 7), otherwise go to step 4);
7)输出模拟结果,根据沉积图形的所有三角平面生成并显示最终的三维沉积图形。7) Output the simulation results, generate and display the final 3D depositional graphics according to all the triangular planes of the depositional graphics.
本发明的特点及有益效果:Features and beneficial effects of the present invention:
本发明提供了一种用元胞方法(CM)来表示模拟区域Ω材料分布,用蒙特卡罗(MC)方法实现粒子的输运,结合不同材料的沉积模型,计算得到沉积图形表面各个位置的沉积量,避免了沉积速度计算的盲目性;根据获得沉积速度,用水平集方法(LS)实现化学气相沉积(CVD)过程表面演化。本发明可以模拟低压化学气相沉积、等离子体增强化学气相沉积、大气压下化学气相沉积等多种气相沉积过程,实现复杂多种材料构成的沉积图形的沉积模拟,解决了以往模拟中存在构成材料单一、模拟不准确等问题。The invention provides a method of expressing the Ω material distribution in the simulation area by using the cell method (CM), realizing the transport of particles by using the Monte Carlo (MC) method, and combining the deposition models of different materials to calculate the Ω at each position on the surface of the deposition graph The amount of deposition avoids the blindness of the calculation of the deposition rate; according to the obtained deposition rate, the surface evolution of the chemical vapor deposition (CVD) process is realized by the level set method (LS). The invention can simulate various vapor deposition processes such as low-pressure chemical vapor deposition, plasma enhanced chemical vapor deposition, atmospheric pressure chemical vapor deposition, etc., realizes deposition simulation of deposition patterns composed of complex and various materials, and solves the problem of single constituent materials in previous simulations , Inaccurate simulation and other issues.
附图说明Description of drawings
图1为本发明方法的程序流程图;Fig. 1 is the program flowchart of the inventive method;
图2为二维表示模拟区域Ω的垂直截面;Figure 2 is a two-dimensional representation of the vertical section of the simulation region Ω;
图3为系统所处笛卡尔坐标系。Figure 3 shows the Cartesian coordinate system where the system is located.
具体实施方式Detailed ways
本发明提出了一种化学气相沉积过程的三维模拟方法,结合附图及实施详细说明如下:The present invention proposes a three-dimensional simulation method of a chemical vapor deposition process, which is described in detail in conjunction with the accompanying drawings and implementation as follows:
本发明的方法总体流程如图1所示,具体实施方式包括以下步骤:The general flow of the method of the present invention is as shown in Figure 1, and the specific implementation method comprises the following steps:
1)获取初始参数:根据实际加工设备和沉积气体,估计计算电场边界参数Ec,参与沉积粒子的类型S、数量Ns及速度分布Pv;输入模拟区域Ω和沉积图形Γ(t);设定元胞边长l;设定模拟时间T;设定最大前进距离dist;1) Acquire initial parameters: According to the actual processing equipment and deposition gas, estimate and calculate the electric field boundary parameter E c , the type S, number N s and velocity distribution P v of particles participating in the deposition; input the simulation area Ω and the deposition graph Γ(t); Set the cell side length l; set the simulation time T; set the maximum forward distance dist;
2)对模拟区域Ω进行元胞划分,分成多个元胞,每个元胞对应该元胞位置的材料,并获得对应的材料沉积模型;对沉积图形Γ(t)表面进行三角剖分,分成多个三角平面,以计算每个三角平面的沉积速度,来获得整个沉积图形Γ的运动;具体包括:2) Divide the simulated area Ω into cells, divide it into multiple cells, each cell corresponds to the material at the cell position, and obtain the corresponding material deposition model; triangulate the surface of the deposition graph Γ(t), Divide into multiple triangular planes to calculate the deposition velocity of each triangular plane to obtain the movement of the entire depositional figure Γ; specifically include:
2.1)对模拟区域Ω进行元胞划分:将模拟区域Ω分成若干边长为l的元胞(正方体),用于存储模拟区域Ω中各个元胞位置的材料;如某个元胞当前状态为:state=0,表示该元胞位置为气相区域;state=1表示该元胞位置为第一种材料;state=2表示该元胞位置为第二种材料(每种材料在沉积过程中都具有各自不同的物理化学性质,表现为沉积模型的不同;正是由于反应气体对不同的材料的沉积模型不同,计算沉积量时,要选择与沉积位置(沉积粒子与沉积图形表面的接触位置)所具有的材料相对应的材料沉积模型);2.1) Divide the simulation area Ω into cells: Divide the simulation area Ω into several cells (cubes) with a side length of l, which are used to store the material of each cell position in the simulation area Ω; for example, the current state of a cell is : state=0, indicating that the cell position is the gas phase region; state=1, indicating that the cell position is the first material; state=2, indicating that the cell position is the second material (each material is in the deposition process They have different physical and chemical properties, which are manifested as different deposition models; it is precisely because the reaction gas has different deposition models for different materials, when calculating the deposition amount, it is necessary to select the deposition position (the contact position between the deposition particles and the surface of the deposition pattern) have a material deposition model corresponding to the material);
2.2)对沉积图形Γ(t)表面进行三角剖分:根据待模拟的沉积图形Γ(t)的特征尺度要求(这是半导体加工工艺过程中的最小线宽),利用曲面三角剖分算法,将待模拟的沉积图形Γ(t)表面分成多个三角平面,通过计算每个三角平面的沉积速度,来获得整个待模拟的沉积图形Γ(t)的运动;2.2) Triangulate the surface of the deposition pattern Γ(t): According to the characteristic scale requirement of the deposition pattern Γ(t) to be simulated (this is the minimum line width in the semiconductor processing process), using the surface triangulation algorithm, Divide the surface of the depositional figure Γ(t) to be simulated into multiple triangular planes, and obtain the movement of the entire depositional figure Γ(t) to be simulated by calculating the deposition velocity of each triangular plane;
3)用水平集函数表示模拟区域Ω中各点到沉积图形Γ(t)的最短距离,初始化水平集函数使之满足公式(1)3) Use the level set function to represent the shortest distance from each point in the simulation area Ω to the deposition pattern Γ(t), and initialize the level set function so that it satisfies formula (1)
公式(1)中表示t=0时刻时0水平集(即两材料的边界,也就是沉积图形),模拟区域Ω的垂直截面如图2所示,图中白色区域1表示气体Ω1(t),斜线区域2表示材料Ω2(t),虚线表示剖面;Ω=Ω1(t)∪Ω2(t)∪Γ(t);表示模拟区域中的点,在笛卡尔坐标系下表示模拟区域Ω中的点到沉积图形Γ(t)的距离;In formula (1) Indicates the 0 level set at time t=0 (that is, the boundary of two materials, that is, the deposition pattern), the vertical section of the simulation area Ω is shown in Figure 2, the white area 1 in the figure represents the gas Ω 1 (t), and the oblique line area 2 represents the material Ω 2 (t), and the dotted line represents the profile; Ω=Ω 1 (t)∪Ω 2 (t)∪Γ(t); Represents a point in the simulation domain, in Cartesian coordinates represents a point in the simulation region Ω The distance to the deposition pattern Γ(t);
4)利用空间八叉树非均匀剖分技术对模拟区域Ω进行网格剖分,每个网格由多个元胞组成,以实现快速跟踪沉积粒子运动轨迹,得到沉积粒子与沉积图形表面的接触位置,若模拟区域Ω中存在等离子体时,根据模拟区域Ω电场边界条件,利用现有的有限差分方法,计算等离子体在模拟区域Ω中形成电势;根据沉积粒子类型S、数量Ns和速度分布Pv,用蒙特卡罗MC方法对沉积粒子进行随机采样得到要模拟的沉积粒子根据要模拟的沉积粒子的类型,利用空间八叉树技术实现快速跟踪要模拟的沉积粒子的输运过程,计算到达沉积位置的沉积粒子参数根据沉积位置的材料和到达沉积位置的沉积粒子参数选择相应的沉积模型,计算并更新沉积位置的三角平面的沉积量;达到规定的沉积粒子数转步骤5);具体包括:4) Use the spatial octree non-uniform subdivision technology to divide the simulation area Ω into grids. Each grid is composed of multiple cells, so as to quickly track the trajectory of the deposition particles, and obtain the relationship between the deposition particles and the surface of the deposition graph. Contact position, if there is plasma in the simulation area Ω, according to the boundary conditions of the electric field in the simulation area Ω, use the existing finite difference method to calculate the plasma formation potential in the simulation area Ω; according to the deposition particle type S, number Ns and velocity Distribution Pv, using the Monte Carlo MC method to randomly sample the sediment particles to obtain the sediment particles to be simulated According to the sediment particles to be simulated type, using the spatial octree technology to quickly track the transport process of the deposition particles to be simulated, and calculate the parameters of the deposition particles arriving at the deposition location Depending on the material at the deposition location and the parameters of the deposited particles reaching the deposition location Select the corresponding deposition model, calculate and update the deposition amount of the triangular plane of the deposition position; reach the specified number of deposition particles and turn to step 5); specifically include:
4.1)利用空间八叉树非均匀剖分技术对模拟区域Ω进行网格剖分,以实现快速跟踪粒子运动轨迹,得到粒子与沉积图形表面的接触位置。网格剖分方法是将含模拟区域Ω的空间长方体按如图3笛卡尔坐标系(z轴方向向下)3个坐标轴方向分割成8个相同的子长方体网格,组织成一棵八叉树。若某一子长方体网格中所含三角平面的数量大于给定的阀值εΔ(一般εΔ=4),则再将该子长方体网格进一步剖分,直到每个网格所含三角平面的数量小于或等于给定的阀值εΔ;若模拟区域Ω中存在等离子体时,根据模拟区域Ω电场边界条件Ec,利用现有的有限差分方法,计算等离子体在模拟区域Ω中形成电势,由电磁场理论的麦克斯韦方程得到电场满足的泊松方程为▽2Φ=-ρ/ε0,此▽2表示拉普拉斯算子,Φ代表电势(单位为伏特),ρ是电荷体密度(单位为库仑/立方米),而ε0是真空电容率(单位为法拉/米);根据稳态下局部模拟区域ψ内正电荷和电子电量和接近0的条件,电场可简化为拉普拉斯方程▽2Φ=0来求解,这样可以利用现有的有限差分方法,结合边界条件来求得到模拟区域Ω内各点电势;每个长方体网格中除存有三角平面外,还保存等离子体形成的电场,用于模拟带电离子的运动;4.1) Use the spatial octree non-uniform subdivision technology to divide the simulation area Ω into a grid, so as to realize the fast tracking of the particle trajectory and obtain the contact position between the particle and the surface of the deposition pattern. The grid division method is to divide the spatial cuboid containing the simulation area Ω into 8 identical sub-cuboid grids according to the three coordinate axes of the Cartesian coordinate system (z-axis direction is downward) as shown in Figure 3, and organize them into an octagonal tree. Tree. If the number of triangular planes contained in a sub-cuboid grid is greater than the given threshold ε Δ (generally ε Δ = 4), then the sub-cuboid grid is further subdivided until each grid contains triangles The number of planes is less than or equal to the given threshold ε Δ ; if there is plasma in the simulation region Ω, according to the electric field boundary condition E c of the simulation region Ω, using the existing finite difference method, calculate the plasma in the simulation region Ω The electric potential is formed, and the Poisson equation that the electric field satisfies is ▽ 2 Φ=-ρ/ε 0 obtained from the Maxwell equation of the electromagnetic field theory. This ▽ 2 represents the Laplacian operator, Φ represents the electric potential (in volts), and ρ is the electric charge Bulk density (in coulomb/m3), and ε0 is the vacuum permittivity (in farad/m); according to the condition that the sum of positive charge and electron charge in the local simulation region ψ is close to zero in steady state, the electric field can be simplified as Laplace equation ▽ 2 Φ = 0 to solve, so that the existing finite difference method can be used in combination with boundary conditions to obtain the potential of each point in the simulation area Ω; in addition to the triangular plane in each cuboid grid, Also preserves the electric field formed by the plasma, which is used to simulate the movement of charged ions;
4.2)根据沉积粒子类型S、粒子数量Ns和沉积粒子速度分布Pv,用蒙特卡罗MC方法对沉积粒子进行随机采样得到要模拟的沉积粒子其中,i代表沉积粒子序号;表示沉积粒子的位置,在笛卡尔坐标系下,初始z=0,表示模拟区域Ω气相上边界,x,y根据模拟区域Ω尺寸随机产生;si表示沉积粒子的类型,由沉积粒子组分来设置;代表的初速度,由各向同性的麦克斯韦速度分布
4.3)根据沉积粒子的类型,利用空间八叉树技术实现快速跟踪沉积粒子的输运过程,计算到达沉积位置的沉积粒子参数 4.3) According to the deposited particles type, using the space octree technology to quickly track the transport process of the sediment particles, and calculate the parameters of the sediment particles arriving at the deposition position
若si∈离子,则沉积粒子的运动是受到等离子体形成的电场E的影响,加速所引起的运动(由于电场密度不均匀,不是匀加速直线运动,为了简化,可将此运动看成由Δt时间间隔作匀加速直线运动组成,因此,的运动轨迹是折线而不是直线);具体计算如下:If s i ∈ ion, the deposited particle The movement is affected by the electric field E formed by the plasma, and the movement caused by acceleration (due to the inhomogeneous electric field density, It is not a uniformly accelerated linear motion. For simplicity, this motion can be regarded as consisting of a uniformly accelerated linear motion with a time interval of Δt. Therefore, The motion trajectory is a polyline instead of a straight line); the specific calculation is as follows:
根据模拟区域Ω的电场E、牛顿运动定律和沉积粒子当前位置和速度计算Δt时间间隔后的新位置和新速度然后由和决定线段AB,利用空间八叉树技术确定此线段是否和沉积图形表面相交,若不相交且此线段未离开模拟区域Ω,则将新位置和新速度作为当前位置和速度不断重复此过程直到和沉积图形表面相交,找到与沉积图形相交的三角平面Δi;再计算沉积粒子入射方向和三角平面法线夹角θi;并利用表面反射模型(即根据θi值与反射阀值θ0比较,若θ>θ0,则按照镜面反射规律对沉积粒子进行反射,否则沉积粒子沉积在该元胞位置)计算反射还是沉积,即若θi>θ0(θ0>π/3)时,根据反射原理计算的新位置新速度作为当前位置和速度转步骤4.3)继续执行;否则转步骤4.4);According to the electric field E in the simulation area Ω, Newton's law of motion and the current position of the deposited particles and speed Compute the new position after the Δt time interval and new speed then by and Determine the line segment AB, use the space octree technology to determine whether this line segment intersects with the surface of the depositional graph, if not intersect and this line segment does not leave the simulation area Ω, then set the new position and new speed as current location and speed Repeat this process until it intersects with the surface of the deposition pattern, and find the triangular plane Δi intersecting with the deposition pattern; then calculate the deposition particles angle θ i between the incident direction and the normal of the triangular plane; and use the surface reflection model (that is, compare the value of θ i with the reflection threshold θ 0 , if θ>θ 0 , reflect the deposited particles according to the law of specular reflection, otherwise the deposition Particles are deposited at the position of the cell) to calculate reflection or deposition, that is, if θ i > θ 0 (θ 0 > π/3), calculate according to the principle of reflection new location for new speed as current location and speed Go to step 4.3) to continue; otherwise go to step 4.4);
若si∈中性活性粒子,则的运动是恒速方向不变的直线运动,利用空间八叉树技术快速计算此直线和沉积图形Γ(t)相交的三角平面Δi;再根据吸咐概率模型(入射粒子以吸附概率Sc(0<Sc<1)决定该粒子是吸咐还是散射,1-Sc的概率粒子散射,反射角与入射角无关,满足漫反射分布)决定散射还是吸附,即产生随机数p(0≤p≤1),若p>Sc为散射,则随机生成散射角和速率并计算当前位置和速度转步骤4.3)继续执行;否则转步骤4.4);If s i ∈ neutral active particles, then The motion is constant speed Direction-invariant linear motion, using space octree technology to quickly calculate the triangular plane Δi where this line intersects with the deposition pattern Γ(t); then according to the adsorption probability model (incident particles with adsorption probability S c (0 < S <1) Decide whether the particle is adsorption or scattering, 1- Sc probability particle scattering, the reflection angle has nothing to do with the incident angle, satisfying the diffuse reflection distribution) Decide whether the particle is scattering or adsorption, that is, generate a random number p (0≤p≤1) , if p>S c is scattering, randomly generate the scattering angle and velocity and calculate the current position and speed Go to step 4.3) to continue; otherwise go to step 4.4);
4.4)根据沉积位置的材料和到达沉积位置的沉积粒子参数选择具体的沉积模型,计算并更新沉积位置的三角平面的沉积量:4.4) According to the material of the deposition location and the parameters of the deposition particles reaching the deposition location Select a specific deposition model, calculate and update the deposition amount of the triangular plane of the deposition location:
以等离子增强气相沉积过程为例,选择相应的沉积模型可以表示为公式(2):Taking the plasma-enhanced vapor deposition process as an example, the corresponding deposition model can be expressed as formula (2):
其中:表示等离子增强沉积系数,一般通过实验获得,它与粒子速度粒子运动方向平面法线夹角θ和沉积材料state相关;Kd(state)表示中性粒子的沉积系数,和材料state相关,也是通过实验获得;Fion和Fd分别代表运动到沉积图形Γ(t)上三角平面ds上离子流量和中性粒子流量;θ表示沉积粒子与三角平面法线方向的夹角;in: Indicates the plasma-enhanced deposition coefficient, which is generally obtained through experiments, and it is related to the particle velocity The angle θ between the plane normal of the particle movement direction is related to the state of the deposition material; K d (state) represents the deposition coefficient of neutral particles, which is related to the material state, and is also obtained through experiments; F ion and F d represent the motion to deposition figure Γ (t) Ion flux and neutral particle flux on the upper triangular plane ds; θ represents the angle between the deposition particles and the normal direction of the triangular plane;
若si∈离子,则
若si∈中性活性粒子,则
其中:表示三角平面Δi上的沉积量,表示等离子增强沉积系数;Kd(state)表示中性粒子的沉积系数;和分别代表当前粒子代表的离子流量和中性粒子流量;in: Indicates the deposition amount on the triangular plane Δi , express Plasma-enhanced deposition coefficient; K d (state) represents neutral particles deposition coefficient; and respectively represent the current particle Representative ion flux and neutral particle flux;
4.5)重复步骤4.2)-4.4),达到规定的粒子数转步骤5);4.5) Repeat steps 4.2)-4.4) to reach the specified number of particles and turn to step 5);
5)根据各个三角平面的沉积量面积和单位法向量来计算每个三角平面沉积速度根据三角平面沉积速度和最大前进距离dist(dist>0)计算步进时间间隔ΔT;根据各个三角平面沉积速度利用数值计算方法求解水平集控制方程来实现沉积图形表面的运动;重新初始化水平集函数;重新对当前沉积图形表面进行三角剖分,并根据当前沉积图形Γ(t),更新元胞中信息,将状态发生变化的元胞用新沉积材料来代替;具体包括:5) According to the deposition amount of each triangular plane area and the unit normal vector to calculate the deposition velocity of each triangular plane Calculate the step time interval ΔT according to the deposition speed of the triangular plane and the maximum forward distance dist (dist>0); according to the deposition speed of each triangular plane Use the numerical calculation method to solve the level set control equation to realize the movement of the surface of the deposition figure; reinitialize the level set function; re-triangulate the surface of the current deposition figure, and update the information in the cell according to the current deposition figure Γ(t), Cells whose state has changed are replaced with newly deposited materials; specifically include:
5.1)根据各个三角平面的沉积量面积和单位法向量来计算每个三角平面沉积速度 5.1) According to the deposition amount of each triangular plane area and the unit normal vector to calculate the deposition velocity of each triangular plane
5.2)根据三角平面沉积速度和最大前进距离dist(dist>0)计算步进时间间隔ΔT;5.2) Calculate the stepping time interval ΔT according to the deposition speed of the triangular plane and the maximum forward distance dist (dist>0);
其中:dist表示最大前进距离,ls表示组成沉积图形Γ(t)三角平面集;Among them: dist represents the maximum advancing distance, and ls represents the triangular plane set that forms the sedimentary figure Γ(t);
5.3)根据各个三角平面沉积速度利用数值计算方法求解水平集控制方程(公式(5))来实现表面的运动;5.3) According to the deposition rate of each triangular plane Using numerical calculation methods to solve the level set governing equation (formula (5)) to realize the movement of the surface;
φt+V·▽φ=0 (5)φ t + V·▽φ=0 (5)
其中:φt是水平集函数φ对时间t的偏导,▽φ是φ在(x,y,z)处的梯度,V表示定义域各点(x,y,z)处的速度,近似为其所在三角平面沉积速度利用数值计算方法求解时,要将水平集函数定义域(模拟区域Ω)进行离散化来处理;由于在求解水平集控制方程时要用到整个模拟区域Ω各个位置速度(速度场),而在沉积过程中我们只能计算得到沉积图形Γ(t)各点的速度,因此,整个模拟区域Ω的速度场要通过表面速度来计算。为了提高效率,这里采用窄带水平集方法,只计算沉积图形Γ(t)附近位置的速度(沉积图形Γ(t)附近位置的速度等于距离它最近的沉积图形Γ(t)上三角平面的沉积速度);Among them: φ t is the partial derivative of the level set function φ to time t, ▽φ is the gradient of φ at (x, y, z), V represents the velocity at each point (x, y, z) of the domain, approximately The deposition velocity of the triangular plane where it is located When using the numerical calculation method to solve the problem, it is necessary to discretize the domain of the level set function (simulation area Ω); since the entire simulation area Ω and each position velocity (velocity field) are used when solving the level set governing equation, and in During the deposition process, we can only calculate the velocity of each point of the deposition graph Γ(t), therefore, the velocity field of the entire simulation area Ω must be calculated by the surface velocity. In order to improve efficiency, the narrow-band level set method is used here, and only the velocity of the position near the deposition pattern Γ(t) is calculated (the velocity of the position near the deposition pattern Γ(t) is equal to the deposition of the triangular plane on the nearest deposition pattern Γ(t) speed);
5.4)按公式(6)重新初始化水平集函数,使之满足公式(1):5.4) Re-initialize the level set function according to formula (6) so that it satisfies formula (1):
其中:φ0表示当前水平集函数,是要计算的水平集函数,其稳态解是满足公式(1)的符号距离函数,sign(φ0)符号函数,为了求解方便,将其光滑为公式(7),ε>0是很小的正数;Among them: φ 0 represents the current level set function, is the level set function to be calculated, and its steady-state solution is a signed distance function satisfying formula (1), sign(φ 0 ) sign function, for the convenience of solving, it is smoothed into formula (7), ε>0 is very small positive number of
5.5)重新对当前沉积图形表面进行三角剖分,并根据当前沉积图形Γ(t),更新元胞中信息,将状态发生变化的元胞用新沉积材料来代替;5.5) Re-triangulate the surface of the current depositional graph, and update the information in the cells according to the current depositional graph Γ(t), and replace the cells whose state has changed with new deposition materials;
6)更新模拟时间T=T-ΔT后,若T=0,则转步骤7),否则转步骤4);6) After updating the simulation time T=T-ΔT, if T=0, go to step 7), otherwise go to step 4);
7)输出模拟结果,根据沉积图形的所有三角平面生成并显示最终的三维沉积图形。7) Output the simulation results, generate and display the final 3D depositional graphics according to all the triangular planes of the depositional graphics.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110391099.9A CN102521886B (en) | 2011-11-30 | 2011-11-30 | Three-dimensional simulation method for chemical vapor deposition process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110391099.9A CN102521886B (en) | 2011-11-30 | 2011-11-30 | Three-dimensional simulation method for chemical vapor deposition process |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102521886A CN102521886A (en) | 2012-06-27 |
CN102521886B true CN102521886B (en) | 2014-08-20 |
Family
ID=46292788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110391099.9A Expired - Fee Related CN102521886B (en) | 2011-11-30 | 2011-11-30 | Three-dimensional simulation method for chemical vapor deposition process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102521886B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102841964B (en) * | 2012-08-17 | 2015-04-08 | 大连理工大学 | Three-dimensional calculation method for evolving plasma etching section |
CN102982376B (en) * | 2012-11-19 | 2015-12-02 | 合肥工业大学 | A kind of two-dimentional Poisson equation solving-optimizing method based on genetic computation |
CN103336858B (en) * | 2013-06-04 | 2016-02-10 | 清华大学 | A kind of etching and deposition technology three-dimensional cell information storage structure and method of operating |
CN106104535A (en) | 2014-11-13 | 2016-11-09 | 清华大学 | Particle etching or sedimentary evolution emulation mode, device and computer-readable medium |
CN105526882B (en) * | 2015-12-28 | 2018-03-02 | 西南交通大学 | Track switch Abrasion detecting system and its detection method based on structural light measurement |
CN107541716B (en) * | 2016-06-27 | 2019-09-13 | 台湾积体电路制造股份有限公司 | Parameter adjustment method for deposition process |
CN112331271B (en) * | 2020-11-04 | 2022-06-14 | 华南理工大学 | A cross-scale prediction method for CVD deposition rate, product texture and quality |
CN113177372B (en) * | 2021-04-27 | 2022-08-30 | 中国石油大学(华东) | Unstructured grid-based ocean current field visualization method under Cesium engine |
CN114781193B (en) * | 2022-06-20 | 2022-09-02 | 苏州培风图南半导体有限公司 | Etching process simulation method and system |
CN115906714B (en) * | 2023-02-22 | 2023-05-30 | 拉普拉斯(无锡)半导体科技有限公司 | Plate PECVD reaction chamber airflow simulation method and simulation equipment thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5590051A (en) * | 1993-12-01 | 1996-12-31 | Nec Corporation | Process simulation method, process simulator and chemical vapor deposition system employing the same |
CN101702082A (en) * | 2009-08-21 | 2010-05-05 | 苏州纳米技术与纳米仿生研究所 | Simulation system and method for MOCVD control program and device structure generation |
-
2011
- 2011-11-30 CN CN201110391099.9A patent/CN102521886B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5590051A (en) * | 1993-12-01 | 1996-12-31 | Nec Corporation | Process simulation method, process simulator and chemical vapor deposition system employing the same |
CN101702082A (en) * | 2009-08-21 | 2010-05-05 | 苏州纳米技术与纳米仿生研究所 | Simulation system and method for MOCVD control program and device structure generation |
Non-Patent Citations (7)
Title |
---|
Fluids》.2003,第32卷(第8期),1133-1160. * |
H.M.Cave et al..Implementation of unsteady sampling procedures for the parallel direct simulation Monte Carlo method.《Journal of Computational Physics》.2008,第227卷(第12期),6247-6271. |
Implementation of unsteady sampling procedures for the parallel direct simulation Monte Carlo method;H.M.Cave et al.;《Journal of Computational Physics》;20080318;第227卷(第12期);6247-6271 * |
J.-S.Wu et al..Parallel three-dimensional direct simulation Monte Carlo method and its applications.《Computers & Fluids》.2003,第32卷(第8期),1133-1160. |
J.-S.Wu et al..Parallel three-dimensional direct simulation Monte Carlo method and its applications.《Computers & * |
MOCVD生长GaN材料的模拟;郭文平等;《半导体学报》;20050408;第26卷(第4期);735-739 * |
郭文平等.MOCVD生长GaN材料的模拟.《半导体学报》.2005,第26卷(第4期),735-739. |
Also Published As
Publication number | Publication date |
---|---|
CN102521886A (en) | 2012-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102521886B (en) | Three-dimensional simulation method for chemical vapor deposition process | |
CN103278813B (en) | State estimation method based on high-order unscented Kalman filtering | |
WO2012121081A1 (en) | Device for estimating and simulating shape worked by plasma process, and simulation method and program | |
CN103020349B (en) | Modeling method of etching yield in plasma etching process | |
WO2016074202A1 (en) | Method and device for simulating particle etching or depositional evolution, and computer readable medium | |
CN106646645B (en) | A kind of gravity forward modeling accelerated method | |
US20140005990A1 (en) | Simulation method, simulation program, processing unit, and simulator | |
CN101654222A (en) | Three-dimensional nanometer-grade cutting simulation method based on molecular dynamics | |
CN111800932B (en) | A kind of plasma discharge process simulation method and system | |
KR101273190B1 (en) | Enhanced process and profile simulator algorithms | |
Ertl | Numerical methods for topography simulation | |
CN102930143B (en) | Method for determining incident angle of particles in three-dimensional cellular model etching process | |
Klemenschits | Emulation and simulation of microelectronic fabrication processes | |
CN103970963B (en) | Monte Carlo (MC) and cellular automaton (CA) fused etching and sedimentation process simulation method | |
Li et al. | An experiment-based method for focused ion beam milling profile calculation and process design | |
CN106156384B (en) | Method and system for simulating surface morphology of groove deposition | |
CN106154325A (en) | Relief surface based on ray theory combination source wavefield orientation method | |
Qu et al. | Development and prospect of process models and simulation methods for atomic layer deposition | |
Bobinac | Process simulation and model development in ViennaPS | |
Thomas et al. | Physical vapor deposition simulator by graphical processor unit ray casting | |
US9152741B2 (en) | Three-dimensional shape generation method, program, and recording medium | |
Yun | First-Principles and Multiscale Modeling for Design and Operation of Atomic Layer Processing | |
Radjenović et al. | 3D Etching profile evolution simulations: Time dependence analysis of the profile charging during SiO2 etching in plasma | |
Zheng et al. | Simulation of MEMS Microfabrication Process Based on Narrow Band Level Set and Ray Tracing Methods | |
Huang et al. | An integral equation method for epitaxial step-flow growth simulations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140820 Termination date: 20181130 |
|
CF01 | Termination of patent right due to non-payment of annual fee |