CN102521870A - 一种微多边形光线跟踪的着色重用方法 - Google Patents

一种微多边形光线跟踪的着色重用方法 Download PDF

Info

Publication number
CN102521870A
CN102521870A CN2011103716448A CN201110371644A CN102521870A CN 102521870 A CN102521870 A CN 102521870A CN 2011103716448 A CN2011103716448 A CN 2011103716448A CN 201110371644 A CN201110371644 A CN 201110371644A CN 102521870 A CN102521870 A CN 102521870A
Authority
CN
China
Prior art keywords
coloring
painted
aliasing
sample
colo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011103716448A
Other languages
English (en)
Other versions
CN102521870B (zh
Inventor
侯启明
周昆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201110371644.8A priority Critical patent/CN102521870B/zh
Publication of CN102521870A publication Critical patent/CN102521870A/zh
Application granted granted Critical
Publication of CN102521870B publication Critical patent/CN102521870B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Generation (AREA)

Abstract

本发明完成了一种用于加速微多边形光线跟踪的着色重用方法,在保证绘制质量的前提下大幅减少着色计算,提高绘制效率。本发明首先从图像空间投射一组用户指定数量的着色光线,并通过最近邻搜索,将这些光线上计算的着色值赋给反走样样本。为了减少来自不同类型光路的干扰性重用,我们根据光路上的第一次反射类型划分出不同的层面,并分别在各层面着色采样。与现有着色重用技术相比,本发明的方法无需显式指明对象到图像空间映射方式,也使得可以较简洁地处理诸如反射和折射等光线跟踪效果。本发明的方法可以在图形处理硬件上以高度并行化的方式实现,并将微多边形光线跟踪的效率提高一个数量级。

Description

一种微多边形光线跟踪的着色重用方法
技术领域
本发明涉及图形绘制技术领域,尤其涉及一种面向微多边形的光线跟踪方法。
背景技术
着色往往是电影品质级绘制的性能瓶颈。这种绘制通常基于Reyes体系结构,它使用微多边形(micropolygon)来表示高阶曲面或非常精细的对象。Reyes体系架构和微多边形的定义可参考:COOK, R. L., CARPENTER, L., AND CATMULL, E. 1987; The Reyes image rendering architecture. SIGGRAPH Computer Graphics 21, 4 (August), 95–102。为了降低着色的代价,先进的微多边形渲染器(如 Pixar公司的RenderMan)对微多边形的顶点进行着色计算,进而重用着色值算出每个可见性样本(或反走样样本)的颜色,然后合成最终图像。这样的着色重用策略能让着色率明显低于可见性采样率。对于需要很高可见性超采样率的高质量绘制(尤其是绘制散焦和运动模糊效果时)而言,这一点显得至关重要。
现有用于微多边形绘制的着色重用方法大多为光栅化绘制流水线设计。这些方法一般将反射和折射等光线跟踪效果视为着色的一部分,这导致所有反射/折射采样均需做着色处理,从而带来巨大的额外开销。由于光线跟踪在现代高品质绘制中日益重要,这一问题可能成为未来各种应用的主要障碍。本发明完成了一种用于高效微多边形光线跟踪、简单却有效的着色重用方法。与目前的微多边形光线跟踪算法相比,本发明的方法能将所需的着色计算量减小一个数量级,从而获得显著的性能提升。
大部分微多边形绘制方法都能够重用多个可见性采样中代价不菲的着色计算。这些方法假定相邻可见性采样间的着色值是连续且不会有明显变化的。现有的着色重用方法可分为对象空间方法和图像空间方法。对象空间重用方法可参考COOK, R. L., CARPENTER, L., AND CATMULL, E. 1987; The Reyes image rendering architecture. SIGGRAPH Computer Graphics 21, 4 (August), 95–102;BURNS, C. A., FATAHALIAN, K., AND MARK, W. R. 2010. A lazy object-space shading architecture with decoupled sampling. In Proceedings of HPG 2010, 19–28。图像空间重用方法可参考RAGAN-KELLEY, J., LEHTINEN, J., CHEN, J., DOGGETT, M., AND DURAND, F. 2011. Decoupled sampling for graphics pipelines. ACM Trans. Graph. 30, 3 (May), 17:1–17:17。
Stoll等人将对象空间的着色重用引入光线跟踪流水线,其方法可参考STOLL, G., MARK, W. R., DJEU, P., WANG, R., AND ELHASSAN, I. 2006. Razor: An architecture for dynamic multi-resolution ray tracing. Tech. rep., The University of Texas at Austin。他们使用光线导数(Ray Derivative)来控制着色计算率。关于光线导数的定义可参考IGEHY, H. 1999. Tracing ray differentials. In Proceedings of ACM SIGGRAPH ’99, 179–186。具体而言,他们保守地将衍生光线横截面的最小宽度离散化为若干预定义的对象空间细分网格,接着对至少有一束光线入射的细分网格做着色计算。正如他们在技术报告中里提到的,当出现高度的各向异性光线导数或明显的过度细分时,这样的方法会导致可观的过量着色。为了避免对光线导数行为的依赖,本发明的方法使用最邻近搜索来控制着色重用。这种搜索并不依赖细分,且能自适各向异性。
将现有着色重用方法应用于光线跟踪的主要挑战是——光线跟踪会使对象到图像的映射方式复杂化。对着色重用而言,这种映射是必需的,因为理想的着色计算密度定义在图像空间,可是着色连续性假设仅仅在对象空间成立。上述对象空间方法利用对象空间的接近性来重用着色值。它依靠图像空间里多边形的大小来控制着色计算密度。在光栅化流水线中,通过投影到图像空间,多边形大小能立即被计算出来。然而,光线跟踪可能带来任意的扭曲,从而导致在图像空间计算多边形大小的方法失去可行性。上述图像空间方法是基于图像空间的接近性来重用着色值的。它依靠对象空间的连续型映射来保证着色精度。对于直接光栅化而言,这个假设一般是正确的。为了能重用着色,散焦和运动模糊效果通过使用非模糊图像空间的方式进行处理。然而,同样的方法却不可用于处理光线跟踪里的高光反射等效果,因为这些效果涉及对象到图像空间的非连续映射,而此映射无法通过上述图像空间方法得到有效处理。
发明内容
本发明针对电影中光线跟踪效果的高效绘制问题,提出了一种微多边形光线跟踪的着色重用方法。
本发明的目的是通过以下技术方案来实现的:一种微多边形光线跟踪的着色重用方法,包括以下步骤:
(1)在图像空间里均匀生成一定数量的着色光线并进行光线跟踪计算,得到着色样本,然后对这些样本着色;
(2)生成反走样光线并通过光线跟踪得到反走样样本;然后为每一个反走样样本定位可重用着色样本,并将着色值赋给反走样样本;
(3)对在给定领域内找不到可重用着色样本的反走样样本,使用一种图像空间回归重用方法重新着色;
(4)对所有反走样样本滤波,生成最终图像。
进一步地,所述步骤(2)中,所述为每一个反走样样本定位其最邻近的可重用着色样本,通过以下方式实现:首先根据光线第一次与场景交互的类型将场景划分成不同的层面,包括但不限于:直接吸收、反射和折射;分别在每个层面上进行着色重用;其次,在切分产生微多边形的高阶参数图元的参数空间上进行最近邻搜索来确定可重用着色样本;最后为每个独立的高阶参数图元构造二维kd树作为最近邻搜索的加速结构,各独立的高阶参数图元对应的二维kd树以并行方式同时构造。
本发明的有益效果是,和现有微多边形光线跟踪方法相比,通过反走样地处理诸如反射和折射等光线跟踪效果,大幅减小了着色计算量,并获得显著地性能提升;通过图像空间采样,本发明方法实现了控制了着色计算密度;通过参数空间的最邻近搜索,本发明方法保证了着色重用的精确性;通过图像空间回归着色,初始着色时未涉及的细节特征得到了处理,从而保证了正确的视觉效果。
具体实施方式
本发明提出在不同的空间用独立准则完成着色密度控制和实际的处理重用。具体而言,本发明从图像空间投射一些用户可控数量的着色光线,通过对象空间的最邻近搜索来将算好的着色值赋给反走样样本。这个方法既无需显式指明对象到图像空间映射方式,也使得可以较简洁地处理诸如反射和折射等光线跟踪效果。
本发明的着色重用方法可和任何光线跟踪相结合,包括了以下步骤:
(一)在图像空间里均匀生成一定数量的着色光线并进行光线跟踪计算,得到着色样本,然后对这些样本着色。
着色计算的密度可以由着色光线的生成来控制:用户指定对每个像素做着色计算的次数,即着色率。本发明使用带扰动的栅格采样来尽可能均匀地在图像空间生成着色光线。带扰动的栅格采样可参考COOK, R. L., PORTER, T., AND CARPENTER, L. 1984. Distributed ray tracing. SIGGRAPH Computer Graphics 18, 3 (January), 137–145。然后在这些光线与场景的交点上进行着色计算。着色计算使用任何一种现有路径跟踪技术计算,例如可参考WHITTED, T. 1980. An improved illumination model for shaded display. Communication ACM 23, 6 (June), 343–349。计算完成后为每个着色样本存储一个着色值和着色光线和场景交点的位置。
(二)生成反走样光线并通过光线跟踪得到反走样样本;然后为每一个反走样样本定位可重用着色样本,并将着色值赋给反走样样本;
反走样光线和样本的生成方式和上述着色光线和样本的生成方式类似,区别在于其数量不由着色率控制,而通过反走样的超采样率来控制。对于每一个反走样样本,需要定位可重用的着色样本,这可以通过下述方案实现:
首先根据光线第一次与场景交互的类型将场景划分成不同的层面,这些层面包括但不限于:直接吸收、反射和折射。为每个反走样样本确定着色值的过程在每个层面上执行一次,以这种方式将着色重用限制在各个场景交互类型之中。场景分层起到了两个作用。首先,它降低了路径跟踪的噪声。当光线第一次与场景作用时,分层消除了继续跟踪哪类光线的随机性。因此,本发明通过准确计算各类型的权重,将第一次作用后的各种光路结合在一起,从而不需利用蒙特卡罗积分方法隐式地进行权重估算。其次,它减小以不同纹理滤波范围来重用一个着色样本的风险。注意到同一图元可能在多个层面可见。各层面会产生不同程度的放大和畸变,会导致计算出不同的纹理滤波范围。
其次对于一个给定层面上的反走样样本,通过在切分产生微多边形的高阶参数图元的参数空间上进行最近邻搜索来确定可重用着色样本。在一个基于微多边形的光线跟踪器中,任何光线交点(包括反走样光线和着色光线)都能唯一地用一个三元组(iuv)表示——其中i是整型的图元ID;(uv)是交点点在图元参数空间中的坐标,因而可在各图元的参数空间里分别进行最近邻搜索。这种确定可重用着色样本的方法有几个优点:首先,通过将着色重用的候选对象限定在反走样样本所在的图元中,消除了错误重用其他对象或可编程着色器着色值的风险;其次,将最近邻搜索限制在同一图元的策略能使待搜索对象的数量降低几个数量级从而带来可观的性能提升;最后,在处理位移贴图图元或高度弯曲图元时,基于参数空间的最近邻搜索方法仍有很好的鲁棒性。在最邻近搜索中使用一个非欧几里得的距离度量方法来计算两个采样点ab之间的距离能够更好的修正一个图元对两条及以上的二次反射光路可见带来的问题:
Figure 2011103716448100002DEST_PATH_IMAGE001
其中,P a a的参数空间坐标,P b b的参数空间坐标,c是需要用户调整的一个权重常数,一般在0.1-10之间取值,r a r b 分别是ab的参数空间切向量的平均长度。
最后,为了加速上述的最近邻搜索,可以为每个独立的高阶参数图元构造二维kd树作为加速结构。这要求给每个独立的图元构造一棵二维kd树。各kd树包含一到数百万不等的节点,而成千上万的kd树必须同时被构造以提高并行效率。利用图形处理单元高效并行构造一棵kd树的方法可参考ZHOU, K., HOU, Q., WANG, R., AND GUO, B. 2008. Real-time kd-tree construction on graphics hardware. ACM Transactions on Graphics。为并行构造多个kd树,需对该方法作两个扩展:第一、将所有kd树的初始化节点替换为根节点列表。此列表包括了至少被一束着色光线射到的图元;第二、为了隔绝各独立kd树内的操作,需将原来的 scan reduce sort 等并行原语用相应的分段版本替换,同时修改比较函数——先比较树的ID,再比较原有排序关键字。
(三)对在给定领域内找不到可重用着色样本的反走样样本,使用图像空间回归重用方法重新着色; 
着色光线可能完全没命中场景中一些小或薄的图元。对这些图元做反走样采样时,随后的最临近搜索将找不到任何可重用的着色值。这些找不到可重用着色样本的反走样样本被放入一个专用的列表中,以便在后续的处理中对其重新着色。本发明使用一种基于散列的技术来重用这些样本的着色值,并将重用限制在那些来自同一图元并最终作用于同一像素的着色值。基于散列的着色重用技术可参考RAGAN-KELLEY, J., LEHTINEN, J., CHEN, J., DOGGETT, M., AND DURAND, F. 2011. Decoupled sampling for graphics pipelines. ACM Trans. Graph. 30, 3 (May), 17:1–17:17。
(四)对所有反走样样本滤波,生成最终图像。反走样滤波可使用任何适合在图形处理单元上实现的滤波方法,参考COOK, R. L., CARPENTER, L., AND CATMULL, E. 1987; The Reyes image rendering architecture. SIGGRAPH Computer Graphics 21, 4 (August), 95–102。
发明人在一台配备Intel Core i5 2.67GHz CPU (4GB)和NVIDIA GeForce 470 GPU(1280MB)的机器上实现了本发明的若干实施实例。
实施例一、发明人用本发明方法绘制了四个典型场景,包括一个电影中常见的战斗场景(场景一)、一个带有反射/折射的放大镜和位移贴图的金属物体的场景(场景二)、一个带有运动模糊的汽车通过隧道的场景(场景三)和一个水边城堡和树林的高度复杂场景(场景四),表1是本发明方法在所有场景中的性能统计表。其中重用用时是为着色重用的所有额外用时,包括构造kd树、最近邻搜索和搜集重新着色样本等环节的用时。实际着色率是实际测得的每个像素上的平均着色计算次数,由于场景分层和存在需要重新计算的着色的原因,该值一般会略大于用户指定的着色率。如表所示,本发明方法为每个像素点维持着可控且较低的着色计算密度。除场景四由于有非常多的小而薄的树叶,导致需要重新着色的数量较多外,其他测试数据都仅仅小部分样本的最邻近搜索失败需要重新着色。着色重用过程会消耗一部分时间,尤其是较高的超采样率下绘制大量反射/折射效果的时候。然而正如场景三的对比数据所示,与节省下的着色开销相比,这种开销仍然很小。
表1:本发明方法在所有场景中的性能统计表
Figure 2011103716448100002DEST_PATH_IMAGE002
实施例二、发明人在上述场景二中对作为参考完全不重用着色结果、本方法结果及去耦采样方法的结果作了比较。去耦采样方法可参考RAGAN-KELLEY, J., LEHTINEN, J., CHEN, J., DOGGETT, M., AND DURAND, F. 2011. Decoupled sampling for graphics pipelines. ACM Trans. Graph. 30, 3 (May), 17:1–17:17。结果是本方法结果与参考结果在视觉上完全一致。而去耦采样方法中着色值只会在属于同一图元的样本间被重用并且这些样本在标准去耦映射下具有相同的哈希值,其中去耦映射通过将样本投影到像平面来计算样本的整型哈希值,投影过程中不考虑散焦。由于这个映射没有考虑由光线跟踪引起的放大和形变,这导致在绘制通过放大镜看到的放大文字时出现块状瑕点。这个问题的一个简单可行的方法就是修改哈希函数,将一个样本映射到它最终会贡献的图像像素,而不是简单地投影。这个方法考虑到了光线跟踪,但依赖于一个连续的从物体空间到图像空间的映射并且无法处理跨越多个像素的随机光线路径,故在粗糙玻璃表面上会出现过大的采样噪声,需要通过提高着色率来解决。这个实施例中本发明的有益效果得到很好的体现。
上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。

Claims (2)

1.一种微多边形光线跟踪的着色重用方法,其特征在与,包括以下步骤:
(1)在图像空间里均匀生成一定数量的着色光线并进行光线跟踪计算,得到着色样本,然后对这些样本着色;
(2)生成反走样光线并通过光线跟踪得到反走样样本;然后为每一个反走样样本定位可重用着色样本,并将着色值赋给反走样样本;
(3)对在给定领域内找不到可重用着色样本的反走样样本,使用一种图像空间回归重用方法重新着色;
(4)对所有反走样样本滤波,生成最终图像。
2.根据权利要求1所述微多边形光线跟踪的着色重用方法,其特征在与,所述步骤(1)中,所述为每一个反走样样本定位其最邻近的可重用着色样本,通过以下方式实现:首先根据光线第一次与场景交互的类型将场景划分成不同的层面,包括但不限于:直接吸收、反射和折射;分别在每个层面上进行着色重用;其次,在切分产生微多边形的高阶参数图元的参数空间上进行最近邻搜索来确定可重用着色样本;最后为每个独立的高阶参数图元构造二维kd树作为最近邻搜索的加速结构,各独立的高阶参数图元对应的二维kd树以并行方式同时构造。
CN201110371644.8A 2011-11-22 2011-11-22 一种微多边形光线跟踪的着色重用方法 Active CN102521870B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110371644.8A CN102521870B (zh) 2011-11-22 2011-11-22 一种微多边形光线跟踪的着色重用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110371644.8A CN102521870B (zh) 2011-11-22 2011-11-22 一种微多边形光线跟踪的着色重用方法

Publications (2)

Publication Number Publication Date
CN102521870A true CN102521870A (zh) 2012-06-27
CN102521870B CN102521870B (zh) 2014-04-16

Family

ID=46292772

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110371644.8A Active CN102521870B (zh) 2011-11-22 2011-11-22 一种微多边形光线跟踪的着色重用方法

Country Status (1)

Country Link
CN (1) CN102521870B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103198513A (zh) * 2013-03-29 2013-07-10 浙江大学 电影后期合成反走样方法
CN104112034A (zh) * 2013-04-22 2014-10-22 辉达公司 用于实施路径空间滤波的系统、方法和计算机程序产品
CN104952102A (zh) * 2015-06-12 2015-09-30 浙江大学 面向延迟着色的统一反走样方法
CN104978759A (zh) * 2014-04-02 2015-10-14 三星电子株式会社 用于渲染多个帧的相同区域的方法和设备
CN104992463A (zh) * 2015-06-23 2015-10-21 浙江大学 一种双向路径跟踪方法
CN106856010A (zh) * 2015-12-09 2017-06-16 想象技术有限公司 视网膜凹式渲染
US9953457B2 (en) 2013-04-22 2018-04-24 Nvidia Corporation System, method, and computer program product for performing path space filtering
CN108711133A (zh) * 2017-04-01 2018-10-26 英特尔公司 带有早期分层的z的基于图块的立即模式渲染
WO2022037506A1 (zh) * 2020-08-15 2022-02-24 华为云计算技术有限公司 渲染方法、设备以及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1656465A (zh) * 2002-03-22 2005-08-17 迈克尔·F·迪林 可缩放的高性能3d图形显示
CN101192309A (zh) * 2006-11-28 2008-06-04 国际商业机器公司 进行光线跟踪的方法和系统
US20100289799A1 (en) * 2009-05-12 2010-11-18 Johannes Hanika Method, system, and computer program product for efficient ray tracing of micropolygon geometry

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1656465A (zh) * 2002-03-22 2005-08-17 迈克尔·F·迪林 可缩放的高性能3d图形显示
CN101192309A (zh) * 2006-11-28 2008-06-04 国际商业机器公司 进行光线跟踪的方法和系统
US20100289799A1 (en) * 2009-05-12 2010-11-18 Johannes Hanika Method, system, and computer program product for efficient ray tracing of micropolygon geometry

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAYVON FATAHALIAN等: "Reducing Shading on GPUs using Quad-Fragment Merging", 《ACM TRANSACTIONS ON GRAPHICS》, vol. 29, no. 4, 31 July 2010 (2010-07-31), pages 1 - 8 *
徐琨等: "基于CamShift的自适应颜色空间目标跟踪算法", 《计算机应用》, vol. 29, no. 3, 1 March 2009 (2009-03-01), pages 757 - 760 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103198513B (zh) * 2013-03-29 2015-11-25 浙江大学 电影后期合成反走样方法
CN103198513A (zh) * 2013-03-29 2013-07-10 浙江大学 电影后期合成反走样方法
CN104112034A (zh) * 2013-04-22 2014-10-22 辉达公司 用于实施路径空间滤波的系统、方法和计算机程序产品
US9953457B2 (en) 2013-04-22 2018-04-24 Nvidia Corporation System, method, and computer program product for performing path space filtering
CN104978759B (zh) * 2014-04-02 2019-07-19 三星电子株式会社 用于渲染多个帧的相同区域的方法和设备
CN104978759A (zh) * 2014-04-02 2015-10-14 三星电子株式会社 用于渲染多个帧的相同区域的方法和设备
CN104952102A (zh) * 2015-06-12 2015-09-30 浙江大学 面向延迟着色的统一反走样方法
CN104952102B (zh) * 2015-06-12 2017-07-21 浙江大学 面向延迟着色的统一反走样方法
CN104992463A (zh) * 2015-06-23 2015-10-21 浙江大学 一种双向路径跟踪方法
CN106856010A (zh) * 2015-12-09 2017-06-16 想象技术有限公司 视网膜凹式渲染
CN106856010B (zh) * 2015-12-09 2021-10-01 想象技术有限公司 渲染图像方法、视网膜凹式渲染系统和集成电路制造系统
US11682158B2 (en) 2015-12-09 2023-06-20 Imagination Technologies Limited Foveated rendering
CN108711133A (zh) * 2017-04-01 2018-10-26 英特尔公司 带有早期分层的z的基于图块的立即模式渲染
WO2022037506A1 (zh) * 2020-08-15 2022-02-24 华为云计算技术有限公司 渲染方法、设备以及系统

Also Published As

Publication number Publication date
CN102521870B (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
CN102521870B (zh) 一种微多边形光线跟踪的着色重用方法
Fu et al. Geo-neus: Geometry-consistent neural implicit surfaces learning for multi-view reconstruction
Lindstrom et al. Image-driven simplification
CN107025685B (zh) 拓扑感知下的机载建筑屋顶点云建模方法
CN115100339B (zh) 图像生成方法、装置、电子设备和存储介质
Zeng et al. Octree-based fusion for realtime 3D reconstruction
Rong et al. GPU-assisted computation of centroidal Voronoi tessellation
CN101751695B (zh) 点云数据的主曲率和主方向估计方法
CN107767453B (zh) 一种基于规则约束的建筑物lidar点云重构优化方法
Tang et al. Delicate textured mesh recovery from nerf via adaptive surface refinement
CN114820906B (zh) 图像渲染方法、装置、电子设备及存储介质
CN106056670B (zh) 塔式太阳能热发电系统中剔除遮挡的辐射能密度模拟方法
CN101763649B (zh) 一种增强模型轮廓的表面点绘制方法
Zhao Application of 3D CAD in landscape architecture design and optimization of hierarchical details
CN108053483A (zh) 一种基于gpu加速的维诺图三维网格重构方法
Uchida et al. Noise-robust transparent visualization of large-scale point clouds acquired by laser scanning
CN102831634B (zh) 一种高效精确的通用软阴影生成方法
Benthin et al. Interactive ray tracing of free-form surfaces
CN106096085B (zh) 一种塔式太阳能热发电系统的辐射能密度模拟方法
US8948498B1 (en) Systems and methods to transform a colored point cloud to a 3D textured mesh
Schmitz et al. Efficient and quality contouring algorithms on the GPU
CN117315169A (zh) 基于深度学习多视密集匹配的实景三维模型重建方法和系统
CN102663789A (zh) 将二维平面内含洞及岛的多边形三角化的方法
CN103150711A (zh) 一种基于OpenCL的图像修复方法
CN113593007B (zh) 一种基于变分自编码的单视图三维点云重建方法及系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant