CN102519467A - Approximate output method for eulerian angle Chebyshev index on basis of angular velocity - Google Patents

Approximate output method for eulerian angle Chebyshev index on basis of angular velocity Download PDF

Info

Publication number
CN102519467A
CN102519467A CN2011103805672A CN201110380567A CN102519467A CN 102519467 A CN102519467 A CN 102519467A CN 2011103805672 A CN2011103805672 A CN 2011103805672A CN 201110380567 A CN201110380567 A CN 201110380567A CN 102519467 A CN102519467 A CN 102519467A
Authority
CN
China
Prior art keywords
angle
pitch
roll
formula
yaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011103805672A
Other languages
Chinese (zh)
Other versions
CN102519467B (en
Inventor
史忠科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201110380567.2A priority Critical patent/CN102519467B/en
Publication of CN102519467A publication Critical patent/CN102519467A/en
Application granted granted Critical
Publication of CN102519467B publication Critical patent/CN102519467B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Navigation (AREA)

Abstract

The invention discloses an approximate output method for an eulerian angle Chebyshev index on the basis of angular velocity, which is used for solving the problem of poor eulerian angle output accuracy during maneuver flight of an existing aircraft. The technical scheme is that high order approximation integral is directly performed on express of an eulerian angle by introducing a plurality of parameters and unfolding speed of a roll angle, a pitch angle and a yaw angle according to Chebyshev orthogonal polynomial in a change interval according to the sequence of solving the pitch angle, the roll angle and the yaw angle, the solving of the eulerian angle is approximated in super linear mode, time update iterative computation accuracy for determining the eulerian angle is ensured, and accuracy of output flight posture of an inert device is improved.

Description

基于角速度的欧拉角切比雪夫指数近似输出方法Approximate Output Method of Euler Angle Chebyshev Exponent Based on Angular Velocity

技术领域 technical field

本发明涉及一种飞行器机动飞行姿态确定方法,特别是涉及一种基于角速度的欧拉角切比雪夫指数近似输出方法。  The invention relates to a method for determining the maneuvering flight attitude of an aircraft, in particular to an approximate output method of Euler angle Chebyshev exponent based on angular velocity. the

背景技术 Background technique

惯性设备在运动体导航和控制中具有重要作用;刚体运动的加速度、角速度和姿态等通常都依赖于惯性设备输出,因此提高惯性设备的输出精度具有明确的实际意义;在惯性设备中,加速度采用加速度计、角速度采用角速率陀螺直接测量方式,刚体的姿态精度要求很高时如飞行试验等采用姿态陀螺测量,但在很多应用领域都有角速度等测量直接解算输出;主要原因是由于动态姿态传感器价格昂贵、体积大,导致很多飞行器采用角速率陀螺等解算三个欧拉角,使得姿态时间更新输出成为导航等核心内容,也使其成为影响惯导系统精度的主要因素之一,因此设计和采用合理的姿态时间更新输出方法就成为研究的热点课题;从公开发表的文献中对姿态输出主要基于角速度采用欧拉方程直接近似法或采用近似龙格库塔方法解算(孙丽、秦永元,捷联惯导系统姿态算法比较,中国惯性技术学报,2006,Vol.14(3):6-10;Pu Li,Wang TianMiao,Liang JianHong,Wang Song,An Attitude Estimate Approach using MEMS Sensors for Small UAVs,2006,IEEE International Conference on Industrial Informatics,1113-1117);由于欧拉方程中三个欧拉角互相耦合,属于非线性微分方程,在不同初始条件和不同飞行状态下的误差范围不同,难以保证实际工程要求的精度。  Inertial equipment plays an important role in the navigation and control of moving bodies; the acceleration, angular velocity and attitude of rigid body motion usually depend on the output of inertial equipment, so improving the output accuracy of inertial equipment has clear practical significance; in inertial equipment, the acceleration adopts The accelerometer and angular velocity are directly measured by the angular rate gyro. When the attitude accuracy of the rigid body is very high, such as the flight test, the attitude gyro is used for measurement. However, in many application fields, the angular velocity and other measurements are directly calculated and output; the main reason is that the dynamic attitude The sensor is expensive and bulky, which causes many aircraft to use angular rate gyroscopes to solve the three Euler angles, making the attitude time update output become the core content of navigation, and also makes it one of the main factors affecting the accuracy of the inertial navigation system. Therefore, Designing and adopting a reasonable attitude time update output method has become a hot topic of research; from the published literature, the attitude output is mainly based on the angular velocity using the direct approximation method of the Euler equation or the approximate Runge-Kutta method (Sun Li, Qin Yongyuan, Comparison of attitude algorithms for strapdown inertial navigation systems, Chinese Journal of Inertial Technology, 2006, Vol.14(3): 6-10; Pu Li, Wang TianMiao, Liang JianHong, Wang Song, An Attitude Estimate Approach using MEMS Sensors for Small UAVs, 2006, IEEE International Conference on Industrial Informatics, 1113-1117); because the three Euler angles in the Euler equation are coupled to each other, it belongs to a nonlinear differential equation, and the error range is different under different initial conditions and different flight states, so it is difficult to Guarantee the accuracy required by actual engineering. the

发明内容 Contents of the invention

为了克服现有的飞行器机动飞行时欧拉角输出精度差的问题,本发明提供一种基于角速度的欧拉角切比雪夫指数近似输出方法。该方法通过引入多个参数并将滚转、俯仰、偏航角速度按照变动区间的切比雪夫正交多项式展开,通过按照依次求解俯仰角、滚转角、偏航角,直接对欧拉角的表达式进行高阶逼近积分,使得欧拉角的求解按照超线性逼近,可以保证确定欧拉角的时间更新迭代计算精度和惯性单元的输出精度。  In order to overcome the problem of poor output accuracy of Euler angles during maneuvering flight of the existing aircraft, the present invention provides an approximate output method of Chebyshev exponents of Euler angles based on angular velocity. This method introduces multiple parameters and expands the roll, pitch, and yaw angular velocities according to the Chebyshev orthogonal polynomials in the variation interval, and directly expresses the Euler angle by solving the pitch angle, roll angle, and yaw angle in sequence. The high-order approximation integration is carried out according to the formula, so that the solution of the Euler angles is approximated by superlinearity, which can ensure the time update iteration calculation accuracy and the output accuracy of the inertial unit to determine the Euler angles. the

本发明解决其技术问题所采用的技术方案是:一种基于角速度的欧拉角切比雪夫指数近似输出方法,其特点是包括以下步骤:  The technical scheme that the present invention solves its technical problem is: a kind of Euler angle Chebyshev exponent approximate output method based on angular velocity, it is characterized in that comprising the following steps:

1、(a)根据欧拉方程:  1. (a) According to the Euler equation:

Figure BDA0000112175030000021
Figure BDA0000112175030000021

式中: 

Figure BDA0000112175030000022
分别指滚转、俯仰、偏航角;p,q,r分别为滚转、俯仰、偏航角速度;全文参数定义相同;这三个欧拉角的计算按照依次求解俯仰角、滚转角、偏航角的步骤进行;滚转、俯仰、偏航角速度p,q,r的展开式分别为  In the formula:
Figure BDA0000112175030000022
They refer to roll, pitch, and yaw angles respectively; p, q, and r are roll, pitch, and yaw angular velocities respectively; the definitions of the parameters throughout the text are the same; the calculation of these three Euler angles is to solve the pitch angle, roll angle, and yaw angle in sequence. The steps of the flight angle are carried out; the expansion expressions of the roll, pitch, and yaw angular velocities p, q, and r are respectively

p(t)=pξ,q(t)=qξ,r(t)=rξ  p(t)=pξ, q(t)=qξ, r(t)=rξ

其中  in

p=[p0 p1 L pn-1 pn] q=[q0 q1 L qn-1 qnp=[p 0 p 1 L p n-1 p n ] q=[q 0 q 1 L q n-1 q n ]

r=[r0 r1 L rn-1 rn] ξ=[ξ0(t) ξ1(t) L ξn-1(t) ξn(t)]T r=[r 0 r 1 L r n-1 r n ] ξ=[ξ 0 (t) ξ 1 (t) L ξ n-1 (t) ξ n (t)] T

ξξ 00 (( tt )) == 11 ξξ 11 (( tt )) == 11 -- 22 tt // bb ξξ 22 (( tt )) == 88 (( tt // bb )) 22 -- 88 (( tt // bb )) ++ 11 Mm ξξ ii ++ 11 (( tt )) == 22 ξξ 11 (( tt )) ξξ ii (( tt )) -- ξξ ii -- 11 (( tt )) ii == 2,32,3 ,, LL ,, nno -- 1,01,0 ≤≤ tt ≤≤ NTNT ,, bb == NTNT

为切比雪夫正交多项式的递推形式,T为采样周期;  is the recursive form of the Chebyshev orthogonal polynomial, T is the sampling period;

(b)俯仰角的时间更新求解式为:  (b) The time update solution of the pitch angle is:

Figure BDA0000112175030000024
Figure BDA0000112175030000024

Figure BDA0000112175030000025
Figure BDA0000112175030000025

式中:  In the formula:

aa 11 == (( qHwxya ξξ || kTkT (( kk ++ 11 )) TT )) 22 ++ (( rHrH ξξ || kTkT (( kk ++ 11 )) TT )) 22 -- (( pHpH ξξ || kTkT (( kk ++ 11 )) TT )) 22

aa 22 == pp {{ ΩΩ ⊗⊗ [[ HξHξ (( tt )) || kTkT (( kk ++ 11 )) TT ]] }} Hh TT rr TT -- pHpH ξξ || kTkT (( kk ++ 11 )) TT rHξrHξ || kTkT

aa 33 == pp {{ ΩΩ ⊗⊗ [[ HξHξ (( tt )) || kTkT (( kk ++ 11 )) TT ]] }} Hh TT qq TT -- pHpH ξξ || kTkT (( kk ++ 11 )) TT qHξqHξ || kTkT

|| λλ || == {{ pp {{ ΩΩ ⊗⊗ [[ Hh ξξ (( tt )) || kTkT (( kk ++ 11 )) TT ]] }} Hh TT pp TT -- pHpH ξξ || kTkT (( kk ++ 11 )) TT pHξpHξ || kTkT

++ qq {{ ΩΩ ⊗⊗ [[ HξHξ (( tt )) || kTkT (( kk ++ 11 )) TT ]] }} Hh TT qq TT -- qHwxya ξξ || kTkT (( kk ++ 11 )) TT qHξqHξ || kTkT

++ rr {{ ΩΩ ⊗⊗ [[ HξHξ (( tt )) || kTkT (( kk ++ 11 )) TT ]] }} Hh TT rr TT -- rHrH ξξ || kTkT (( kk ++ 11 )) TT rHξrHξ || kTkT }} 11 22

Hh == Hh 00 Hh 11 Mm Hh nno == bb ·· 11 22 -- 11 22 00 LL 00 00 00 11 88 00 -- 11 88 LL 00 00 00 -- 11 66 11 44 00 LL 00 00 00 -- 11 1616 00 11 88 LL 00 00 00 Mm Mm Mm Oo Mm Mm Mm -- 11 22 (( mm -- 11 )) (( mm -- 33 )) 00 00 LL 11 44 (( mm -- 33 )) 00 -- 11 44 (( mm -- 11 )) -- 11 22 mm (( mm -- 22 )) 00 00 LL 00 11 44 (( mm -- 22 )) 00

当p,q,r的展开式最高次项n为奇数时,m=4,6,K,n+1,高次项n为偶数时m=5,7,K,n+1,Hi(i=1,2,L,n)为H相应的行向量;  When p, q, when the highest order item n of the expanded formula of r is an odd number, m=4,6, K, n+1, m=5,7, K, n+1 when the high order item n is an even number, Hi( i=1, 2, L, n) is the corresponding row vector of H;

ΩΩ == 11 22 Hh 22 ++ Hh 00 Hh 33 ++ Hh 11 LL Hh nno ++ 11 ++ Hh nno -- 11 Hh 33 ++ Hh 11 Hh 44 ++ Hh 00 LL Hh nno ++ 22 ++ Hh nno -- 22 Mm Mm Oo Mm Hh nno ++ 11 ++ Hh nno -- 11 Hh nno ++ 22 ++ Hh nno -- 22 LL Hh 22 nno ++ Hh 00

2、在已知俯仰角的情况下,滚转角的时间更新求解式为:  2. In the case of known pitch angle, the time update solution formula of roll angle is:

Figure BDA0000112175030000035
Figure BDA0000112175030000035

其中  in

aa 44 == (( pHξpHξ || kTkT (( kk ++ 11 )) TT )) 22 ++ (( rHξrHξ || kTkT (( kk ++ 11 )) TT )) 22 -- (( qHξqHξ || kTkT (( kk ++ 11 )) TT )) 22

aa 55 == qq {{ ΩΩ ⊗⊗ [[ HξHξ (( tt )) || kTkT (( kk ++ 11 )) TT ]] }} Hh TT pp TT -- qHwxya ξξ || kTkT (( kk ++ 11 )) TT qHξqHξ || kTkT

aa 66 == qq {{ ΩΩ ⊗⊗ [[ HξHξ (( tt )) || kTkT (( kk ++ 11 )) TT ]] }} Hh TT rr TT -- qHwxya ξξ || kTkT (( kk ++ 11 )) TT rHξrHξ || kTkT

3、在俯仰角、滚转角已知情况下,偏航角的求解式为:  3. When the pitch angle and roll angle are known, the formula for solving the yaw angle is:

ψψ (( tt )) == ψψ (( kTkT )) ++ ∫∫ kTkT tt [[ bb 11 (( tt )) ++ bb 22 (( tt )) ]] dtdt

式中:  In the formula:

Figure BDA00001121750300000310
Figure BDA00001121750300000311
Figure BDA00001121750300000310
Figure BDA00001121750300000311

本发明的有益效果是:由于引入多个参数并将滚转、俯仰、偏航角速度按照变动区间的勒让德正交多项式展开,通过按照依次求解俯仰角、滚转角、偏航角,直接对欧拉角的表达式进行高阶逼近积分,使得欧拉角的求解按照超线性逼近,从而保证了确定欧拉角的时间更新迭代计算精度和惯性单元的输出精度。  The beneficial effects of the present invention are: due to the introduction of multiple parameters and the roll, pitch, and yaw angular velocities are expanded according to the Legendre orthogonal polynomials in the variation interval, by solving the pitch angle, roll angle, and yaw angle in sequence, directly The expression of Euler angles is integrated by high-order approximation, so that the solution of Euler angles is approximated by super-linearity, thus ensuring the accuracy of the time update iteration calculation and the output accuracy of the inertial unit for determining the Euler angles. the

下面结合具体实施方式对本发明作详细说明。  The present invention will be described in detail below in combination with specific embodiments. the

具体实施方式 Detailed ways

1、(a)根据刚体姿态方程(欧拉方程):  1. (a) According to the rigid body attitude equation (Euler equation):

Figure BDA0000112175030000041
Figure BDA0000112175030000041

式中: 

Figure BDA0000112175030000042
分别指滚转、俯仰、偏航角;p,q,r分别为滚转、俯仰、偏航角速度;全文参数定义相同;这三个欧拉角的计算按照依次求解俯仰角、滚转角、偏航角的步骤进行;滚转、俯仰、偏航角速度p,q,r的展开式分别为  In the formula:
Figure BDA0000112175030000042
They refer to roll, pitch, and yaw angles respectively; p, q, and r are roll, pitch, and yaw angular velocities respectively; the definitions of the parameters throughout the text are the same; the calculation of these three Euler angles is to solve the pitch angle, roll angle, and yaw angle in sequence. The steps of the flight angle are carried out; the expansion expressions of the roll, pitch, and yaw angular velocities p, q, and r are respectively

p(t)=pξ,q(t)=qξ,r(t)=rξ  p(t)=pξ, q(t)=qξ, r(t)=rξ

其中  in

p=[p0 p1 L pn-1 pn] q=[q0 q1 L qn-1 qnp=[p 0 p 1 L p n-1 p n ] q=[q 0 q 1 L q n-1 q n ]

r=[r0 r1 L rn-1 rn] ξ=[ξ0(t) ξ1(t) L ξn-1(t) ξn(t)]T r=[r 0 r 1 L r n-1 r n ] ξ=[ξ 0 (t) ξ 1 (t) L ξ n-1 (t) ξ n (t)] T

ξξ 00 (( tt )) == 11 ξξ 11 (( tt )) == 22 tt // bb -- 11 ξξ 22 (( tt )) == 66 (( tt // bb )) 22 -- 66 (( tt // bb )) ++ 11 Mm (( ii ++ 11 )) ξξ ii ++ 11 (( tt )) == (( 22 ii ++ 11 )) ξξ 11 (( tt )) ξξ ii (( tt )) -- iξiξ ii -- 11 (( tt )) ii == 2,32,3 ,, LL ,, nno -- 11 ;; 00 ≤≤ tt ≤≤ NTNT ;; bb == NTNT

为勒让德正交多项式的递推形式,T为采样周期;  is the recursive form of the Legendre orthogonal polynomial, T is the sampling period;

(b)俯仰角的时间更新求解式为:  (b) The time update solution of the pitch angle is:

Figure BDA0000112175030000044
Figure BDA0000112175030000044

Figure BDA0000112175030000045
Figure BDA0000112175030000045

式中:  In the formula:

aa 11 == (( qHwxya ξξ || kTkT (( kk ++ 11 )) TT )) 22 ++ (( rHrH ξξ || kTkT (( kk ++ 11 )) TT )) 22 -- (( pHpH ξξ || kTkT (( kk ++ 11 )) TT )) 22

aa 22 == pp ∫∫ kTkT (( kk ++ 11 )) TT [[ ξξ (( tt )) ξξ TT (( tt )) ]] dtdt Hh TT rr TT -- pHpH ξξ || kTkT (( kk ++ 11 )) TT rHξrHξ || kTkT

aa 33 == pp ∫∫ kTkT (( kk ++ 11 )) TT [[ ξξ (( tt )) ξξ TT (( tt )) ]] dtdt Hh TT qq TT -- pHpH ξξ || kTkT (( kk ++ 11 )) TT qHξqHξ || kTkT

|| λλ || == {{ pp ∫∫ kTkT (( kk ++ 11 )) TT [[ ξξ (( tt )) ξξ TT (( tt )) ]] dtdt Hh TT pp TT -- pHpH ξξ || kTkT (( kk ++ 11 )) TT pHξpHξ || kTkT

++ qq ∫∫ kTkT (( kk ++ 11 )) TT [[ ξξ (( tt )) ξξ TT (( tt )) ]] dtdt Hh TT qq TT -- qHwxya ξξ || kTkT (( kk ++ 11 )) TT qHξqHξ || kTkT

++ rr ∫∫ kTkT (( kk ++ 11 )) TT [[ ξξ (( tt )) ξξ TT (( tt )) ]] dtdt Hh TT rr TT -- rHrH ξξ || kTkT (( kk ++ 11 )) TT rHξrHξ || kTkT }} 11 22

Hh == bb ·· 11 22 11 66 00 00 LL 00 00 00 -- 11 22 00 11 1010 00 LL 00 00 00 00 -- 11 66 00 11 1414 LL 00 00 00 Mm Mm Mm Mm Oo Mm Mm Mm 00 00 00 00 LL -- 11 22 (( 22 mm -- 55 )) 00 11 22 (( 22 mm -- 11 )) 00 00 00 00 LL 00 -- 11 22 (( 22 mm -- 33 )) 00

当p,q,r的展开式最高次项n为奇数时,m=2,4,K,n+1,高次项n为偶数时m=3,5,K,n+1;  When p, q, the highest order item n of the expanded formula of r is an odd number, m=2, 4, K, n+1, and when the high order item n is an even number, m=3, 5, K, n+1;

2、在已知俯仰角的情况下,滚转角的时间更新求解式为:  2. In the case of known pitch angle, the time update solution formula of roll angle is:

Figure BDA0000112175030000058
Figure BDA0000112175030000058

Figure BDA0000112175030000059
Figure BDA0000112175030000059

Figure BDA00001121750300000510
Figure BDA00001121750300000510

其中  in

aa 44 == (( pHξpHξ || kTkT (( kk ++ 11 )) TT )) 22 ++ (( rHξrHξ || kTkT (( kk ++ 11 )) TT )) 22 -- (( qHξqHξ || kTkT (( kk ++ 11 )) TT )) 22

aa 55 == qq ∫∫ kTkT (( kk ++ 11 )) TT [[ ξξ (( tt )) ξξ TT (( tt )) ]] dtdt Hh TT pp TT -- qHwxya ξξ || kTkT (( kk ++ 11 )) TT qHξqHξ || kTkT

aa 66 == qq ∫∫ kTkT (( kk ++ 11 )) TT [[ ξξ (( tt )) ξξ TT (( tt )) ]] dtdt Hh TT rr TT -- qHwxya ξξ || kTkT (( kk ++ 11 )) TT rHξrHξ || kTkT

3、在俯仰角、滚转角已知情况下,偏航角的求解式为:  3. When the pitch angle and roll angle are known, the formula for solving the yaw angle is:

ψψ (( tt )) == ψψ (( kTkT )) ++ ∫∫ kTkT tt [[ bb 11 (( tt )) ++ bb 22 (( tt )) ]] dtdt

式中:  In the formula:

Figure BDA0000112175030000061
Figure BDA0000112175030000062
Figure BDA0000112175030000061
Figure BDA0000112175030000062

当对惯性设备直接输出滚转、俯仰、偏航角速度p,q,r采用三阶逼近描述时,所得结果也接近O(T3),相比欧拉方程直接近似法或采用近似龙格库塔方法解算等方法的O(T2)精度要高。  When the inertial equipment directly outputs the roll, pitch, and yaw angular velocities p, q, and r using the third-order approximation description, the obtained result is also close to O(T3), compared with the direct approximation method of the Euler equation or the approximate Runge-Kutta The O(T2) precision of methods such as method solve should be high. the

Claims (1)

1.一种基于角速度的欧拉角切比雪夫指数近似输出方法,其特征在于包括以下步骤: 1. a kind of Euler angle Chebyshev exponent approximate output method based on angular velocity, it is characterized in that comprising the following steps: 步骤1、(a)根据欧拉方程: Step 1, (a) according to the Euler equation:
Figure FDA0000112175020000011
Figure FDA0000112175020000011
式中: 
Figure FDA0000112175020000012
分别指滚转、俯仰、偏航角;p,q,r分别为滚转、俯仰、偏航角速度;全文参数定义相同;这三个欧拉角的计算按照依次求解俯仰角、滚转角、偏航角的步骤进行;滚转、俯仰、偏航角速度p,q,r的展开式分别为
In the formula:
Figure FDA0000112175020000012
They refer to roll, pitch, and yaw angles respectively; p, q, and r are roll, pitch, and yaw angular velocities respectively; the definitions of the parameters throughout the text are the same; the calculation of these three Euler angles is to solve the pitch angle, roll angle, and yaw angle in sequence. The steps of the flight angle are carried out; the expansion expressions of the roll, pitch, and yaw angular velocities p, q, and r are respectively
p(t)=pξ,q(t)=qξ,r(t)=rξ p(t)=pξ, q(t)=qξ, r(t)=rξ 其中 in p=[p0 p1 L pn-1 pn] q=[q0 q1 L qn-1 qn] p=[p 0 p 1 L p n-1 p n ] q=[q 0 q 1 L q n-1 q n ] r=[r0 r1 L  rn-1 rn] ξ=[ξ0(t) ξ1(t) L ξn-1(t) ξn(t)]T r=[r 0 r 1 L r n-1 r n ] ξ=[ξ 0 (t) ξ 1 (t) L ξ n-1 (t) ξ n (t)] T
Figure FDA0000112175020000013
Figure FDA0000112175020000013
为切比雪夫正交多项式的递推形式,T为采样周期; is the recursive form of the Chebyshev orthogonal polynomial, T is the sampling period; (b)俯仰角的时间更新求解式为: (b) The time update solution of the pitch angle is:
Figure FDA0000112175020000015
Figure FDA0000112175020000015
Figure FDA0000112175020000016
Figure FDA0000112175020000016
式中: In the formula:
Figure FDA0000112175020000017
Figure FDA0000112175020000017
Figure FDA0000112175020000018
Figure FDA0000112175020000018
Figure FDA0000112175020000019
Figure FDA0000112175020000019
Figure FDA00001121750200000110
Figure FDA00001121750200000110
Figure FDA00001121750200000111
Figure FDA00001121750200000111
Figure FDA00001121750200000112
Figure FDA00001121750200000112
Figure FDA0000112175020000021
Figure FDA0000112175020000021
当p,q,r的展开式最高次项n为奇数时,m=4,6,K,n+1,高次项n为偶数时m=5,7,K,n+1,Hi(i=1,2,L,n)为H相应的行向量; When p, q, and the highest order n of the expanded formula of r are odd numbers, m=4, 6, K, n+1, and when the higher order n is an even number, m=5, 7, K, n+1, H i (i=1, 2, L, n) is the corresponding row vector of H;
Figure FDA0000112175020000022
Figure FDA0000112175020000022
步骤2、在已知俯仰角的情况下,滚转角的时间更新求解式为: Step 2. In the case of known pitch angle, the time update solution formula of roll angle is:
Figure FDA0000112175020000023
Figure FDA0000112175020000023
Figure FDA0000112175020000024
Figure FDA0000112175020000024
Figure FDA0000112175020000025
Figure FDA0000112175020000025
其中 in
Figure FDA0000112175020000026
Figure FDA0000112175020000026
Figure FDA0000112175020000027
Figure FDA0000112175020000027
Figure FDA0000112175020000028
Figure FDA0000112175020000028
步骤3、在俯仰角、滚转角已知情况下,偏航角的求解式为: Step 3. When the pitch angle and roll angle are known, the formula for solving the yaw angle is:
Figure FDA0000112175020000029
Figure FDA0000112175020000029
式中: In the formula:
Figure FDA00001121750200000210
Figure FDA00001121750200000211
Figure FDA00001121750200000210
Figure FDA00001121750200000211
CN201110380567.2A 2011-11-25 2011-11-25 Approximate output method for eulerian angle Chebyshev index on basis of angular velocity Expired - Fee Related CN102519467B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110380567.2A CN102519467B (en) 2011-11-25 2011-11-25 Approximate output method for eulerian angle Chebyshev index on basis of angular velocity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110380567.2A CN102519467B (en) 2011-11-25 2011-11-25 Approximate output method for eulerian angle Chebyshev index on basis of angular velocity

Publications (2)

Publication Number Publication Date
CN102519467A true CN102519467A (en) 2012-06-27
CN102519467B CN102519467B (en) 2015-01-28

Family

ID=46290470

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110380567.2A Expired - Fee Related CN102519467B (en) 2011-11-25 2011-11-25 Approximate output method for eulerian angle Chebyshev index on basis of angular velocity

Country Status (1)

Country Link
CN (1) CN102519467B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109724597A (en) * 2018-12-19 2019-05-07 上海交通大学 An inertial navigation solution method and system based on function iterative integration
US20210404811A1 (en) * 2017-04-21 2021-12-30 Shanghai Jiao Tong University Method for solving attitude of rigid body based on function iterative integration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080315039A1 (en) * 2007-06-21 2008-12-25 Lael Rudd System and methods for space vehicle torque balancing
CN101825468A (en) * 2010-04-23 2010-09-08 东南大学 Strapdown inertial navigation method of dual quaternion based on frequency domain analysis method
US7822798B2 (en) * 2005-05-13 2010-10-26 Sri International Dead reckoning for coordinate conversion
CN101941528A (en) * 2010-09-30 2011-01-12 哈尔滨工业大学 Flywheel based attitude maneuvering control device and method for successive approaching of satellite rounding instantaneous Euler shaft

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7822798B2 (en) * 2005-05-13 2010-10-26 Sri International Dead reckoning for coordinate conversion
US20080315039A1 (en) * 2007-06-21 2008-12-25 Lael Rudd System and methods for space vehicle torque balancing
CN101825468A (en) * 2010-04-23 2010-09-08 东南大学 Strapdown inertial navigation method of dual quaternion based on frequency domain analysis method
CN101941528A (en) * 2010-09-30 2011-01-12 哈尔滨工业大学 Flywheel based attitude maneuvering control device and method for successive approaching of satellite rounding instantaneous Euler shaft

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN JIE ET AL.: "Aircraft Modeling and Simulation with Cargo Moving Inside", 《CHINESE JOURNAL OF AERONAUTICS》 *
史忠科: "飞行器大迎角运动新模型及应用", 《西北工业大学学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210404811A1 (en) * 2017-04-21 2021-12-30 Shanghai Jiao Tong University Method for solving attitude of rigid body based on function iterative integration
CN109724597A (en) * 2018-12-19 2019-05-07 上海交通大学 An inertial navigation solution method and system based on function iterative integration

Also Published As

Publication number Publication date
CN102519467B (en) 2015-01-28

Similar Documents

Publication Publication Date Title
CN111121820A (en) MEMS inertial sensor array fusion method based on Kalman filtering
CN105606846A (en) Accelerometer calibration method based on attitude information
CN103218482B (en) The method of estimation of uncertain parameter in a kind of dynamic system
CN103759731A (en) Single-subsample rotating vector posture method under angular rate input condition
CN102519467B (en) Approximate output method for eulerian angle Chebyshev index on basis of angular velocity
CN105260341B (en) Eulerian angles Legendre's approximation output method based on angular speed
CN102519466A (en) Approximate output method of Eulerian angle Legendre index based on angular velocity
CN102506873B (en) Euler angle Laguerre approximate output method based on angle velocity
CN102506870B (en) Euler angle Hermite exponential approximation output method based on angular velocity
CN102494690A (en) Any eulerian angle step length orthogonal series approximation output method based on angular speed
CN102495828B (en) Euler angle Hartley approximate output method based on angular speed
CN102519465B (en) Approximate Output Method of Euler Angle Fourier Exponent Based on Angular Velocity
CN102519457B (en) Angular velocity-based Euler angle Fourier approximate output method
CN102519468B (en) Angular velocity based Euler angle Laguerre exponent approximate output method
CN102519462B (en) Angular velocity based Euler angle exponent output method
CN102435192B (en) Orthogonal Series Exponential Approximation Output Method Based on Angular Velocity for Euler Angle with Arbitrary Step
CN102519464B (en) Angular speed-based Hartley index approximate output method for Eulerian angles
CN102506869B (en) Euler angle polynomial class-index approximate output method on basis of angle velocity
CN103411627B (en) Nonlinear three-step filtering method for Mars power descent stage
CN102564423B (en) Euler angle Walsh approximate output method based on angular speed
CN102506874B (en) Euler angle superlinearity output method based on angle velocity
CN102495826A (en) Euler angle Chebyshev approximate output method based on angular speed
CN102494689A (en) Approximate output method of Euler angle polynomial class based on angular velocity
CN102519461A (en) Euler angle Walsh index approximate output method based on angular velocity
CN102520208A (en) Method for extracting acceleration of strapdown type aviation gravimeter based on flight dynamics

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150128

Termination date: 20211125