CN102506160A - Ramp based on longitudinal dynamics and vehicle load identification method - Google Patents

Ramp based on longitudinal dynamics and vehicle load identification method Download PDF

Info

Publication number
CN102506160A
CN102506160A CN2011103574767A CN201110357476A CN102506160A CN 102506160 A CN102506160 A CN 102506160A CN 2011103574767 A CN2011103574767 A CN 2011103574767A CN 201110357476 A CN201110357476 A CN 201110357476A CN 102506160 A CN102506160 A CN 102506160A
Authority
CN
China
Prior art keywords
vehicle
acceleration
real
engine torque
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011103574767A
Other languages
Chinese (zh)
Other versions
CN102506160B (en
Inventor
雷雨龙
付尧
刘振杰
刘洪波
孙少华
张煜
李兴中
何煦
刘斌
吕二华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201110357476.7A priority Critical patent/CN102506160B/en
Publication of CN102506160A publication Critical patent/CN102506160A/en
Application granted granted Critical
Publication of CN102506160B publication Critical patent/CN102506160B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

本发明公开了基于纵向动力学的坡道及车辆载荷识别方法。步骤:1.换档控制单元获取实时发动机扭矩及实时车速信息;2.换档控制单元对获取的实时发动机扭矩与实时车速信息做有效性判断;3.换档控制单元用有效实时发动机扭矩与有效车速值更新上一时刻有效扭矩与有效车速;4.换档控制单元对发动机扭矩做低通滤波处理;5.换档控制单元利用滤波后发动机扭矩计算车辆平路行驶加速度;6.换档控制单元对实时车速做微分计算得到车辆实际行驶加速度;7.换档控制单元对车辆实际行驶加速度进行低通滤波处理;8.换档控制单元算出道路坡度及车辆载荷值;9.换档控制单元用当前车辆平路行驶加速度与当前车辆实际行驶加速度更新上一时刻相应信息。

Figure 201110357476

The invention discloses a method for identifying slopes and vehicle loads based on longitudinal dynamics. Steps: 1. The shift control unit acquires real-time engine torque and real-time vehicle speed information; 2. The shift control unit makes a validity judgment on the acquired real-time engine torque and real-time vehicle speed information; 3. The shift control unit uses the effective real-time engine torque and real-time vehicle speed information The effective vehicle speed value updates the effective torque and effective vehicle speed at the previous moment; 4. The gear shift control unit performs low-pass filtering on the engine torque; 5. The gear shift control unit uses the filtered engine torque to calculate the acceleration of the vehicle on flat roads; 6. Shift gears The control unit performs differential calculation on the real-time vehicle speed to obtain the actual driving acceleration of the vehicle; 7. The gear shift control unit performs low-pass filtering processing on the actual driving acceleration of the vehicle; 8. The gear shift control unit calculates the road slope and vehicle load value; 9. Shift control The unit uses the current acceleration of the vehicle on flat roads and the actual acceleration of the current vehicle to update the corresponding information at the previous moment.

Figure 201110357476

Description

基于纵向动力学的坡道及车辆载荷识别方法Slope and Vehicle Load Identification Method Based on Longitudinal Dynamics

技术领域 technical field

本发明涉及一种坡道及车辆载荷识别方法,更具体地说,本发明涉及一种可提高车辆自动变速系统对于坡道及车辆载荷变化适应性的基于纵向动力学的坡道及车辆载荷识别方法。The present invention relates to a method for identifying slopes and vehicle loads, more specifically, the present invention relates to a method for identifying slopes and vehicle loads based on longitudinal dynamics that can improve the adaptability of automatic transmission systems of vehicles to changes in slopes and vehicle loads method.

背景技术 Background technique

通常情况下车辆自动变速系统换档策略是以车速和油门开度作为控制参数,在水平良好路面,具有令人满意的性能,但在行驶工况比较复杂情况下,这种换档策略会产生换档问题,如换档循环,意外换档等。究其原因是自动变速系统没有理解车辆自身及其所处环境信息。因此自动变速系统迫切需要一种对坡道以及车辆载荷进行识别的方法,以此来增加自动变速系统的舒适性、可靠性、安全性。Usually, the shifting strategy of the automatic transmission system of the vehicle is based on the vehicle speed and the throttle opening as the control parameters. It has satisfactory performance on a good level road surface, but in the case of complicated driving conditions, this shifting strategy will produce Shift issues such as shift cycles, unexpected shifts, etc. The reason is that the automatic transmission system does not understand the information of the vehicle itself and its environment. Therefore, the automatic transmission system urgently needs a method for identifying slopes and vehicle loads, so as to increase the comfort, reliability and safety of the automatic transmission system.

坡道识别方法有多种:有基于加速度区间判断的坡道识别方法,这种方法理论上可行,但实际应用起来需要标定大量数据;也有利用加速度传感器测得的加速度信号和车辆实际加速度来计算道路坡度的识别方法,该方法需要额外装配加速度传感器,无疑增加了车辆的成本。There are many methods of slope recognition: there is a slope recognition method based on the judgment of the acceleration interval, which is theoretically feasible, but it needs to calibrate a large amount of data in practice; there is also the acceleration signal measured by the acceleration sensor and the actual acceleration of the vehicle. The identification method of the road slope requires an additional acceleration sensor, which undoubtedly increases the cost of the vehicle.

本发明鉴于上述问题而提出精确识别道路坡度及车辆载荷,使车辆自动变速系统对于坡道及车辆载荷变化具有一定适应性。In view of the above problems, the present invention proposes to accurately identify the road slope and the vehicle load, so that the automatic transmission system of the vehicle has certain adaptability to the changes of the slope and the vehicle load.

发明内容 Contents of the invention

本发明所要解决的技术问题是克服了现有技术存在的问题,提供了一种可提高车辆自动变速系统对于坡道及车辆载荷变化适应性的基于纵向动力学的坡道及车辆载荷识别方法。The technical problem to be solved by the present invention is to overcome the existing problems in the prior art, and provide a slope and vehicle load identification method based on longitudinal dynamics that can improve the adaptability of the vehicle automatic transmission system to the slope and vehicle load changes.

为解决上述技术问题,本发明是采用如下技术方案实现的:所述的基于纵向动力学的坡道及车辆载荷识别方法步骤如下:In order to solve the above-mentioned technical problems, the present invention is achieved by adopting the following technical solutions: the steps of the described method for identifying slopes and vehicle loads based on longitudinal dynamics are as follows:

1.换档控制单元通过CAN设备驱动模块与CAN信息处理模块处理和发动机控制单元与ABS控制单元之间CAN数据帧,获取实时发动机扭矩及实时车速信息。1. The shift control unit obtains real-time engine torque and real-time vehicle speed information through CAN device driver module and CAN information processing module processing and CAN data frame between engine control unit and ABS control unit.

2.换档控制单元对获取的实时发动机扭矩信息做有效性判断:若发动机扭矩信息无效,舍弃无效扭矩,使用上一时刻有效扭矩,若发动机扭矩信息有效则转入下一步骤。2. The shift control unit judges the validity of the obtained real-time engine torque information: if the engine torque information is invalid, discard the invalid torque and use the effective torque at the previous moment, and if the engine torque information is valid, go to the next step.

同时,换档控制单元对获取的实时车速信息做有效性判断:如车速信息无效,舍弃无效车速,使用上一时刻有效车速,若车速信息有效则转入下一步骤。At the same time, the shift control unit makes a validity judgment on the obtained real-time vehicle speed information: if the vehicle speed information is invalid, discard the invalid vehicle speed, and use the valid vehicle speed at the previous moment, and transfer to the next step if the vehicle speed information is valid.

3.换档控制单元用有效实时发动机扭矩更新上一时刻有效扭矩,同时,换档控制单元用有效车速值更新上一时刻有效车速。3. The shift control unit uses the effective real-time engine torque to update the effective torque at the previous moment, and at the same time, the shift control unit updates the effective vehicle speed at the previous moment with the effective vehicle speed value.

4.换档控制单元通过发动机扭矩滤波模块对发动机扭矩做低通滤波处理,其算法如下:4. The shift control unit performs low-pass filter processing on the engine torque through the engine torque filter module, and the algorithm is as follows:

Yn=aXn+(1-a)Yn-1 Y n =aX n +(1-a)Y n-1

其中:Xn.本次采样值,Yn-1.上次滤波输出值,a.滤波系数,Yn.本次滤波输出值。Among them: X n . this sampling value, Y n-1 . the last filtering output value, a. filtering coefficient, Y n . the current filtering output value.

5.换档控制单元通过车辆平路行驶加速度计算模块,利用滤波后发动机扭矩计算车辆平路行驶加速度:5. The shift control unit calculates the acceleration of the vehicle on a flat road by using the filtered engine torque through the calculation module of the vehicle’s flat road acceleration:

Figure BDA0000107979780000021
Figure BDA0000107979780000021

其中:Ttq.滤波后发动机扭矩(N·m),ig.变速器传动比,i0.主减速器传动比,ηT.传动系机械效率,r.轮胎滚动半径(m),g.重力加速度(m/s2),

Figure BDA0000107979780000022
滚动阻力系数,CD.空气阻力系数,A.迎风面积(m2),v.车速(km/h),δ.汽车旋转质量换算系数。Where: T tq . Filtered engine torque (N m), i g . Transmission ratio of transmission, i 0 . Gear ratio of final drive, η T . Mechanical efficiency of drive train, r. Tire rolling radius (m), g. Gravitational acceleration (m/s 2 ),
Figure BDA0000107979780000022
Coefficient of rolling resistance, C D. Coefficient of air resistance, A. Frontal area (m 2 ), v. Vehicle speed (km/h), δ. Conversion factor of vehicle rotating mass.

6.换档控制单元通过车辆实际行驶加速度计算模块,对实时车速做微分计算,得到车辆实际行驶加速度。6. The gear shift control unit performs differential calculation on the real-time vehicle speed through the actual vehicle acceleration calculation module to obtain the actual vehicle acceleration.

7.换档控制单元通过车辆实际行驶加速度滤波模块对车辆实际行驶加速度进行低通滤波处理,低通滤波处理算法如下:7. The shift control unit performs low-pass filtering processing on the actual driving acceleration of the vehicle through the vehicle actual driving acceleration filtering module. The low-pass filtering processing algorithm is as follows:

Yn=aXn+(1-a)Yn-1 Y n =aX n +(1-a)Y n-1

其中:Xn.本次采样值,Yn-1.上次滤波输出值,a.滤波系数,Yn.本次滤波输出值。Among them: X n . this sampling value, Y n-1 . the last filtering output value, a. filtering coefficient, Y n . the current filtering output value.

8.换档控制单元通过坡道及车辆载荷计算模块,利用当前车辆平路行驶加速度、当前车辆实际行驶加速度、上一时刻车辆平路行驶加速度及上一时刻车辆实际行驶加速度计算出道路坡度及车辆载荷值:8. The gear shift control unit calculates the road slope and vehicle load calculation module by using the current vehicle acceleration on a flat road, the current actual vehicle acceleration, the vehicle acceleration on a flat road at the previous moment, and the actual vehicle acceleration at the previous moment. Vehicle load value:

Figure BDA0000107979780000023
Figure BDA0000107979780000023

Figure BDA0000107979780000024
Figure BDA0000107979780000024

其中:i.道路坡度值,g.示重力加速度(m/s2),δ.汽车旋转质量换算系数,滚动阻力系数,v.车辆当前车速(km/h),Δm.车辆载荷(kg),m.车辆空载时质量(kg),a1、a1.是当前车辆平路行驶加速度、当前车辆实际行驶加速度(m/s2),a0、a0.是上一时刻车辆平路行驶加速度、上一时刻车辆实际行驶加速度(m/s2)。Among them: i. Road slope value, g. Indicates the acceleration of gravity (m/s 2 ), δ. The conversion factor of vehicle rotating mass, Coefficient of rolling resistance, v. current vehicle speed (km/h), Δm. vehicle load (kg), m. mass of the vehicle when it is unloaded (kg), a1 level , a1 real . Actual driving acceleration (m/s 2 ), a0 flat , a0 real . It is the acceleration of the vehicle on flat road at the last moment, and the actual driving acceleration of the vehicle at the last moment (m/s 2 ).

9.换档控制单元用当前车辆平路行驶加速度与当前车辆实际行驶加速度更新上一时刻车辆平路行驶加速度与上一时刻车辆实际行驶加速度。9. The shift control unit uses the current acceleration of the vehicle on flat road and the actual acceleration of the current vehicle to update the acceleration of the vehicle on flat road at the previous moment and the actual acceleration of the vehicle at the previous moment.

与现有技术相比本发明的有益效果是:Compared with prior art, the beneficial effects of the present invention are:

1.本发明所述的基于纵向动力学的坡道及车辆载荷识别方法无需增加额外传感器,具有低成本、简单与实用的特点。1. The slope and vehicle load identification method based on longitudinal dynamics of the present invention does not need to add additional sensors, and has the characteristics of low cost, simplicity and practicality.

2.本发明所述的基于纵向动力学的坡道及车辆载荷识别方法简便、高效可以对坡道及车辆载荷进行精确辨识。2. The method for identifying slopes and vehicle loads based on longitudinal dynamics in the present invention is simple and efficient and can accurately identify slopes and vehicle loads.

3.本发明所述的基于纵向动力学的坡道及车辆载荷识别方法具有通用性和可移植性,该方法可应用于其它各类型自动变速系统中。3. The method for identifying slopes and vehicle loads based on longitudinal dynamics in the present invention has versatility and portability, and the method can be applied to other types of automatic transmission systems.

附图说明 Description of drawings

下面结合附图对本发明作进一步的说明:Below in conjunction with accompanying drawing, the present invention will be further described:

图1是本发明所述的基于纵向动力学的坡道及车辆载荷识别方法的功能模块构架的示意框图;Fig. 1 is the schematic block diagram of the functional module framework of the ramp and vehicle load identification method based on longitudinal dynamics of the present invention;

图2是本发明所述的基于纵向动力学的坡道及车辆载荷识别方法的功能流程框图。Fig. 2 is a functional flow diagram of the slope and vehicle load identification method based on longitudinal dynamics according to the present invention.

图3是本发明所述的基于纵向动力学的坡道及车辆载荷识别方法中的低通滤波处理步骤的流程框图。Fig. 3 is a flow chart of the low-pass filtering processing steps in the slope and vehicle load identification method based on longitudinal dynamics according to the present invention.

图4是采用本发明所述的基于纵向动力学的坡道及车辆载荷识别方法仿真实验结果曲线。Fig. 4 is a curve of simulation experiment results using the longitudinal dynamics-based slope and vehicle load identification method of the present invention.

图5是采用本发明所述的基于纵向动力学的坡道及车辆载荷识别方法实车试验结果曲线。Fig. 5 is a curve of actual vehicle test results using the slope and vehicle load identification method based on longitudinal dynamics according to the present invention.

具体实施方式 Detailed ways

下面结合附图对本发明作详细的描述:The present invention is described in detail below in conjunction with accompanying drawing:

参阅图1,图中是实施本发明所述的基于纵向动力学的坡道及车辆载荷识别方法的计算机程序的功能模块构架的示意框图,实施本发明所述的基于纵向动力学的坡道及车辆载荷识别方法的计算机程序安装与运行于TCU(换档控制单元)中。实施本发明所述的基于纵向动力学的坡道及车辆载荷识别方法的计算机程序的功能模块构架由CAN设备驱动模块、CAN信息处理模块、发动机扭矩滤波模块、车辆实际行驶加速度计算模块、车辆实际行驶加速度滤波模块、车辆平路行驶加速度计算模块、坡道及车辆载荷计算模块组成。Referring to Fig. 1, it is a schematic block diagram of the functional module framework of the computer program that implements the ramp based on longitudinal dynamics of the present invention and the vehicle load identification method among the figure, implements the ramp based on longitudinal dynamics of the present invention and The computer program of the vehicle load recognition method is installed and run in the TCU (shift control unit). Implement the functional module frame of the computer program based on the slope of longitudinal dynamics described in the present invention and the vehicle load recognition method by CAN device driver module, CAN information processing module, engine torque filter module, vehicle actual driving acceleration calculation module, vehicle actual It consists of a driving acceleration filtering module, a vehicle acceleration calculation module on flat roads, and a slope and vehicle load calculation module.

在TCU中,相应功能模块程序由TCU任务调度程序调度运行。其中CAN设备驱动模块与CAN信息处理模块在1ms周期任务中被调用;发动机扭矩滤波模块、车辆平路行驶加速计算模块、车辆实际行驶加速度滤波模块在10ms周期任务中被调用;坡道及车辆载荷计算模块、车辆实际行驶加速度计算模块在100ms周期任务中被调用。换档控制单元通过TCU任务调度程序在1ms周期任务中调用CAN设备驱动模块与CAN信息处理模块处理和发动机控制单元、ABS控制单元之间的CAN数据帧,获取实时发动机扭矩及实时车速信息。TCU任务调度程序在10ms周期任务中调用发动机扭矩滤波模块对发动机扭矩做低通滤波处理;车辆平路行驶加速度计算模块利用滤波后发动机扭矩计算车辆平路行驶加速度;车辆实际行驶加速度滤波模块对车辆实际行驶加速度进行低通滤波处理。TCU任务调度程序在100ms周期任务中调用车辆实际行驶加速度模块对实时车速做微分计算得到车辆实际行驶加速度;坡道及车辆载荷计算模块利用当前车辆平路行驶加速度、当前车辆实际行驶加速度及上一时刻车辆平路行驶加速度、上一时刻车辆实际行驶加速度最终计算出道路坡度及车辆载荷精确值。In the TCU, the corresponding functional module programs are scheduled to run by the TCU task scheduler. Among them, the CAN device driver module and the CAN information processing module are called in the 1ms periodic task; the engine torque filtering module, the vehicle flat road acceleration calculation module, and the vehicle actual driving acceleration filtering module are called in the 10ms periodic task; the ramp and vehicle load The calculation module and the actual vehicle acceleration calculation module are called in the 100ms periodic task. The shift control unit uses the TCU task scheduler to call the CAN device driver module and the CAN information processing module to process the CAN data frame between the engine control unit and the ABS control unit in the 1ms period task to obtain real-time engine torque and real-time vehicle speed information. The TCU task scheduler calls the engine torque filter module in the 10ms period task to perform low-pass filter processing on the engine torque; the vehicle acceleration calculation module uses the filtered engine torque to calculate the vehicle acceleration; the actual vehicle acceleration filter module The actual driving acceleration is low-pass filtered. The TCU task scheduler calls the vehicle actual driving acceleration module in the 100ms periodic task to perform differential calculation on the real-time vehicle speed to obtain the actual vehicle driving acceleration; the slope and vehicle load calculation module uses the current vehicle flat road driving acceleration, the current vehicle actual driving acceleration and the previous The acceleration of the vehicle on the flat road at the moment and the actual acceleration of the vehicle at the previous moment are finally calculated to calculate the exact value of the road slope and vehicle load.

参阅图2,图中是基于纵向动力学的坡道及车辆载荷识别方法的流程框图,该方法包括以下步骤:Referring to Fig. 2, it is a flow chart of the slope and vehicle load identification method based on longitudinal dynamics among the figure, and the method comprises the following steps:

1.换档控制单元(TCU)通过TCU任务调度程序在1ms周期任务中调用CAN设备驱动模块与CAN信息处理模块处理和发动机控制单元、ABS控制单元之间CAN数据帧,获取实时发动机扭矩及实时车速信息。1. The shift control unit (TCU) calls the CAN device driver module and the CAN information processing module to process the CAN data frame between the engine control unit and the ABS control unit through the TCU task scheduler in the 1ms cycle task, and obtains real-time engine torque and real-time Vehicle speed information.

2.换档控制单元(TCU)依据CAN通信协议定义的发动机扭矩信息有效区间、对获取的实时发动机扭矩信息做有效性判断:若发动机扭矩信息无效,舍弃无效扭矩,使用上一时刻有效扭矩。若发动机扭矩信息有效,则转入下一步骤。2. The shift control unit (TCU) judges the validity of the obtained real-time engine torque information according to the effective interval of the engine torque information defined by the CAN communication protocol: if the engine torque information is invalid, discard the invalid torque and use the effective torque at the previous moment. If the engine torque information is valid, go to the next step.

同时,换档控制单元(TCU)依据CAN通信协议定义的车速信息有效区间对获取的实时车速信息做有效性判断:如车速信息无效,舍弃无效车速,使用上一时刻有效车速。若车速信息有效,则转入下一步骤。At the same time, the shift control unit (TCU) judges the validity of the obtained real-time vehicle speed information according to the effective range of vehicle speed information defined by the CAN communication protocol: if the vehicle speed information is invalid, discard the invalid vehicle speed and use the valid vehicle speed at the previous moment. If the vehicle speed information is valid, proceed to the next step.

3.换档控制单元(TCU)用有效实时发动机扭矩值更新上一时刻有效扭矩。同时,换档控制单元(TCU)用有效车速值更新上一时刻有效车速。3. The shift control unit (TCU) updates the effective torque at the last moment with the effective real-time engine torque value. At the same time, the shift control unit (TCU) updates the effective vehicle speed at the last moment with the effective vehicle speed value.

4.换档控制单元(TCU)通过TCU任务调度程序在10ms周期任务中调用发动机扭矩滤波模块对发动机扭矩做低通滤波处理。采用数字低通滤波方法,其算法如下所示:4. The shift control unit (TCU) calls the engine torque filter module to perform low-pass filter processing on the engine torque in the 10ms period task through the TCU task scheduler. Using digital low-pass filtering method, its algorithm is as follows:

Yn=aXn+(1-a)Yn-1 Y n =aX n +(1-a)Y n-1

其中:Xn.本次采样值,Yn-1.上次滤波输出值,a.滤波系数,Yn.本次滤波输出值。Among them: X n . this sampling value, Y n-1 . the last filtering output value, a. filtering coefficient, Y n . the current filtering output value.

5.换档控制单元(TCU)通过TCU任务调度程序在10ms周期任务中调用车辆平路行驶加速度计算模块,利用滤波后发动机扭矩计算车辆平路行驶加速度。计算公式如下所示:5. The shift control unit (TCU) calls the vehicle acceleration calculation module on flat roads through the TCU task scheduler in the 10ms periodic task, and uses the filtered engine torque to calculate the vehicle acceleration on flat roads. The calculation formula is as follows:

Figure BDA0000107979780000051
Figure BDA0000107979780000051

其中:Ttq.滤波后发动机扭矩(N·m),ig.变速器传动比,i0.主减速器传动比,ηT.传动系机械效率,r.轮胎滚动半径(m),g.重力加速度(m/s2),

Figure BDA0000107979780000052
滚动阻力系数,CD.空气阻力系数,A.迎风面积(m2),v.车速(km/h),δ.汽车旋转质量换算系数。Where: T tq . Filtered engine torque (N m), i g . Transmission ratio of transmission, i 0 . Gear ratio of final drive, η T . Mechanical efficiency of drive train, r. Tire rolling radius (m), g. Gravitational acceleration (m/s 2 ),
Figure BDA0000107979780000052
Coefficient of rolling resistance, C D. Coefficient of air resistance, A. Frontal area (m 2 ), v. Vehicle speed (km/h), δ. Conversion factor of vehicle rotating mass.

6.换档控制单元(TCU)通过TCU任务调度程序在100ms周期任务中调用车辆实际行驶加速度计算模块,对实时车速做微分计算,得到车辆实际行驶加速度。微分计算时间间隔可取范围为50ms-500ms,具体时间间隔应依据换档控制单元(TCU)采集的实时车速精度而定,本实施例中微分计算时间间隔取为100ms。6. The shift control unit (TCU) calls the vehicle actual driving acceleration calculation module in the 100ms cycle task through the TCU task scheduler, and performs differential calculation on the real-time vehicle speed to obtain the actual vehicle driving acceleration. The possible range of the differential calculation time interval is 50ms-500ms, and the specific time interval should be determined according to the real-time vehicle speed accuracy collected by the shift control unit (TCU). In this embodiment, the differential calculation time interval is taken as 100ms.

7.换档控制单元(TCU)通过TCU任务调度程序在10ms周期任务中调用车辆实际行驶加速度滤波模块对车辆实际行驶加速度进行低通滤波处理,低通滤波处理算法如下所示:7. The shift control unit (TCU) calls the vehicle actual driving acceleration filter module in the 10ms period task through the TCU task scheduler to perform low-pass filtering processing on the actual driving acceleration of the vehicle. The low-pass filtering processing algorithm is as follows:

Yn=aXn+(1-a)Yn-1 Y n =aX n +(1-a)Y n-1

其中:Xn.本次采样值,Yn-1.上次滤波输出值,a.滤波系数,Yn.本次滤波输出值。Among them: X n . this sampling value, Y n-1 . the last filtering output value, a. filtering coefficient, Y n . the current filtering output value.

8.换档控制单元(TCU)通过TCU任务调度程序在100ms周期任务中调用坡道及车辆载荷计算模块,利用当前车辆平路行驶加速度、当前车辆实际行驶加速度及上一时刻车辆平路行驶加速度、上一时刻车辆实际行驶加速度最终计算出道路坡度及车辆载荷精确值。所用纵向动力学推导式如下所示:8. The shift control unit (TCU) calls the ramp and vehicle load calculation module in the 100ms cycle task through the TCU task scheduler, and uses the current vehicle acceleration on a flat road, the actual acceleration of the current vehicle and the acceleration of the vehicle on a flat road at the previous moment , The actual driving acceleration of the vehicle at the last moment is finally calculated to calculate the exact value of the road slope and vehicle load. The longitudinal dynamics derivation used is as follows:

Figure BDA0000107979780000053
Figure BDA0000107979780000053

Figure BDA0000107979780000054
Figure BDA0000107979780000054

其中:i.道路坡度值,g.示重力加速度(m/s2),δ.汽车旋转质量换算系数,

Figure BDA0000107979780000055
滚动阻力系数,v.车辆当前车速(km/h),Δm.车辆载荷(kg),m.车辆空载时质量(kg),a1、a1.分别是当前车辆平路行驶加速度、当前车辆实际行驶加速度(m/s2)。a0、a0.分别是上一时刻车辆平路行驶加速度、上一时刻车辆实际行驶加速度(m/s2)。Among them: i. Road slope value, g. Indicates the acceleration of gravity (m/s 2 ), δ. The conversion factor of vehicle rotating mass,
Figure BDA0000107979780000055
Coefficient of rolling resistance, v. current speed of the vehicle (km/h), Δm. vehicle load (kg), m. mass of the vehicle when it is unloaded (kg), a1 level and a1 real . The actual driving acceleration of the vehicle (m/s 2 ). a0 level , a0 real . They are the acceleration of the vehicle on flat road at the last moment and the actual acceleration of the vehicle at the last moment (m/s 2 ).

9.换档控制单元(TCU)用当前车辆平路行驶加速度与当前车辆实际行驶加速度更新上一时刻车辆平路行驶加速度与上一时刻车辆实际行驶加速度。9. The shift control unit (TCU) uses the current vehicle acceleration on a flat road and the current actual acceleration of the vehicle to update the vehicle acceleration on a flat road at the previous moment and the actual acceleration of the vehicle at the previous moment.

参阅图3,图中是本发明所述的基于纵向动力学的坡道及车辆载荷识别方法中低通滤波处理步骤的流程框图。在本实施例中车辆实际行驶加速度滤波模块与发动机扭矩滤波模块均使用了该滤波算法。尽管采用相同滤波算法,但两滤波模块的滤波系数a不尽相同,滤波系数a的选取要依据实验标定。Referring to FIG. 3 , it is a flow chart of the low-pass filtering processing steps in the longitudinal dynamics-based slope and vehicle load identification method of the present invention. In this embodiment, both the vehicle actual driving acceleration filtering module and the engine torque filtering module use this filtering algorithm. Although the same filtering algorithm is used, the filter coefficient a of the two filter modules is different, and the selection of the filter coefficient a should be based on experimental calibration.

该算法包括以下步骤:The algorithm consists of the following steps:

1.相应滤波模块获取本次采样值Xn1. The corresponding filtering module acquires the current sampling value X n .

2.相应滤波模块计算滤波系数a与本次采样值Xn乘积。2. The corresponding filter module calculates the product of the filter coefficient a and the sampling value X n of this time.

3.相应滤波模块计算(1-a)与上次滤波输出值Yn-1乘积。3. The corresponding filtering module calculates the product of (1-a) and the last filtering output value Y n-1 .

4.相应滤波模块计算本次滤波输出值Yn4. The corresponding filter module calculates the current filter output value Y n .

5.相应滤波模块将上次滤波输出值Yn-1更新为本次滤波输出值Yn5. The corresponding filtering module updates the last filtering output value Y n-1 to the current filtering output value Y n .

仿真及试验分析Simulation and test analysis

参阅图4与图5,针对本发明所述基于纵向动力学的坡道及车辆载荷识别方法,利用MATLAB/SIMULINK建立了机械式自动变速车辆的整车动力学模型,并在该模型上进行了基于纵向动力学的坡道及车辆载荷识别算法验证。动力学模型模拟了一定工况下车辆行驶状况,并通过本发明所述方法识别道路坡度及车辆载荷。具体工况为:节气门开度值保持在50%,道路坡度值为8%,整车质量为1300kg,其中载荷为100kg,整车空载质量为1200kg。动力学仿真模型验证结果曲线如图4,车辆在6s到7s之间经历1~2升档过程,该时刻计算的车辆平路行驶加速度和车辆实际行驶加速度值产生了一定幅度波动,对道路坡度和车辆载荷识别产生影响,因此换档过程中不应再对道路坡度和车辆载荷进行识别。从图中可见,在1档、2档范围内,车辆平路行驶加速度和车辆实际行驶加速度值始终保持差别。本发明所述基于纵向动力学的坡道及车辆载荷识别方法精确识别出道路坡度值0.08以及车辆载荷值100kg。Referring to Fig. 4 and Fig. 5, for the slope and vehicle load identification method based on longitudinal dynamics described in the present invention, utilize MATLAB/SIMULINK to establish the whole vehicle dynamics model of mechanical automatic transmission vehicle, and carried out on this model Verification of slope and vehicle load identification algorithm based on longitudinal dynamics. The dynamics model simulates the driving condition of the vehicle under certain working conditions, and recognizes the road slope and the vehicle load through the method of the invention. The specific working conditions are: the throttle opening value is kept at 50%, the road gradient value is 8%, the vehicle mass is 1300kg, the load is 100kg, and the vehicle unladen mass is 1200kg. The verification result curve of the dynamic simulation model is shown in Figure 4. The vehicle experienced 1-2 upshifts between 6s and 7s. At this moment, the calculated acceleration of the vehicle on a flat road and the actual acceleration of the vehicle fluctuate to a certain extent, which affects the road gradient. and vehicle load identification, so the road gradient and vehicle load should no longer be identified during a gear change. It can be seen from the figure that in the range of 1st gear and 2nd gear, there is always a difference between the acceleration of the vehicle on a flat road and the actual acceleration of the vehicle. The slope and vehicle load identification method based on longitudinal dynamics in the present invention can accurately identify the road slope value of 0.08 and the vehicle load value of 100kg.

在动力学模型仿真验证本发明所述基于纵向动力学的坡道及车辆载荷识别方法的基础上,进行实车道路试验,进一步验证基于纵向动力学的坡道及车辆载荷识别方法的实时辨识效果,试验车辆装配5档AMT变速器,车辆空载质量为1125kg,试验中车内乘坐驾驶员一人,并于车内安放上位机监控设备,驾驶员和监控设备总质量为75kg,上位机监控软件使用VECTOR CANAPE6.5。试验道路为一长度为120m,包括上坡路段50m、平路路段20m、下坡路段50m的桥,其中坡道坡度角为5°左右(坡度值约为0.1)。道路试验结果曲线如图5,该识别曲线较精确地反应了试验道路坡度及试验车辆载荷情况。On the basis of the dynamic model simulation verification of the slope and vehicle load identification method based on longitudinal dynamics in the present invention, a real vehicle road test is carried out to further verify the real-time identification effect of the slope and vehicle load identification method based on longitudinal dynamics , the test vehicle is equipped with a 5-speed AMT transmission. The unloaded mass of the vehicle is 1125kg. In the test, there is a driver in the car, and the monitoring equipment of the host computer is installed in the vehicle. The total mass of the driver and the monitoring equipment is 75kg. The monitoring software of the host computer is used VECTOR CANAPE6.5. The test road is a bridge with a length of 120m, including an uphill section of 50m, a flat section of 20m, and a downhill section of 50m. The slope angle of the ramp is about 5° (the slope value is about 0.1). The road test result curve is shown in Figure 5. The identification curve more accurately reflects the test road slope and test vehicle load.

动力学模型仿真及实车道路试验结果验证了本发明所述基于纵向动力学的坡道及车辆载荷识别方法切实可行。The results of dynamic model simulation and real vehicle road test have verified that the method for identifying slopes and vehicle loads based on longitudinal dynamics in the present invention is feasible.

此外,本发明并不仅限于上述公开实施例,涵盖所附权利要求精神和范围内所包括的各种变型和等同方案。Furthermore, the present invention is not limited to the above-disclosed embodiments, but covers various modifications and equivalents included within the spirit and scope of the appended claims.

Claims (1)

1. one kind based on vertical dynamic (dynamical) ramp and car load identifying method, it is characterized in that, described following based on vertical dynamic (dynamical) ramp and car load identifying method step:
1) shift change controller obtains real-time Engine torque and real-time speed information through CAN Frame between CAN device driver module and the processing of CAN message processing module and control unit of engine and the ABS control unit;
2) shift change controller is done the validity judgement to the real-time Engine torque information of obtaining: if Engine torque information is invalid, give up invalid moment of torsion, be carved with the effect moment of torsion in the use for the moment, if Engine torque information effectively then changes next step over to;
Simultaneously, shift change controller is done validity to the real-time speed information that obtains and is judged: invalid like speed information, give up the invalid speed of a motor vehicle, and be carved with the effect speed of a motor vehicle in the use for the moment, if speed information effectively then changes next step over to;
3) shift change controller upgrades to go up with the efficient real time Engine torque and is carved with the effect moment of torsion for the moment, and simultaneously, shift change controller upgrades to go up with effective vehicle speed value and is carved with the effect speed of a motor vehicle for the moment;
4) shift change controller is done low-pass filtering treatment through the Engine torque filtration module to Engine torque, and its algorithm is following:
Y n=aX n+(1-a)Y n-1
Wherein: X n. this sampled value, Y N-1. last time filtering output value, a. filter factor, Y n. this filtering output value;
5) shift change controller utilizes filtering rear engine torque arithmetic vehicle flat pavement running acceleration through vehicle flat pavement running acceleration calculation module:
Figure FDA0000107979770000011
Wherein: T Tq. filtering rear engine moment of torsion (Nm), i g. transmission ratio, i 0. main reducing gear velocity ratio, η T. mechanical efficiency of power transmission, r. tire rolling radius (m), g. gravity accleration (m/s 2),
Figure FDA0000107979770000012
Coefficient of rolling resistance, C D. coefficient of air resistance, A. wind-exposuring area (m 2), the v. speed of a motor vehicle (km/h), δ. the automobile correction coefficient of rotating mass;
6) shift change controller is done differential calculation through vehicle actual travel acceleration calculation module to the real-time speed of a motor vehicle, obtains vehicle actual travel acceleration;
7) shift change controller carries out low-pass filtering treatment through vehicle actual travel acceleration filtration module to vehicle actual travel acceleration, and the low-pass filtering treatment algorithm is following:
Y n=aX n+(1-a)Y n-1
Wherein: X n. this sampled value, Y N-1. last time filtering output value, a. filter factor, Y n. this filtering output value;
8) shift change controller utilizes current vehicle flat pavement running acceleration, current vehicle actual travel acceleration, a last moment vehicle flat pavement running acceleration and a last moment vehicle actual travel acceleration calculation to go out road grade and car load value through ramp and car load computing module:
Figure FDA0000107979770000022
Wherein: i. road grade value, g. shows gravity accleration (m/s 2), δ. the automobile correction coefficient of rotating mass,
Figure FDA0000107979770000023
Coefficient of rolling resistance, v. vehicle current vehicle speed (km/h), Δ m. car load (kg), quality (kg) when the m. vehicle is unloaded, a1 Flat, a1 Real. be current vehicle flat pavement running acceleration, current vehicle actual travel acceleration (m/s 2), a0 Flat, a0 Real. be a last moment vehicle flat pavement running acceleration, last vehicle actual travel acceleration (m/s constantly 2);
9) shift change controller upgrades a last moment vehicle flat pavement running acceleration and last vehicle actual travel acceleration constantly with current vehicle flat pavement running acceleration and current vehicle actual travel acceleration.
CN201110357476.7A 2011-11-13 2011-11-13 Ramp based on longitudinal dynamics and vehicle load identification method Active CN102506160B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110357476.7A CN102506160B (en) 2011-11-13 2011-11-13 Ramp based on longitudinal dynamics and vehicle load identification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110357476.7A CN102506160B (en) 2011-11-13 2011-11-13 Ramp based on longitudinal dynamics and vehicle load identification method

Publications (2)

Publication Number Publication Date
CN102506160A true CN102506160A (en) 2012-06-20
CN102506160B CN102506160B (en) 2014-07-09

Family

ID=46218278

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110357476.7A Active CN102506160B (en) 2011-11-13 2011-11-13 Ramp based on longitudinal dynamics and vehicle load identification method

Country Status (1)

Country Link
CN (1) CN102506160B (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103527768A (en) * 2013-11-01 2014-01-22 北京理工大学 Gear determining method based on heavy AMT vehicle road load estimation
CN103661394A (en) * 2012-08-31 2014-03-26 福特全球技术公司 Road gradient estimation arbitration
CN103982643A (en) * 2014-05-27 2014-08-13 盛瑞传动股份有限公司 Automobile, ramp gear-shifting control method and system of automatic transmission of automobile
CN104074962A (en) * 2014-07-01 2014-10-01 苏州绿控传动科技有限公司 Staring auxiliary system and method of automatic gearbox ramp
CN104554275A (en) * 2013-10-25 2015-04-29 罗伯特·博世有限公司 Method and device for ascertaining a height profile of a road situated ahead of a vehicle
CN105046050A (en) * 2015-06-18 2015-11-11 陕西法士特齿轮有限责任公司 Automobile dynamics based dynamic slope calculating method
CN105299211A (en) * 2015-11-10 2016-02-03 中国北方车辆研究所 Control system and method for engineering-oriented mechanical automatic transmission
CN105651254A (en) * 2016-02-23 2016-06-08 吉林大学 Road slope computation method based on road alignment and spectrum features
CN105912818A (en) * 2016-05-06 2016-08-31 深圳市安智车米汽车信息化有限公司 Method and apparatus for eliminating accelerated speed influencing vehicle driving direction during driving-up/down
CN108189842A (en) * 2017-10-30 2018-06-22 中国北方车辆研究所 A kind of hill gradient recognition methods and device based on acceleration signal
CN108297702A (en) * 2017-01-13 2018-07-20 福特环球技术公司 Method and system for the torque management in hybrid vehicle
CN108362926A (en) * 2018-01-10 2018-08-03 云南电网有限责任公司电力科学研究院 A kind of voltage class recognition methods and device
CN109229106A (en) * 2018-08-10 2019-01-18 北汽福田汽车股份有限公司 The determination method and device of road gradient
CN109466562A (en) * 2018-10-15 2019-03-15 浙江吉利新能源商用车有限公司 Vehicle weight obtains automatically, the system and method for vehicle overloading automatic alarm
CN109488762A (en) * 2017-09-13 2019-03-19 湖南中车时代电动汽车股份有限公司 The automatic backset method and system of electric car
CN110014850A (en) * 2019-03-11 2019-07-16 北京长城华冠汽车科技股份有限公司 Filtering method, device and vehicle for driving motor in being travelled to vehicle deceleration
CN110103976A (en) * 2019-04-17 2019-08-09 国机智骏科技有限公司 Road gradient calculation method and device
CN111348048A (en) * 2020-04-01 2020-06-30 湖南行必达网联科技有限公司 Truck overload alarm method, device, equipment and storage medium
CN111577882A (en) * 2020-05-19 2020-08-25 北京理工大学 Power gear shifting control method for automatic transmission of off-road vehicle
WO2020192685A1 (en) * 2019-03-26 2020-10-01 武汉理工大学 Vehicle gear shifting signal identification method and apparatus
CN112046493A (en) * 2019-06-05 2020-12-08 陕西汽车集团有限责任公司 Load identification method of electric automobile
CN112356837A (en) * 2020-11-18 2021-02-12 潍柴动力股份有限公司 Vehicle load monitoring method, server and control system
CN113264056A (en) * 2021-05-25 2021-08-17 三一汽车制造有限公司 Vehicle weight estimation method, device, vehicle and readable storage medium
CN114091182A (en) * 2021-11-25 2022-02-25 中汽研汽车检验中心(天津)有限公司 Method for constructing running condition of heavy truck containing road gradient information
CN114658838A (en) * 2022-03-22 2022-06-24 陕西法士特齿轮有限责任公司 Automatic transmission gear control method and computer program product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10248432A1 (en) * 2002-10-17 2004-04-29 Robert Bosch Gmbh Road inclination determination method in which the instantaneous inclination is determined from the difference between measurements of motor vehicle acceleration relative to the road and absolute vehicle acceleration
WO2006033612A1 (en) * 2004-09-24 2006-03-30 Volvo Lastvagnar Ab Engine-driven vehicle with transmission
CN101509768A (en) * 2009-03-26 2009-08-19 清华大学 Vehicle-mounted road grade recognition device and method based on low cost acceleration sensor
CN100545595C (en) * 2005-09-27 2009-09-30 比亚迪股份有限公司 A kind of automotive quality estimation system and method
CN201583271U (en) * 2009-09-18 2010-09-15 上海通用汽车有限公司 Machine for continuously measuring slope rating of road

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10248432A1 (en) * 2002-10-17 2004-04-29 Robert Bosch Gmbh Road inclination determination method in which the instantaneous inclination is determined from the difference between measurements of motor vehicle acceleration relative to the road and absolute vehicle acceleration
WO2006033612A1 (en) * 2004-09-24 2006-03-30 Volvo Lastvagnar Ab Engine-driven vehicle with transmission
CN100545595C (en) * 2005-09-27 2009-09-30 比亚迪股份有限公司 A kind of automotive quality estimation system and method
CN101509768A (en) * 2009-03-26 2009-08-19 清华大学 Vehicle-mounted road grade recognition device and method based on low cost acceleration sensor
CN201583271U (en) * 2009-09-18 2010-09-15 上海通用汽车有限公司 Machine for continuously measuring slope rating of road

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
余志生: "《汽车理论》", 31 October 2000, 机械工业出版社 *
史俊武等: "自动变速车辆坡道行驶自适应换挡策略", 《农业机械学报》 *
张泰等: "基于车辆负荷度的换挡规律研究", 《农业机械学报》 *
金辉等: "基于加速度区间判断的坡道识别方法", 《中国公路学报》 *
金辉等: "基于纵向动力学的坡道识别方法研究", 《机械工程学报》 *
钱立军: "自动变速器控制的道路坡度计算方法研究", 《拖拉机与农用运输车》 *

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103661394A (en) * 2012-08-31 2014-03-26 福特全球技术公司 Road gradient estimation arbitration
CN103661394B (en) * 2012-08-31 2017-08-25 福特全球技术公司 Road gradient estimation arbitration
US10042815B2 (en) 2012-08-31 2018-08-07 Ford Global Technologies, Llc Road gradient estimation arbitration
CN104554275A (en) * 2013-10-25 2015-04-29 罗伯特·博世有限公司 Method and device for ascertaining a height profile of a road situated ahead of a vehicle
CN103527768A (en) * 2013-11-01 2014-01-22 北京理工大学 Gear determining method based on heavy AMT vehicle road load estimation
CN103527768B (en) * 2013-11-01 2015-12-30 北京理工大学 A kind of shift decided method estimated based on heavy AMT road vehicle load
CN103982643B (en) * 2014-05-27 2016-06-22 盛瑞传动股份有限公司 The ramp shift control method of a kind of automobile and automatic transmission thereof and system
CN103982643A (en) * 2014-05-27 2014-08-13 盛瑞传动股份有限公司 Automobile, ramp gear-shifting control method and system of automatic transmission of automobile
CN104074962B (en) * 2014-07-01 2016-03-16 苏州绿控传动科技有限公司 A kind of automatic transmission case uphill starting auxiliary system and method thereof
CN104074962A (en) * 2014-07-01 2014-10-01 苏州绿控传动科技有限公司 Staring auxiliary system and method of automatic gearbox ramp
CN105046050A (en) * 2015-06-18 2015-11-11 陕西法士特齿轮有限责任公司 Automobile dynamics based dynamic slope calculating method
CN105046050B (en) * 2015-06-18 2018-01-09 陕西法士特齿轮有限责任公司 A kind of dynamic gradient computational methods based on automobile dynamics
CN105299211A (en) * 2015-11-10 2016-02-03 中国北方车辆研究所 Control system and method for engineering-oriented mechanical automatic transmission
CN105651254A (en) * 2016-02-23 2016-06-08 吉林大学 Road slope computation method based on road alignment and spectrum features
CN105651254B (en) * 2016-02-23 2018-02-27 吉林大学 Algorithm of road slope estimation based on road alignment and spectrum signature
CN105912818A (en) * 2016-05-06 2016-08-31 深圳市安智车米汽车信息化有限公司 Method and apparatus for eliminating accelerated speed influencing vehicle driving direction during driving-up/down
CN108297702A (en) * 2017-01-13 2018-07-20 福特环球技术公司 Method and system for the torque management in hybrid vehicle
CN109488762A (en) * 2017-09-13 2019-03-19 湖南中车时代电动汽车股份有限公司 The automatic backset method and system of electric car
CN109488762B (en) * 2017-09-13 2021-06-08 湖南中车时代电动汽车股份有限公司 Automatic gear locking method and system for electric automobile
CN108189842A (en) * 2017-10-30 2018-06-22 中国北方车辆研究所 A kind of hill gradient recognition methods and device based on acceleration signal
CN108189842B (en) * 2017-10-30 2021-09-10 中国北方车辆研究所 Ramp slope identification method and device based on acceleration signal
CN108362926A (en) * 2018-01-10 2018-08-03 云南电网有限责任公司电力科学研究院 A kind of voltage class recognition methods and device
CN109229106A (en) * 2018-08-10 2019-01-18 北汽福田汽车股份有限公司 The determination method and device of road gradient
CN109466562A (en) * 2018-10-15 2019-03-15 浙江吉利新能源商用车有限公司 Vehicle weight obtains automatically, the system and method for vehicle overloading automatic alarm
CN109466562B (en) * 2018-10-15 2021-07-13 浙江吉利新能源商用车有限公司 System and method for automatically acquiring vehicle weight and automatically alarming vehicle overload
CN110014850A (en) * 2019-03-11 2019-07-16 北京长城华冠汽车科技股份有限公司 Filtering method, device and vehicle for driving motor in being travelled to vehicle deceleration
WO2020192685A1 (en) * 2019-03-26 2020-10-01 武汉理工大学 Vehicle gear shifting signal identification method and apparatus
CN110103976A (en) * 2019-04-17 2019-08-09 国机智骏科技有限公司 Road gradient calculation method and device
CN112046493A (en) * 2019-06-05 2020-12-08 陕西汽车集团有限责任公司 Load identification method of electric automobile
CN111348048A (en) * 2020-04-01 2020-06-30 湖南行必达网联科技有限公司 Truck overload alarm method, device, equipment and storage medium
CN111577882B (en) * 2020-05-19 2021-04-13 北京理工大学 Power gear shifting control method for automatic transmission of off-road vehicle
CN111577882A (en) * 2020-05-19 2020-08-25 北京理工大学 Power gear shifting control method for automatic transmission of off-road vehicle
CN112356837A (en) * 2020-11-18 2021-02-12 潍柴动力股份有限公司 Vehicle load monitoring method, server and control system
CN113264056A (en) * 2021-05-25 2021-08-17 三一汽车制造有限公司 Vehicle weight estimation method, device, vehicle and readable storage medium
CN114091182A (en) * 2021-11-25 2022-02-25 中汽研汽车检验中心(天津)有限公司 Method for constructing running condition of heavy truck containing road gradient information
CN114091182B (en) * 2021-11-25 2024-10-25 中汽研汽车检验中心(天津)有限公司 Construction method for running condition of heavy truck comprising road gradient information
CN114658838A (en) * 2022-03-22 2022-06-24 陕西法士特齿轮有限责任公司 Automatic transmission gear control method and computer program product
CN114658838B (en) * 2022-03-22 2023-12-08 陕西法士特齿轮有限责任公司 Automatic transmission gear control method and computer storage medium

Also Published As

Publication number Publication date
CN102506160B (en) 2014-07-09

Similar Documents

Publication Publication Date Title
CN102506160B (en) Ramp based on longitudinal dynamics and vehicle load identification method
CN102486400B (en) Vehicle mass identification method and device
CN108437998B (en) Slope recognition method for pure electric vehicles based on longitudinal dynamics
CN111806449A (en) Method for estimating total vehicle mass and road surface gradient of pure electric vehicle
CN104973069B (en) Online synchronous identification method for heavy truck air resistance composite coefficient and mass
CN100545595C (en) A kind of automotive quality estimation system and method
CN102700551B (en) Method for estimating gradient of road surface in real time in vehicle running process
CN105644565B (en) A kind of measurement method of hybrid vehicle load
CN103407451B (en) A kind of road longitudinal and additional forces method of estimation
CN103264669B (en) Heavy vehicle weight real-time identification method based on CAN information and function principle
CN103402847B (en) Method for determining the driving resistance of a vehicle
CN103245610B (en) Method for estimating pavement peak attachment coefficients of distributed driving electric vehicle
CN103946679B (en) Vehicle mass identification method and system
CN101367324B (en) A Road Surface Grade Prediction Method Based on Air Suspension Vehicle Height Sensor
CN106840097A (en) A kind of road grade method of estimation based on adaptive extended kalman filtering
CN112896178B (en) Method and system for calculating total mass of vehicle
CN106515739B (en) A kind of electric car ramp identification device and method
CN105109490B (en) Method for judging sharp turn of vehicle based on three-axis acceleration sensor
CN113859253B (en) A real-time estimation method of vehicle mass during driving
CN105849514B (en) Estimate the method for vehicle mass and with the vehicle for estimating the device of vehicle mass
CN107161154B (en) Economical speed acquisition method considering gear
CN113359457B (en) High-dimensional dynamic model resolving device and method for intelligent vehicle chassis area controller
CN103282760B (en) Gear shift shock evaluating apparatus and evaluation method thereof
CN108791276A (en) A kind of side force of tire linear/non-linear working condition quick judgment method
CN104976337A (en) Vehicle starting process optimal control method based on estimation of clutch transmission torque

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant