CN102500848A - Pzt同步激励压缩放电通道的微细电火花加工设备及其加工方法 - Google Patents

Pzt同步激励压缩放电通道的微细电火花加工设备及其加工方法 Download PDF

Info

Publication number
CN102500848A
CN102500848A CN2011103761195A CN201110376119A CN102500848A CN 102500848 A CN102500848 A CN 102500848A CN 2011103761195 A CN2011103761195 A CN 2011103761195A CN 201110376119 A CN201110376119 A CN 201110376119A CN 102500848 A CN102500848 A CN 102500848A
Authority
CN
China
Prior art keywords
pzt crystal
pzt
electrode
power supply
crystal actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011103761195A
Other languages
English (en)
Inventor
张勤河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University
Original Assignee
Shandong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University filed Critical Shandong University
Priority to CN2011103761195A priority Critical patent/CN102500848A/zh
Publication of CN102500848A publication Critical patent/CN102500848A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

本发明提供一种PZT同步激励压缩放电通道的微细电火花加工装置及其加工方法,该装置包括PZT晶体致动器、电极、PZT晶体致动器驱动电源、控制器和晶体管式脉冲电源,电极安装在PZT晶体致动器上,晶体管式脉冲电源、电极和工件串联构成主回路,PZT晶体致动器与PZT晶体致动器驱动电源连接,PZT晶体致动器驱动电源用于给PZT晶体致动器中的PZT晶体提供电能而使之伸缩,控制器为一个可编程控制的脉冲信号延迟装置,通过对输入脉冲信号的延迟调节控制PZT晶体致动器驱动电源与晶体管式脉冲电源信号的相位差,实现电火花同步加工。本发明提高了加工的稳定性,改善了加工的效率和质量。

Description

PZT同步激励压缩放电通道的微细电火花加工设备及其加工方法
技术领域
本发明涉及一种采用PZT同步激励压缩放电通道的微细电火花加工装置,属于微细电火花加工技术领域。
背景技术
产品的微型化是现代生产所追求的目标之一。而微细加工是实现产品零部件微型化的最基本技术,它已成为涉及机械、电子、化学、材料等多种学科的现代高技术。
实现精密、微细加工的一个重要条件是加工单位尽可能小。而在电火花加工过程中,其加工单位(即每次放电的蚀除量)只取决于单个放电脉冲的能量。随着现代电力电子技术的发展,电火花加工的加工精度与表面质量得到了极大的提高,加工单位也日趋变小。电火花加工已成为零件精微加工的有效手段之一。
微细电火花加工技术的发展体现在加工装置的微小型化上。脉冲电源作为电火花加工机床的主要组成部分,性能的优劣直接影响放电加工的速度、精度、稳定性、工件表面粗糙度以及电极耐加工性,同时也是产品升级换代的标志。目前国内外大多数微细电火花加工脉冲电源是RC电路脉冲电源,由于脉冲电源输出功率的大部分都消耗在限流电阻上。这样, 不仅造成了电能的极大浪费, 限流电阻由于散热需要而体积庞大、材料昂贵, 而且脉冲电源内部的散热问题一直是电源电柜结构设计的关键, 在脉冲电源内部必须附设冷却风扇和排风通道, 这又进一步导致电能消耗和电柜体积加大。
另外,加工过程中的排屑问题是微细加工技术的一个难点。由于加工尺度较小,工具电极细微,放电脉冲能量和放电间隙小,传统电火花加工中的冲液排屑方式已不适于微细电火花加工,致使电蚀产物不易从加工区排出,尤其是高深径比的微细孔或异型孔排屑更困难。排不出去的碎屑不仅会占据一部分空间而使极间实际距离减小,而且还会引起极间电场的畸变,发生短路和拉弧,难以保证加工过程的稳定性和加工工件精度。
发明内容
本发明针对现有微细电火花加工技术存在的不足,提供一种加工过程稳定、能够保证工件加工精度的PZT同步激励压缩放电通道的微细电火花加工装置,该装置将PZT (压电陶瓷,具有正压电效应和负压电效应)晶体致动器与晶体管式脉冲电源集合在一起,晶体管式脉冲电源利用PWM通过发脉冲控制主回路的电流通断,PZT晶体致动电源使致动器产生高频率振动,通过控制器调节两电源脉冲相位来实现同步加工。
本发明的PZT同步激励压缩放电通道的微细电火花加工装置采用下述技术方案:
该PZT同步激励压缩放电通道的微细电火花加工装置,包括PZT晶体致动器、电极、PZT晶体致动器驱动电源、控制器和晶体管式脉冲电源,电极安装在PZT晶体致动器上,晶体管式脉冲电源、电极和工件串联构成主回路,PZT晶体致动器与PZT晶体致动器驱动电源连接,PZT晶体致动器驱动电源用于给PZT晶体致动器中的PZT晶体提供电能而使之伸缩,控制器为一个可编程控制的脉冲信号延迟装置,通过对输入脉冲信号的延迟调节控制PZT晶体致动器驱动电源与晶体管式脉冲电源信号的相位差,实现电火花同步加工。
晶体管式脉冲电源为现有技术,该电源通过PWM产生脉冲信号控制场效应管MOSFET开断。而MOSFET与其他开关器件相比较,具有开关速度快、热稳定好及噪声低等特点,而且随着半导体工业的发展,高频功率器件MOSFET 已经得到了广泛的应用。因此在该脉冲电源中选用了各项指标均能满足加工要求的新型高频快速MOSFET作为开关器件。
    PZT晶体致动器为现有技术,主要由PZT晶体构成,在电压作用下,利用PZT晶体的逆压电效应,使致动器伸长,而且其伸长的距离与电压近似成正比。PZT晶体致动器驱动电源为致动器提供高频电压。
上述PZT同步激励压缩放电通道的微细电火花加工装置进行电火花加工的方法,包括以下步骤:
(1)将工件固定在电火花加工机床的工作台上,注入工作液,使工件浸在工作液中,将PZT晶体致动器安装在电火花加工机床的直线运动轴上,直线运动轴带动PZT晶体致动器及其上的电极进给,使电极与工件之间具有合适的放电间隙;
(2)打开晶体管式脉冲电源,电火花加工机床上的脉冲信号发生及放大装置上电后发出矩形波脉冲,一路脉冲信号经过隔离、放大后通过晶体管式脉冲电源中的场效应管MOSFET来控制放电回路的导通与关断;另一路脉冲信号经过控制器的相位调节后到达PZT晶体致动器驱动电源并使之上电,PZT晶体驱动电源把高频率的脉冲电压输出给PZT晶体,PZT晶体材料迅速伸长,同时晶体管式脉冲电源中的MOSFET导通,电极和工件构成闭合回路,电极间开始瞬时放电,放电通道形成,MOSFET关断,脉冲结束,PZT晶体致动器中的PZT晶体缩回初始位置,完成一次脉冲放电;整个过程中通过控制器的脉冲信号相位调节作用达到脉冲放电和高频振动的同步,然后晶体管式脉冲电源再次发出脉冲信号,PZT晶体驱动器带动电极重新进给,进行下一次脉冲放电,如此周而复始;
(3)当电极与工件的间隙大于放电间隙时,即无火花放电现象,将直线运动轴向下进给1μm,如此往复,直到电极穿透工件为止。
PZT晶体激励工具电极同步高频振动可有效提高微细电火花加工放电通道内的压力。当PZT材料加上高频的脉冲电压后便带动工具电极做纵向同频率振动。当工具电极向下运动时放电同时进行,此时电极向下的运动辅助压缩放电通道,使放电通道内的压力成倍增高,使通道高速向外扩张,并形成强烈的冲击波向外传播。另一方面,由于放电电流所产生的电磁约束力作用,通道的扩展受到很大限制,通道截面直径很小,电流密度甚高。受正负带电粒子流轰击的阴极和阳极表面承受着很高的冲击压力,使放电点附近的局部金属加热成过热金属(即超过正常压力下沸点的液态金属)。由于放电通道内部压力很高,而放电电流所产生的电磁约束力还不足以与其平衡,因而它将向外扩展,通道直径随之扩大。随着通道的扩展,内部带电粒子的密度降低,带电粒子高速运动的阻力将随之减小,电流上升,极间电压相应下降。与此同时,电极表面所承受的压力也会随放电通道扩展而降低,致使高压下的过热金属在失压情况下发生爆炸性沸腾,将大量金属抛离电极表面。同时压电陶瓷伸长过程中形成对放电间隙的扰动,有助于避免电蚀产物的沉积,使其分散并从加工放电间隙中排出。
本发明应用晶体管式脉冲电源使整个装置的体积大大减小,另外还应用了PZT同步激励振动来辅助压缩放电通道使电蚀产物更易排除,提高加工的稳定性,改善了加工的效率和质量。控制器通过调节控制晶体管式脉冲电源和PZT晶体致动器驱动电源脉冲信号的相位差来实现同步复合加工。
附图说明
图1是本发明的结构原理图。
图中:1、PZT晶体致动器,2、电极,3、电火花加工机床,4、PZT晶体致动器驱动电源,5、控制器,6、晶体管式脉冲电源,7、脉冲信号发生及放大装置。
具体实施方式
如图1所示,本发明的PZT同步激励压缩放电通道的微细电火花加工装置包括PZT晶体致动器1、电极2、PZT晶体致动器驱动电源4、控制器5和晶体管式脉冲电源6。电极2安装在PZT晶体致动器1上,PZT晶体致动器1安装在电火花加工机床3的直线运动轴上。晶体管式脉冲电源6、电极2和工件串联构成主回路。PZT晶体致动器1与PZT晶体致动器驱动电源4连接,PZT晶体致动器驱动电源4用于给PZT晶体致动器中的PZT晶体提供电能而使之伸缩。控制器5为一个可编程控制的脉冲信号延迟装置,通过对输入脉冲信号的延迟调节控制PZT晶体致动器驱动电源4与晶体管式脉冲电源6的信号的相位差。电火花加工机床3上的脉冲信号发生及放大装置7发出的脉冲信号分成两路,一路信号通过直接控制主电路中晶体管式脉冲电源6上的MOSFET管来控制主电路电源的通断,另一路信号通过控制器5延迟脉冲信号从而与第一路信号形成相位差,此路信号通过控制PZT晶体致动器驱动电源4给PZT晶体致动器1中的PZT晶体提供电能而使之伸缩,从而达到控制工具电极的目的。通过调节控制器5实现电火花同步加工。
上述PZT同步激励压缩放电通道微细电火花加工装置对工件进行电火花加工的过程包括以下步骤:
A.首先将工件固定在电火花加工机床3的工作台上,滴上工作液,调整电火花加工机床3的直线运动轴,直线运动轴带动PZT晶体致动器1和电极2进给,直到电极2与工件的间距为2~3μm;
B.然后打开晶体管式脉冲电源6,脉冲信号发生及放大装置7上电后发出矩形波脉冲,一路脉冲信号经过隔离、放大后通过晶体管式脉冲电源6中的场效应管MOSFET来控制放电回路的导通与关断;另一路脉冲信号经过控制器5的相位调节后到达PZT晶体致动器驱动电源4并使之上电,PZT晶体致动器驱动电源4把高频率的脉冲电压输出给PZT晶体,PZT晶体材料迅速伸长,同时晶体管式脉冲电源6中的MOSFET导通,电极2和工件构成闭合回路,电极2和工件间开始瞬时放电,放电通道形成,MOSFET关断,脉冲结束,PZT晶体致动器1中的PZT晶体缩回初始位置,完成一次脉冲放电;整个过程中通过控制器5的脉冲信号相位调节作用达到脉冲和高频振动的同步,然后晶体管式脉冲电源再次发出脉冲信号,PZT晶体驱动器带动电极重新进给,进行下一次脉冲放电,如此周而复始;
C.最后,当电极2与工件的间隙大于放电间隙时,即无火花放电现象,将直线运动轴向下进给1μm,如此往复,直到工具电极穿透工件为止。

Claims (2)

1.一种PZT同步激励压缩放电通道的微细电火花加工装置,包括PZT晶体致动器、电极、PZT晶体致动器驱动电源、控制器和晶体管式脉冲电源,其特征是:电极安装在PZT晶体致动器上,晶体管式脉冲电源、电极和工件串联构成主回路,PZT晶体致动器与PZT晶体致动器驱动电源连接,PZT晶体致动器驱动电源用于给PZT晶体致动器中的PZT晶体提供电能而使之伸缩,控制器为一个可编程控制的脉冲信号延迟装置,通过对输入脉冲信号的延迟调节控制PZT晶体致动器驱动电源与晶体管式脉冲电源信号的相位差,实现电火花同步加工。
2.一种权利要求1所述PZT同步激励压缩放电通道的微细电火花加工装置进行电火花加工的方法,其特征在于:包括以下步骤:
(1)将工件固定在电火花加工机床的工作台上,注入工作液,使工件浸在工作液中,将PZT晶体致动器安装在电火花加工机床的直线运动轴上,直线运动轴带动PZT晶体致动器及其上的电极进给,使电极与工件之间具有合适的放电间隙;
(2)打开晶体管式脉冲电源,电火花加工机床上的脉冲信号发生及放大装置上电后发出矩形波脉冲,一路脉冲信号经过隔离、放大后通过晶体管式脉冲电源中的场效应管MOSFET来控制放电回路的导通与关断;另一路脉冲信号经过控制器的相位调节后到达PZT晶体致动器驱动电源并使之上电,PZT晶体驱动电源把高频率的脉冲电压输出给PZT晶体,PZT晶体材料迅速伸长,同时晶体管式脉冲电源中的MOSFET导通,电极和工件构成闭合回路,电极间开始瞬时放电,放电通道形成,MOSFET关断,脉冲结束,PZT晶体致动器中的PZT晶体缩回初始位置,完成一次脉冲放电;整个过程中通过控制器的脉冲信号相位调节作用达到脉冲和高频振动的同步,然后晶体管式脉冲电源再次发出脉冲信号,PZT晶体驱动器带动电极重新进给,进行下一次脉冲放电,如此周而复始;
(3)当电极与工件的间隙大于放电间隙时,即无火花放电现象,将直线运动轴向下进给1μm,如此往复,直到电极穿透工件为止。
CN2011103761195A 2011-11-23 2011-11-23 Pzt同步激励压缩放电通道的微细电火花加工设备及其加工方法 Pending CN102500848A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011103761195A CN102500848A (zh) 2011-11-23 2011-11-23 Pzt同步激励压缩放电通道的微细电火花加工设备及其加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011103761195A CN102500848A (zh) 2011-11-23 2011-11-23 Pzt同步激励压缩放电通道的微细电火花加工设备及其加工方法

Publications (1)

Publication Number Publication Date
CN102500848A true CN102500848A (zh) 2012-06-20

Family

ID=46213013

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011103761195A Pending CN102500848A (zh) 2011-11-23 2011-11-23 Pzt同步激励压缩放电通道的微细电火花加工设备及其加工方法

Country Status (1)

Country Link
CN (1) CN102500848A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107159981A (zh) * 2017-07-17 2017-09-15 山东大学 用于多微细孔电火花脉冲放电同步旋转加工的夹具装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430918A (ja) * 1990-05-25 1992-02-03 Brother Ind Ltd ワイヤ電極供給装置
CN2353476Y (zh) * 1998-11-26 1999-12-15 山东工业大学 新型同步脉冲电源
CN2915345Y (zh) * 2006-01-20 2007-06-27 南京航空航天大学 超声电解复合微细加工装置
CN101085483A (zh) * 2007-06-22 2007-12-12 哈尔滨工业大学 微阵列轴孔的组合加工方法
CN101138799A (zh) * 2006-09-08 2008-03-12 烟台大学 新型微纳电火花与隧道电流复合加工装置
CN201235433Y (zh) * 2008-07-29 2009-05-13 扬州大学 复合同步超声频振动微细电解加工装置
CN101700589A (zh) * 2009-11-04 2010-05-05 山东大学 压电自激脉冲式微细电火花加工装置及其加工方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430918A (ja) * 1990-05-25 1992-02-03 Brother Ind Ltd ワイヤ電極供給装置
CN2353476Y (zh) * 1998-11-26 1999-12-15 山东工业大学 新型同步脉冲电源
CN2915345Y (zh) * 2006-01-20 2007-06-27 南京航空航天大学 超声电解复合微细加工装置
CN101138799A (zh) * 2006-09-08 2008-03-12 烟台大学 新型微纳电火花与隧道电流复合加工装置
CN101085483A (zh) * 2007-06-22 2007-12-12 哈尔滨工业大学 微阵列轴孔的组合加工方法
CN201235433Y (zh) * 2008-07-29 2009-05-13 扬州大学 复合同步超声频振动微细电解加工装置
CN101700589A (zh) * 2009-11-04 2010-05-05 山东大学 压电自激脉冲式微细电火花加工装置及其加工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陶建松: "《微结构超声复合电加工技术》", 《中国优秀硕士学位论文全文数据库》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107159981A (zh) * 2017-07-17 2017-09-15 山东大学 用于多微细孔电火花脉冲放电同步旋转加工的夹具装置
CN107159981B (zh) * 2017-07-17 2023-07-25 山东大学 用于多微细孔电火花脉冲放电同步旋转加工的夹具装置

Similar Documents

Publication Publication Date Title
CN108857598B (zh) 基于电磁超声振动复合能场的内孔加工系统及方法
CN111390311B (zh) 铣刀、超声波电火花铣削设备及铣削方法
CN105382357A (zh) 一种超声频振动复合微细放电及电解加工装置
CN202388079U (zh) 一种难加工材料的微精加工系统
CN107855672B (zh) 一种耦合高能量脉冲电流降低激光焊接残余应力的方法及系统
CN104588799A (zh) 具有辅助电极脉间输出的微细电解加工电源及其加工方法
CN202271058U (zh) 高频编码振荡板
CN110076407B (zh) 一种超声调制变电压高效电解复合加工方法
Fan et al. Study on volt-ampere characteristics of spark discharge for transistor resistor pulse power of EDM
CN103920948A (zh) 可控气膜微细电化学放电线切割加工装置及方法
CN113774301B (zh) 电磁耦合处理提升钛合金电子束焊接件焊缝疲劳寿命方法
CN102500848A (zh) Pzt同步激励压缩放电通道的微细电火花加工设备及其加工方法
CN104842029A (zh) 一种用于超声电火花加工的工件附加超声振动装置
CN103692035B (zh) 一种对丝状金属材料进行放电加工的装置
CN104014878A (zh) 一种可实现多点放电高速电火花加工的新型放电加工回路及加工方法
CN103658895A (zh) 一种对形状复杂的内表面进行放电加工的装置
CN101700589B (zh) 压电自激脉冲式微细电火花加工装置及其加工方法
CN104014889A (zh) 精密电极进给装置及其工作方法
CN109158719B (zh) 一种静电致动辅助进给的微细电解加工装置
CN101829819B (zh) 激光电解射流复合加工分时控制系统及控制方法
CN105603372B (zh) 电磁驱动式石墨电弧溅射镶嵌探头
CN1948547A (zh) 一种用于超高功率脉冲非平衡磁控溅射的电源方法
CN203817551U (zh) 一种微细槽加工装置
CN203371140U (zh) 一种智能控制高频脉冲电源
CN206898515U (zh) 一种电火花三维隧道孔加工装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120620