CN102495827B - Euler angle Hermite approximate output method based on angular speed - Google Patents

Euler angle Hermite approximate output method based on angular speed Download PDF

Info

Publication number
CN102495827B
CN102495827B CN201110387972.7A CN201110387972A CN102495827B CN 102495827 B CN102495827 B CN 102495827B CN 201110387972 A CN201110387972 A CN 201110387972A CN 102495827 B CN102495827 B CN 102495827B
Authority
CN
China
Prior art keywords
angle
integral
centerdot
formula
euler angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110387972.7A
Other languages
Chinese (zh)
Other versions
CN102495827A (en
Inventor
史忠科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201110387972.7A priority Critical patent/CN102495827B/en
Publication of CN102495827A publication Critical patent/CN102495827A/en
Application granted granted Critical
Publication of CN102495827B publication Critical patent/CN102495827B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Error Detection And Correction (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

The invention discloses an Euler angle Hermite approximate output method based on angular speed, which is used for solving the technical problem of low Euler angle output precision of maneuver of the conventional aircraft. According to the technical scheme, the method comprises the following steps of: introducing multiple parameters and expanding the angular speeds of rolling, pitching and yawing according to the Hermite orthogonal polynomial; and sequentially solving a pitching angle, a rolling angle and a yawing angle and directly performing high-order approximation integral on the expression of an Euler angle so that the Euler angle is solved in a super-linear approximation way, the precision of time update iterative computation for determining the Euler angle is ensured and the accuracy of the output flight attitude of inertia equipment is improved.

Description

Eulerian angle Emmett approximation output method based on angular velocity
Technical field
The present invention relates to a kind of aircraft maneuvering flight and determine method, particularly relate to a kind of Eulerian angle Emmett approximation output method based on angular velocity.
Background technology
Inertial equipment has vital role in movable body navigation with in controlling; The acceleration of rigid motion, angular velocity and attitude etc. all depend on inertial equipment output conventionally, and the output accuracy that therefore improves inertial equipment has clear and definite practical significance; In inertial equipment, acceleration adopts accelerometer, angular velocity to adopt the direct metering system of angular rate gyroscope, the attitude accuracy of rigid body requires when very high to adopt attitude gyro to measure as flight test etc., but has the measurements such as angular velocity directly to resolve output in a lot of applications; Main cause is because dynamically attitude sensor is expensive, volume is large, cause a lot of aircraft to adopt angular rate gyroscopes etc. to resolve three Eulerian angle, make the attitude time upgrade output and become the core contents such as navigation, also become and affect one of principal element of inertial navigation system precision, therefore design and adopt the rational attitude time to upgrade the hot subject that output intent just becomes research; From the document of publishing, attitude output is mainly adopted the direct method of approximation of Eulerian equation based on angular velocity or adopts approximate Runge Kutta method to resolve (Sun Li, Qin Yongyuan, attitude algorithms of SINS comparison, China's inertial technology journal, 2006, Vol.14 (3): 6-10; Pu Li, Wang TianMiao, Liang JianHong, Wang Song, An Attitude Estimate Approach using MEMS Sensors for Small UAVs, 2006, IEEE International Conference on Industrial Informatics, 1113-1117); Because three Eulerian angle in Eulerian equation are coupled mutually, belong to nonlinear differential equation, different with the error range under different flight state in different starting condition, be difficult to guarantee Practical Project permissible accuracy.
Summary of the invention
The poor problem of Eulerian angle output accuracy, the invention provides a kind of Eulerian angle Emmett approximation output method based on angular velocity when overcoming existing aircraft maneuvering flight.The method by introduce a plurality of parameters and by rolling, pitching, yaw rate according to Emmett orthogonal polynomial expansion, by according to solving successively the angle of pitch, roll angle, crab angle, directly the expression formula of Eulerian angle is carried out to high-order approaches integration, solving according to ultralinear of Eulerian angle approached, thereby can guarantee to determine the time renewal iterative computation precision of Eulerian angle and the output accuracy of inertance element.
The technical solution adopted for the present invention to solve the technical problems is: a kind of Eulerian angle Emmett approximation output method based on angular velocity, is characterized in comprising the following steps:
1, (a) is according to Eulerian equation:
In formula: ψ refers to respectively rolling, pitching, crab angle; P, q, r is respectively rolling, pitching, yaw rate; Parameter-definition is identical in full; The calculating of these three Eulerian angle is carried out according to the step that solves successively the angle of pitch, roll angle, crab angle; Rolling, pitching, yaw rate p, q, the expansion of r is respectively
p(t)=[p 0?p 1?L?p n-1?p n][ξ 0(t)ξ 1(t)L?ξ n-1(t)ξ n(t)] T
q(t)=[q 0?q 1?L?q n-1?q n][ξ 0(t)ξ 1(t)L?ξ n-1(t)ξ n(t)] T
r(t)=[r 0?r 1?L?r n-1?r n][ξ 0(t)ξ 1(t)L?ξ n-1(t)ξ n(t)] T
Wherein
ξ 0 ( t ) = 1 ξ 1 ( t ) = 2 t ξ 2 ( t ) = 4 t 2 - 2 ξ 3 ( t ) = 8 t 3 - 12 t ξ 4 ( t ) = 16 t 4 - 48 t 2 + 12 ξ 5 ( t ) = 32 t 5 - 160 t 3 + 120 t ξ 6 ( t ) = 64 t 6 - 480 t 4 + 720 t - 120 M ξ i + 1 ( t ) = 2 tξ i ( t ) - 2 i ξ i - 1 ( t ) i=2,3,L,n-1
Recursive form for Emmett orthogonal polynomial;
(b) time of the angle of pitch upgrades and to solve formula and be:
In formula:
a 1 = 1 + p 0 p 1 L p n - 1 p n ∫ kT ( k + 1 ) T [ ξ ( t ) ξ T ( t ) ] dt H T p 0 p 1 L p n - 1 p n T
+ q 0 q 1 L q n - 1 q n ∫ kT ( k + 1 ) T [ ξ ( t ) ξ T ( t ) ] dt H T q 0 q 1 L q n - 1 q n T
+ r 0 r 1 L r n - 1 r n ∫ kT ( k + 1 ) T [ ξ ( t ) ξ T ( t ) ] dt H T r 0 r 1 L r n - 1 r n T
- p 0 p 1 L p n - 1 p n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T .
ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T p 0 p 1 L p n - 1 p n T
- q 0 q 1 L q n - 1 q n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T .
ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T q 0 q 1 L q n - 1 q n T
- r 0 r 1 L r n - 1 r n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T .
ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T r 0 r 1 L r n - 1 r n T
+ 0.25 { p 0 p 1 L p n - 1 p n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
+ 0.25 { q 0 q 1 L q n - 1 q n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
- 0.25 { r 0 r 1 L r n - 1 r n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
a 2 = q 0 q 1 L q n - 1 q n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
- 0.5 r 0 r 1 L r n - 1 r n ∫ kT ( k + 1 ) T [ ξ ( t ) ξ T ( t ) ] dt H T p 0 p 1 L p n - 1 p n T
+ 0.5 r 0 r 1 L r n - 1 r n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
· ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T p 0 p 1 L p n - 1 p n T
a 3 = r 0 r 1 L r n - 1 r n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T
+ 0.5 q 0 q 1 L q n - 1 q n ∫ kT ( k + 1 ) T [ ξ ( t ) ξ T ( t ) ] dt H T p 0 p 1 L p n - 1 p n T
- 0.5 q 0 q 1 L q n - 1 q n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
· ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T p 0 p 1 L p n - 1 p n T
T is the sampling period,
H = { h ij } ( n + 1 ) ( n + 2 ) = 0 0.5 0 0 L 0 0 0.5 0 0.25 0 L 0 0 0 0 0 1 6 L 0 0 - 1.5 0 0 0 L 0 0 M M M M O M M h n 1 0 0 0 L h n ( n + 1 ) 0 h ( n + 1 ) 1 0 0 0 L 0 h ( n + 1 ) ( n + 2 )
h 12=0.5,h 23=0.25, h i ( i + 1 ) = h ( i - 1 ) i 1 + 2 h ( i - 1 ) i , L
h 21=0.5,h 41=-1.5, h ( 2 i ) 1 = 4 ih ( 2 i - 2 ) 1 1 + 2 h ( 2 i ) ( 2 i + 1 ) , L
All the other h ij=0;
2, (a) in the situation that of the known angle of pitch, the time of roll angle upgrades and to solve formula and be:
Wherein
a 4 = 1 + p 0 p 1 L p n - 1 p n ∫ kT ( k + 1 ) T [ ξ ( t ) ξ T ( t ) ] dt H T p 0 p 1 L p n - 1 p n T
+ q 0 q 1 L q n - 1 q n ∫ kT ( k + 1 ) T [ ξ ( t ) ξ T ( t ) ] dt H T q 0 q 1 L q n - 1 q n T
+ r 0 r 1 L r n - 1 r n ∫ kT ( k + 1 ) T [ ξ ( t ) ξ T ( t ) ] dt H T r 0 r 1 L r n - 1 r n T
- p 0 p 1 L p n - 1 p n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T .
ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T p 0 p 1 L p n - 1 p n T
- q 0 q 1 L q n - 1 q n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T .
ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T q 0 q 1 L q n - 1 q n T
- r 0 r 1 L r n - 1 r n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T .
ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T r 0 r 1 L r n - 1 r n T
+ 0.25 { p 0 p 1 L p n - 1 p n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
- 0.25 { r 0 r 1 L r n - 1 r n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
- 0.25 { q 0 q 1 L q n - 1 q n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
a 5 = p 0 p 1 L p n - 1 p n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
+ 0.5 r 0 r 1 L r n - 1 r n ∫ kT ( k + 1 ) T [ ξ ( t ) ξ T ( t ) ] dt H T q 0 q 1 L q n - 1 q n T
- 0.5 r 0 r 1 L r n - 1 r n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
· ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T q 0 q 1 L q n - 1 q n T
a 6 = r 0 r 1 L r n - 1 r n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
- 0.5 p 0 p 1 L p n - 1 p n ∫ kT ( k + 1 ) T [ ξ ( t ) ξ T ( t ) ] dt H T q 0 q 1 L q n - 1 q n T
+ 0.5 p 0 p 1 L p n - 1 p n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
· ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T q 0 q 1 L q n - 1 q n T
(b), under the angle of pitch, roll angle known case, the formula that solves of crab angle is:
ψ ( t ) = ψ ( kT ) + ∫ kT t [ b 1 ( t ) + b 2 ( t ) ] dt
In formula:
The invention has the beneficial effects as follows: due to introduce a plurality of parameters and by rolling, pitching, yaw rate according to Emmett orthogonal polynomial expansion, by according to solving successively the angle of pitch, roll angle, crab angle, directly the expression formula of Eulerian angle is carried out to high-order approaches integration, solving according to ultralinear of Eulerian angle approached, thereby guaranteed the time renewal iterative computation precision of definite Eulerian angle and the output accuracy of inertance element.
Below in conjunction with embodiment, the present invention is elaborated.
Embodiment
1, (a) is according to rigid body attitude equation (Eulerian equation):
In formula: ψ refers to respectively rolling, pitching, crab angle; P, q, r is respectively rolling, pitching, yaw rate; Parameter-definition is identical in full; The calculating of these three Eulerian angle is carried out according to the step that solves successively the angle of pitch, roll angle, crab angle; Rolling, pitching, yaw rate p, q, the expansion of r is respectively
p(t)=[p 0?p 1?L?p n-1?p n][ξ 0(t)ξ 1(t)?L?ξ n-1(t)ξ n(t)] T
q(t)=[q 0?q 1?L?q n-1?q n][ξ 0(t)ξ 1(t)?L?ξ n-1(t)ξ n(t)] T
r(t)=[r 0?r 1?L?r n-1?r n][ξ 0(t)ξ 1(t)L?ξ n-1(t)ξ n(t)] T
Wherein
ξ 0 ( t ) = 1 ξ 1 ( t ) = 2 t ξ 2 ( t ) = 4 t 2 - 2 ξ 3 ( t ) = 8 t 3 - 12 t ξ 4 ( t ) = 16 t 4 - 48 t 2 + 12 ξ 5 ( t ) = 32 t 5 - 160 t 3 + 120 t ξ 6 ( t ) = 64 t 6 - 480 t 4 + 720 t - 120 M ξ i + 1 ( t ) = 2 tξ i ( t ) - 2 i ξ i - 1 ( t ) i=2,3,L,n-1
For the recursive form of Emmett orthogonal polynomial, T is the sampling period;
(b) time of the angle of pitch upgrades and to solve formula and be:
In formula:
a 1 = 1 + p 0 p 1 L p n - 1 p n ∫ kT ( k + 1 ) T [ ξ ( t ) ξ T ( t ) ] dt H T p 0 p 1 L p n - 1 p n T
+ q 0 q 1 L q n - 1 q n ∫ kT ( k + 1 ) T [ ξ ( t ) ξ T ( t ) ] dt H T q 0 q 1 L q n - 1 q n T
+ r 0 r 1 L r n - 1 r n ∫ kT ( k + 1 ) T [ ξ ( t ) ξ T ( t ) ] dt H T r 0 r 1 L r n - 1 r n T
- p 0 p 1 L p n - 1 p n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T .
ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T p 0 p 1 L p n - 1 p n T
- q 0 q 1 L q n - 1 q n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T .
ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T q 0 q 1 L q n - 1 q n T
- r 0 r 1 L r n - 1 r n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T .
ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T r 0 r 1 L r n - 1 r n T
+ 0.25 { p 0 p 1 L p n - 1 p n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
+ 0.25 { q 0 q 1 L q n - 1 q n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
- 0.25 { r 0 r 1 L r n - 1 r n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
a 2 = q 0 q 1 L q n - 1 q n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
- 0.5 r 0 r 1 L r n - 1 r n ∫ kT ( k + 1 ) T [ ξ ( t ) ξ T ( t ) ] dt H T p 0 p 1 L p n - 1 p n T
+ 0.5 r 0 r 1 L r n - 1 r n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
· ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T p 0 p 1 L p n - 1 p n T
a 3 = r 0 r 1 L r n - 1 r n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T
+ 0.5 q 0 q 1 L q n - 1 q n ∫ kT ( k + 1 ) T [ ξ ( t ) ξ T ( t ) ] dt H T p 0 p 1 L p n - 1 p n T
- 0.5 q 0 q 1 L q n - 1 q n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
· ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T p 0 p 1 L p n - 1 p n T
H = { h ij } ( n + 1 ) ( n + 2 ) = 0 0.5 0 0 L 0 0 0.5 0 0.25 0 L 0 0 0 0 0 1 6 L 0 0 - 1.5 0 0 0 L 0 0 M M M M O M M h n 1 0 0 0 L h n ( n + 1 ) 0 h ( n + 1 ) 1 0 0 0 L 0 h ( n + 1 ) ( n + 2 )
h 12=0.5,h 23=0.25, h i ( i + 1 ) = h ( i - 1 ) i 1 + 2 h ( i - 1 ) i , L
h 21=0.5,h 41=-1.5, h ( 2 i ) 1 = 4 ih ( 2 i - 2 ) 1 1 + 2 h ( 2 i ) ( 2 i + 1 ) , L
All the other h ij=0;
2, (a) in the situation that of the known angle of pitch, the time of roll angle upgrades and to solve formula and be:
Wherein
a 4 = 1 + p 0 p 1 L p n - 1 p n ∫ kT ( k + 1 ) T [ ξ ( t ) ξ T ( t ) ] dt H T p 0 p 1 L p n - 1 p n T
+ q 0 q 1 L q n - 1 q n ∫ kT ( k + 1 ) T [ ξ ( t ) ξ T ( t ) ] dt H T q 0 q 1 L q n - 1 q n T
+ r 0 r 1 L r n - 1 r n ∫ kT ( k + 1 ) T [ ξ ( t ) ξ T ( t ) ] dt H T r 0 r 1 L r n - 1 r n T
- p 0 p 1 L p n - 1 p n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T .
ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T p 0 p 1 L p n - 1 p n T
- q 0 q 1 L q n - 1 q n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T .
ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T q 0 q 1 L q n - 1 q n T
- r 0 r 1 L r n - 1 r n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T .
ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T r 0 r 1 L r n - 1 r n T
+ 0.25 { p 0 p 1 L p n - 1 p n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
- 0.25 { r 0 r 1 L r n - 1 r n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
- 0.25 { q 0 q 1 L q n - 1 q n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
a 5 = p 0 p 1 L p n - 1 p n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
+ 0.5 r 0 r 1 L r n - 1 r n ∫ kT ( k + 1 ) T [ ξ ( t ) ξ T ( t ) ] dt H T q 0 q 1 L q n - 1 q n T
- 0.5 r 0 r 1 L r n - 1 r n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
· ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T q 0 q 1 L q n - 1 q n T
a 6 = r 0 r 1 L r n - 1 r n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
- 0.5 p 0 p 1 L p n - 1 p n ∫ kT ( k + 1 ) T [ ξ ( t ) ξ T ( t ) ] dt H T q 0 q 1 L q n - 1 q n T
+ 0.5 p 0 p 1 L p n - 1 p n H ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
· ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T q 0 q 1 L q n - 1 q n T
(b), under the angle of pitch, roll angle known case, the formula that solves of crab angle is:
ψ ( t ) = ψ ( kT ) + ∫ kT t [ b 1 ( t ) + b 2 ( t ) ] dt
In formula:
When inertial equipment is directly exported to rolling, pitching, yaw rate p, q, r adopts three rank to approach while describing, and acquired results also approaches O (T 3), compare the direct method of approximation of Eulerian equation or adopt approximate Runge Kutta method the O (T of method such as to resolve 2) precision will height.

Claims (1)

1. the aircraft Eulerian angle Emmett approximation output method based on angular velocity, is characterized in that comprising the following steps:
Step 1, (a) are according to Eulerian equation:
In formula: θ, ψ refers to respectively rolling, pitching, crab angle; P, q, r is respectively rolling, pitching, yaw rate; The calculating of these three Eulerian angle is carried out according to the step that solves successively the angle of pitch, roll angle, crab angle; Rolling, pitching, yaw rate p, q, the expansion of r is respectively
p(t)=[p 0?p 1?…?p n-1?p n][ξ 0(t)?ξ 1(t)?…?ξ n-1(t)?ξ n(t)] T
q(t)=[q 0?q 1?…?q n-1?q n][ξ 0(t)?ξ 1(t)?…?ξ n-1(t)?ξ n(t)] T
r(t)=[r 0?r 1?…?r n-1?r n][ξ 0(t)?ξ 1(t)?…?ξ n-1(t)?ξ n(t)] T
Wherein
ξ 0 ( t ) = 1 ξ 1 ( t ) = 2 t ξ 2 ( t ) = 4 t 2 - 2 ξ 3 ( t ) = 8 t 3 - 12 t ξ 4 ( t ) = 16 t 4 - 48 t 2 + 12 ξ 5 ( t ) = 32 t 5 - 160 t 3 + 120 t ξ 6 ( t ) = 64 t 6 - 480 t 4 + 720 t - 120 . . . ξ i + 1 ( t ) = 2 t ξ i ( t ) - 2 i ξ i - 1 ( t ) i = 2,3 , . . . , n - 1
Recursive form for Emmett orthogonal polynomial;
(b) time of the angle of pitch upgrades and to solve formula and be:
In formula:
a 1 = 1 + p 0 p 1 . . . p n - 1 p n ∫ kT ( k + 1 ) T [ ξ ( t ) ξ T ( t ) ] dt H T p 0 p 1 . . . p n - 1 p n T + q 0 q 1 . . . q n - 1 q n ∫ kT ( k + 1 ) T [ ξ ( t ) ξ T ( t ) ] dt H T q 0 q 1 . . . q n - 1 q n T + r 0 r 1 . . . r n - 1 r n ∫ kT ( k + 1 ) T [ ξ ( t ) ξ T ( t ) ] dt H T r 0 r 1 . . . r n - 1 r n T - p 0 p 1 . . . p n - 1 p n H ξ 0 ( t ) ξ 1 ( t ) . . . ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T · ξ 0 ( t ) ξ 1 ( t ) . . . ξ n ( t ) ξ n + 1 ( t ) kT H T p 0 p 1 . . . p n - 1 p n T - q 0 q 1 . . . q n - 1 q n H ξ 0 ( t ) ξ 1 ( t ) . . . ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T · ξ 0 ( t ) ξ 1 ( t ) . . . ξ n ( t ) ξ n + 1 ( t ) kT H T q 0 q 1 . . . q n - 1 q n T - r 0 r 1 . . . r n - 1 r n H ξ 0 ( t ) ξ 1 ( t ) . . . ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T · ξ 0 ( t ) ξ 1 ( t ) . . . ξ n ( t ) ξ n + 1 ( t ) kT H T r 0 r 1 . . . r n - 1 r n T + 0.25 { p 0 p 1 . . . p n - 1 p n H ξ 0 ( t ) ξ 1 ( t ) . . . ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2 + 0.25 { q 0 q 1 . . . q n - 1 q n H ξ 0 ( t ) ξ 1 ( t ) . . . ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2 - 0.25 { r 0 r 1 . . . r n - 1 r n H ξ 0 ( t ) ξ 1 ( t ) . . . ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
a 2 = q 0 q 1 . . . q n - 1 q n H ξ 0 ( t ) ξ 1 ( t ) . . . ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T - 0.5 r 0 r 1 . . . r n - 1 r n ∫ kT ( k + 1 ) T [ ξ ( t ) ξ T ( t ) ] dt H T p 0 p 1 . . . p n - 1 p n T + 0.5 r 0 r 1 . . . r n - 1 r n H ξ 0 ( t ) ξ 1 ( t ) . . . ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T · ξ 0 ( t ) ξ 1 ( t ) . . . ξ n ( t ) ξ n + 1 ( t ) kT H T p 0 p 1 . . . p n - 1 p n T
a 3 = r 0 r 1 . . . r n - 1 r n H ξ 0 ( t ) ξ 1 ( t ) . . . ξ n ( t ) ξ n + 1 ( t ) T + 0.5 q 0 q 1 . . . q n - 1 q n ∫ kT ( k + 1 ) T [ ξ ( t ) ξ T ( t ) ] dt H T p 0 p 1 . . . p n - 1 p n T - 0.5 q 0 q 1 . . . q n - 1 q n H ξ 0 ( t ) ξ 1 ( t ) . . . ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T · ξ 0 ( t ) ξ 1 ( t ) . . . ξ n ( t ) ξ n + 1 ( t ) kT H T p 0 p 1 . . . p n - 1 p n T
T is the sampling period,
h 12 = 0.5 , h 23 = 0.25 , h i ( i + 1 ) = h ( i - 1 ) i 1 + 2 h ( i - 1 ) i , . . .
h 21 = 0.5 , h 41 = - 1.5 , h ( 2 i ) 1 = 4 ih ( 2 i - 2 ) 1 1 + 2 h ( 2 i ) ( 2 i + 1 ) , . . .
All the other h ij=0;
Step 2, (a) are the in the situation that of the known angle of pitch, and the renewal of the time of roll angle solves formula and is:
Wherein
a 4 = 1 + p 0 p 1 . . . p n - 1 p n ∫ kT ( k + 1 ) T [ ξ ( t ) ξ T ( t ) ] dt H T p 0 p 1 . . . p n - 1 p n T + q 0 q 1 . . . q n - 1 q n ∫ kT ( k + 1 ) T [ ξ ( t ) ξ T ( t ) ] dt H T q 0 q 1 . . . q n - 1 q n T + r 0 r 1 . . . r n - 1 r n ∫ kT ( k + 1 ) T [ ξ ( t ) ξ T ( t ) ] dt H T r 0 r 1 . . . r n - 1 r n T - p 0 p 1 . . . p n - 1 p n H ξ 0 ( t ) ξ 1 ( t ) . . . ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T · ξ 0 ( t ) ξ 1 ( t ) . . . ξ n ( t ) ξ n + 1 ( t ) kT H T p 0 p 1 . . . p n - 1 p n T - q 0 q 1 . . . q n - 1 q n H ξ 0 ( t ) ξ 1 ( t ) . . . ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T · ξ 0 ( t ) ξ 1 ( t ) . . . ξ n ( t ) ξ n + 1 ( t ) kT H T q 0 q 1 . . . q n - 1 q n T - r 0 r 1 . . . r n - 1 r n H ξ 0 ( t ) ξ 1 ( t ) . . . ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T · ξ 0 ( t ) ξ 1 ( t ) . . . ξ n ( t ) ξ n + 1 ( t ) kT H T r 0 r 1 . . . r n - 1 r n T + 0.25 { p 0 p 1 . . . p n - 1 p n H ξ 0 ( t ) ξ 1 ( t ) . . . ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2 - 0.25 { r 0 r 1 . . . r n - 1 r n H ξ 0 ( t ) ξ 1 ( t ) . . . ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2 - 0.25 { q 0 q 1 . . . q n - 1 q n H ξ 0 ( t ) ξ 1 ( t ) . . . ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
a 5 = p 0 p 1 . . . p n - 1 p n H ξ 0 ( t ) ξ 1 ( t ) . . . ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T + 0.5 r 0 r 1 . . . r n - 1 r n ∫ kT ( k + 1 ) T [ ξ ( t ) ξ T ( t ) ] dt H T q 0 q 1 . . . q n - 1 q n T - 0.5 r 0 r 1 . . . r n - 1 r n H ξ 0 ( t ) ξ 1 ( t ) . . . ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T · ξ 0 ( t ) ξ 1 ( t ) . . . ξ n ( t ) ξ n + 1 ( t ) kT H T q 0 q 1 . . . q n - 1 q n T
a 6 = r 0 r 1 . . . r n - 1 r n H ξ 0 ( t ) ξ 1 ( t ) . . . ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T - 0 . 5 p 0 p 1 . . . p n - 1 p n ∫ kT ( k + 1 ) T [ ξ ( t ) ξ T ( t ) ] dt H T q 0 q 1 . . . q n - 1 q n T + 0.5 p 0 p 1 . . . p n - 1 p n H ξ 0 ( t ) ξ 1 ( t ) . . . ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T · ξ 0 ( t ) ξ 1 ( t ) . . . ξ n ( t ) ξ n + 1 ( t ) kT H T q 0 q 1 . . . q n - 1 q n T
(b), under the angle of pitch, roll angle known case, the formula that solves of crab angle is:
ψ ( t ) = ψ ( kT ) + ∫ kT t [ b 1 ( t ) + b 2 ( t ) ] dt
In formula:
CN201110387972.7A 2011-11-30 2011-11-30 Euler angle Hermite approximate output method based on angular speed Expired - Fee Related CN102495827B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110387972.7A CN102495827B (en) 2011-11-30 2011-11-30 Euler angle Hermite approximate output method based on angular speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110387972.7A CN102495827B (en) 2011-11-30 2011-11-30 Euler angle Hermite approximate output method based on angular speed

Publications (2)

Publication Number Publication Date
CN102495827A CN102495827A (en) 2012-06-13
CN102495827B true CN102495827B (en) 2014-10-29

Family

ID=46187652

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110387972.7A Expired - Fee Related CN102495827B (en) 2011-11-30 2011-11-30 Euler angle Hermite approximate output method based on angular speed

Country Status (1)

Country Link
CN (1) CN102495827B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4305057A (en) * 1979-07-19 1981-12-08 Mcdonnell Douglas Corporation Concave quadratic aircraft attitude reference display system
CN101726295A (en) * 2008-10-24 2010-06-09 中国科学院自动化研究所 Unscented Kalman filter-based method for tracking inertial pose according to acceleration compensation
CN101941528A (en) * 2010-09-30 2011-01-12 哈尔滨工业大学 Flywheel based attitude maneuvering control device and method for successive approaching of satellite rounding instantaneous Euler shaft

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4305057A (en) * 1979-07-19 1981-12-08 Mcdonnell Douglas Corporation Concave quadratic aircraft attitude reference display system
CN101726295A (en) * 2008-10-24 2010-06-09 中国科学院自动化研究所 Unscented Kalman filter-based method for tracking inertial pose according to acceleration compensation
CN101941528A (en) * 2010-09-30 2011-01-12 哈尔滨工业大学 Flywheel based attitude maneuvering control device and method for successive approaching of satellite rounding instantaneous Euler shaft

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
左玲等.用于大机动飞行仿真的四元数改进算法.《系统仿真学报》.2006,第18卷(第11期),第3018-3020页.
用于大机动飞行仿真的四元数改进算法;左玲等;《系统仿真学报》;20061130;第18卷(第11期);第3018-3020页 *

Also Published As

Publication number Publication date
CN102495827A (en) 2012-06-13

Similar Documents

Publication Publication Date Title
CN103900574A (en) Attitude estimation method based on iteration volume Kalman filter
CN102519466A (en) Approximate output method of Eulerian angle Legendre index based on angular velocity
CN102519467B (en) Approximate output method for eulerian angle Chebyshev index on basis of angular velocity
CN102495828B (en) Euler angle Hartley approximate output method based on angular speed
CN102495827B (en) Euler angle Hermite approximate output method based on angular speed
CN102506870B (en) Euler angle Hermite exponential approximation output method based on angular velocity
CN102506873B (en) Euler angle Laguerre approximate output method based on angle velocity
CN102495826B (en) Euler angle Chebyshev approximate output method based on angular speed
CN102519462B (en) Angular velocity based Euler angle exponent output method
CN102519457B (en) Angular velocity-based Euler angle Fourier approximate output method
CN102494690A (en) Any eulerian angle step length orthogonal series approximation output method based on angular speed
CN102564423B (en) Euler angle Walsh approximate output method based on angular speed
CN102519464B (en) Angular speed-based Hartley index approximate output method for Eulerian angles
CN102519465B (en) Angular velocity based Euler angle Fourier exponent approximate output method
CN102519461B (en) Euler angle Walsh index approximate output method based on angular velocity
CN102519468B (en) Angular velocity based Euler angle Laguerre exponent approximate output method
CN105260341B (en) Eulerian angles Legendre's approximation output method based on angular speed
CN102435192B (en) Angular speed-based Eulerian angle optional step length orthogonal series exponential type approximate output method
CN102506874B (en) Euler angle superlinearity output method based on angle velocity
CN102506869B (en) Euler angle polynomial class-index approximate output method on basis of angle velocity
CN102495831B (en) Quaternion Hermitian approximate output method based on angular velocities for aircraft during extreme flight
CN102508819B (en) Angular-speed-based quaternion Legendre approximate output method during extreme flying of aircraft
CN102323990B (en) Method for modeling pneumatic model for rigid body space motion
CN102494689A (en) Approximate output method of Euler angle polynomial class based on angular velocity
CN103162688B (en) Based on the modeling method of the Inertial Measurement Unit Eulerian angle output model that angular velocity and Legendre are similar to

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141029

Termination date: 20191130

CF01 Termination of patent right due to non-payment of annual fee