CN102495047A - Method for determining trace glucose via fixing glucose oxidase through magnetic nanoparticle - Google Patents
Method for determining trace glucose via fixing glucose oxidase through magnetic nanoparticle Download PDFInfo
- Publication number
- CN102495047A CN102495047A CN201110391001XA CN201110391001A CN102495047A CN 102495047 A CN102495047 A CN 102495047A CN 201110391001X A CN201110391001X A CN 201110391001XA CN 201110391001 A CN201110391001 A CN 201110391001A CN 102495047 A CN102495047 A CN 102495047A
- Authority
- CN
- China
- Prior art keywords
- glucose
- electrode
- glass tube
- carbon paste
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 title claims abstract description 29
- 239000008103 glucose Substances 0.000 title claims abstract description 29
- 235000019420 glucose oxidase Nutrition 0.000 title claims abstract description 17
- 108010015776 Glucose oxidase Proteins 0.000 title claims abstract description 16
- 239000004366 Glucose oxidase Substances 0.000 title claims abstract description 16
- 229940116332 glucose oxidase Drugs 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 title claims abstract description 11
- 239000002122 magnetic nanoparticle Substances 0.000 title abstract description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 17
- HWYHZTIRURJOHG-UHFFFAOYSA-N luminol Chemical compound O=C1NNC(=O)C2=C1C(N)=CC=C2 HWYHZTIRURJOHG-UHFFFAOYSA-N 0.000 claims abstract description 17
- 238000001514 detection method Methods 0.000 claims abstract description 11
- 238000002484 cyclic voltammetry Methods 0.000 claims abstract description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 38
- 239000012188 paraffin wax Substances 0.000 claims description 21
- 239000011521 glass Substances 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 239000002245 particle Substances 0.000 claims description 15
- 229910052742 iron Inorganic materials 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 9
- 239000000243 solution Substances 0.000 claims description 9
- 239000012153 distilled water Substances 0.000 claims description 8
- 239000011259 mixed solution Substances 0.000 claims description 6
- 238000005576 amination reaction Methods 0.000 claims description 4
- 229910021538 borax Inorganic materials 0.000 claims description 4
- 239000007853 buffer solution Substances 0.000 claims description 4
- 235000010339 sodium tetraborate Nutrition 0.000 claims description 4
- 238000012360 testing method Methods 0.000 claims description 4
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 claims description 4
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 claims description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 3
- 239000006249 magnetic particle Substances 0.000 claims description 3
- 230000007935 neutral effect Effects 0.000 claims description 3
- 229910017604 nitric acid Inorganic materials 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- 239000000725 suspension Substances 0.000 claims description 3
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 claims description 2
- 230000003321 amplification Effects 0.000 claims description 2
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 2
- 238000001378 electrochemiluminescence detection Methods 0.000 claims 2
- 238000005303 weighing Methods 0.000 claims 2
- 150000001875 compounds Chemical class 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 239000000428 dust Substances 0.000 claims 1
- 238000011010 flushing procedure Methods 0.000 claims 1
- 239000000463 material Substances 0.000 claims 1
- 230000035800 maturation Effects 0.000 claims 1
- 238000002360 preparation method Methods 0.000 claims 1
- 238000004506 ultrasonic cleaning Methods 0.000 claims 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 abstract description 12
- 238000004458 analytical method Methods 0.000 abstract description 6
- 230000035945 sensitivity Effects 0.000 abstract description 4
- 230000003100 immobilizing effect Effects 0.000 abstract 1
- 108090000790 Enzymes Proteins 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 239000012154 double-distilled water Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229940088598 enzyme Drugs 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 238000002038 chemiluminescence detection Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002114 nanocomposite Substances 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 208000013016 Hypoglycemia Diseases 0.000 description 1
- 206010028372 Muscular weakness Diseases 0.000 description 1
- 208000009525 Myocarditis Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 238000012863 analytical testing Methods 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 208000002173 dizziness Diseases 0.000 description 1
- 238000000835 electrochemical detection Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000002503 electroluminescence detection Methods 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 238000004186 food analysis Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002218 hypoglycaemic effect Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- QQQSFSZALRVCSZ-UHFFFAOYSA-N triethoxysilane Chemical compound CCO[SiH](OCC)OCC QQQSFSZALRVCSZ-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了一种用磁性纳米粒子固定葡萄糖氧化酶测定痕量葡萄糖的方法。在碳糊电极表面,通过磁性纳米粒子而修饰固定在电极表面的葡萄糖氧化酶氧化溶液中的葡萄糖生成双氧水,双氧水与鲁米诺溶液形成电致化学发光体系。该体系在电极电压的作用下产生非常强的电致化学发光信号和电化学信号。光信号强度在一定范围内与溶液中的葡萄糖浓度成正比。据此建立了一种测定葡萄糖的电致化学发光分析方法。在+0.2~+1.4V(vs.SCE)电位范围内进行循环伏安扫描,葡萄糖在1×10-5~1.0×10-2mol/L浓度范围内与电致化学发光峰强度ip呈良好的线性关系。本发明克服了现有技术存在过于复杂等诸多缺点,灵敏度高,对于葡萄糖的检测易于自动化。
The invention discloses a method for measuring trace glucose by immobilizing glucose oxidase with magnetic nanoparticles. On the surface of the carbon paste electrode, the glucose oxidase fixed on the surface of the electrode is modified by magnetic nanoparticles to oxidize the glucose in the solution to generate hydrogen peroxide, and the hydrogen peroxide and luminol solution form an electrochemiluminescent system. The system generates very strong electrochemiluminescence signals and electrochemical signals under the action of electrode voltage. The intensity of the light signal is directly proportional to the concentration of glucose in the solution within a certain range. Based on this, an electrochemiluminescence analytical method for the determination of glucose was established. The cyclic voltammetry scan was carried out in the potential range of +0.2~+1.4V (vs.SCE), and the concentration of glucose in the range of 1×10-5~1.0×10-2mol/L had a good relationship with the peak intensity of electrochemiluminescence i p linear relationship. The invention overcomes many disadvantages of the prior art such as being too complicated, has high sensitivity, and is easy to automate the detection of glucose.
Description
技术领域 technical field
本发明涉及一种利用磁性纳米粒子固定葡萄糖氧化酶的电致化学发光技术快速测定痕量葡萄糖的方法,可用于人血液中葡萄糖含量的测定。The invention relates to a method for rapidly measuring trace glucose by using an electrochemiluminescent technology using magnetic nanoparticles to immobilize glucose oxidase, which can be used for measuring the glucose content in human blood.
背景技术 Background technique
葡萄糖是生物体内新陈代谢不可缺少的营养物质。它的氧化反应放出的热量是人类生命活动所需能量的重要来源。作为人体的基本元素和最基本的医药原料,它的作用和用途十分广泛,既可直接应用于人体,又可用于食品加工和医药化工。它能迅速增加人体能量、耐力、可用作血糖过低、感冒发烧、头晕虚脱、四肢无力及心肌炎等症的补充液,对癌症也有一定的治疗作用。Glucose is an indispensable nutrient for the metabolism of living organisms. The heat released by its oxidation reaction is an important source of energy for human life activities. As the basic element of the human body and the most basic medical raw material, it has a wide range of functions and uses. It can be directly applied to the human body, and can also be used in food processing and pharmaceutical chemicals. It can rapidly increase human energy and endurance, and can be used as a supplement for hypoglycemia, cold and fever, dizziness, collapse, weakness of limbs and myocarditis, etc. It also has a certain therapeutic effect on cancer.
实现葡萄糖的快速定量检测在生物化学、临床化学以及食品分析等领域具有重要意义。迄今为止,已有许多有关葡萄糖检测方法的报道,如电化学检测,表面增强拉曼散射光谱检测,光度法检测,化学发光检测和电致发光检测等。但采用磁性纳米粒子固定葡萄糖氧化酶(GOD)的电致发光检测葡萄糖的传感器未见报道。电致化学发光也称为电化学发光,它是通过电化学反应直接或间接引发的化学发光现象,是一类电位控制的电极氧化还原反应。近年发展起来的电致化学发光分析方法,是将电化学技术与化学发光检测相结合的一种分析方法,兼备二者的优点:灵敏度高,线性范围宽,反应和时空可控性好。Realizing the rapid quantitative detection of glucose is of great significance in the fields of biochemistry, clinical chemistry and food analysis. So far, there have been many reports on glucose detection methods, such as electrochemical detection, surface-enhanced Raman scattering detection, photometric detection, chemiluminescence detection, and electroluminescence detection, etc. However, there is no report on the electroluminescent sensor for glucose oxidase (GOD) immobilized on magnetic nanoparticles. Electrochemiluminescence, also known as electrochemiluminescence, is a chemiluminescence phenomenon directly or indirectly induced by electrochemical reactions, and is a type of potential-controlled electrode oxidation-reduction reaction. The electrochemiluminescence analysis method developed in recent years is an analysis method combining electrochemical technology and chemiluminescence detection, which has the advantages of both: high sensitivity, wide linear range, and good controllability of reaction and time and space.
发明内容 Contents of the invention
本发明的目的是提供一种灵敏度高、选择性好的传感器,对痕量(如1μmol/L)的葡萄糖进行测定的方法。The purpose of the present invention is to provide a sensor with high sensitivity and good selectivity, and a method for measuring trace (eg 1 μmol/L) glucose.
构思如下:研究发现鲁米诺与双氧水体系在电极电压的作用下能产生非常强的电致化学发光,而鲁米诺和双氧水的浓度对该发光有显著的正线性关系。当固定鲁米诺的浓度,通过葡萄糖氧化酶氧化葡萄糖间接产生双氧水时,电致化学发光的强度仅与一定浓度范围内的葡萄糖呈线性关系,在此基础上采用磁性纳米粒子固定葡萄糖氧化酶(GOD)从而建立了一种测定微量葡萄糖的电致化学发光分析方法。The idea is as follows: the study found that the system of luminol and hydrogen peroxide can produce very strong electrochemiluminescence under the action of electrode voltage, and the concentration of luminol and hydrogen peroxide has a significant positive linear relationship to the luminescence. When the concentration of luminol is fixed and hydrogen peroxide is produced indirectly through the oxidation of glucose by glucose oxidase, the intensity of electrochemiluminescence is only linearly related to glucose within a certain concentration range. On this basis, magnetic nanoparticles are used to immobilize glucose oxidase ( GOD) established an electrochemiluminescence analysis method for the determination of trace glucose.
本发明涉及酶促反应,属于酶传感器。当电极表面生成双氧水时,溶液中的鲁米诺与之发生电化学反应,从而产生能发出一定波长的光的激发态物质而发光。光的峰强度ip在一定范围内与葡萄糖的浓度成正比。The invention relates to an enzymatic reaction and belongs to an enzyme sensor. When hydrogen peroxide is generated on the surface of the electrode, the luminol in the solution reacts electrochemically with it, thereby producing an excited state substance that can emit light of a certain wavelength and emit light. The peak intensity i p of light is directly proportional to the concentration of glucose within a certain range.
具体步骤如下:Specific steps are as follows:
(1)分别截取铁棒和玻璃管,并把铁棒和玻璃管的两端磨平、洗净;将固体石蜡和碳粉按质量比为2~4∶1比例混合,稍加热至石蜡熔化,搅拌均匀,填入玻璃管中;将铁棒插入玻璃管的一端中,用石蜡固定住,冷却后,除去管外多余杂物,并在光滑纸上抛光表面,为保证足够大的磁力;玻璃管的另一端电极端为石蜡碳糊薄层,制得固体石蜡碳糊电极;最后玻璃管石蜡碳糊的薄层的一端碳糊电极在使用前分别用体积比为1∶1的硝酸和无水乙醇清洗,然后用二次蒸馏水冲洗干净;(1) Cut out the iron rod and the glass tube respectively, and grind and clean both ends of the iron rod and the glass tube; mix the solid paraffin and carbon powder in a mass ratio of 2 to 4:1, and heat slightly until the paraffin melts , stir evenly, and fill it into the glass tube; insert an iron rod into one end of the glass tube, fix it with paraffin, after cooling, remove the excess sundries outside the tube, and polish the surface on smooth paper to ensure sufficient magnetic force; The other end electrode end of the glass tube is a thin layer of paraffin carbon paste to obtain a solid paraffin carbon paste electrode; finally, the carbon paste electrode at one end of the thin layer of the glass tube paraffin carbon paste is sprayed with nitric acid and Wash with absolute ethanol, then rinse with double distilled water;
(2)称取FeCl3·6H2O和FeSO4·7H2O,以Fe2+/Fe3+=1∶2的摩尔比溶解在二次蒸馏水中得混合溶液,滴加体积百分比为25%的氨水使混合溶液pH=9~12,室温下搅拌20~40分钟,然后升温到80℃并保持溶液pH=9~12不变,加热熟化20~40分钟;制备的黑色悬浮液超声10~30分钟,在磁铁分离下,用热水洗涤到中性得磁性纳米Fe3O4粒子;(2) Weigh FeCl 3 6H 2 O and FeSO 4 7H 2 O, dissolve them in twice distilled water at a molar ratio of Fe 2+ /Fe 3+ = 1:2 to obtain a mixed solution, and add a volume percentage of 25 % ammonia water to make the mixed solution pH = 9-12, stir at room temperature for 20-40 minutes, then raise the temperature to 80°C and keep the solution pH = 9-12, heat and mature for 20-40 minutes; the prepared black suspension is ultrasonically 10 ~30 minutes, under the magnetic separation, wash with hot water until neutral to obtain magnetic nano-Fe 3 O 4 particles;
(3)称取45-55mg步骤(2)所得的磁性纳米Fe3O4粒子超声分散在15-25mL无水乙醇中,搅拌下加入0.1~0.3mL体积百分浓度为98%γ-氨丙基三乙氧基硅烷,室温下搅拌反应9~20小时,收集的磁性粒子分别用无水乙醇和二次蒸馏水超声清洗后定容得氨基化后的磁性纳米Fe3O4粒子;(3) Weigh 45-55 mg of the magnetic nano Fe 3 O 4 particles obtained in step (2) and ultrasonically disperse them in 15-25 mL of absolute ethanol, and add 0.1 to 0.3 mL of 98% γ-aminopropane under stirring base triethoxysilane, stirred and reacted at room temperature for 9 to 20 hours, and the collected magnetic particles were ultrasonically cleaned with absolute ethanol and double-distilled water, respectively, and fixed to volume to obtain aminated magnetic nano-Fe 3 O 4 particles;
(4)用磁铁吸住步骤(1)制得的固体石蜡碳糊电极的铁棒端,取步骤(3)制得的氨基化后的磁性纳米Fe3O4粒子滴加在步骤(1)制得的电极表面,晾干后,滴加体积百分浓度为0.25%的戊二醛在修饰电极表面,放入4℃冰箱1小时后,用水淋洗并吹干,然后滴加葡萄糖氧化酶溶液,放入4℃冰箱中过夜;使用前,把电极置于搅动的蒸馏水中清洗5~10分钟;每次使用后,移去磁铁,用蒸馏水冲洗,洗去磁性纳米复合葡萄糖氧化酶粒子以便更新电极;电极不用时放入4℃冰箱中保存;(4) hold the iron bar end of the solid paraffin carbon paste electrode that step (1) makes with magnet, get the magnetic nanometer Fe after the amination that step (3) makes 3 O 4 particles are added dropwise in step (1) After the surface of the prepared electrode is dried, add glutaraldehyde with a volume percentage concentration of 0.25% on the surface of the modified electrode, put it in a refrigerator at 4°C for 1 hour, rinse with water and dry it, and then add glucose oxidase dropwise solution, put it in a 4°C refrigerator overnight; before use, wash the electrode in agitated distilled water for 5 to 10 minutes; after each use, remove the magnet, rinse with distilled water, and wash away the magnetic nanocomposite glucose oxidase particles for Renew the electrode; store it in a 4°C refrigerator when the electrode is not in use;
(4)检测方法:(4) Detection method:
室温下,选取扫描速率为50mV/s,扫描范围为+0.2~+1.4V(vs.SCE),光电倍增管高压600v,采样速率10T/S,放大级数3,测量时间60s进行循环伏安法试验,测量不同浓度葡萄糖在含0.5mmol/L鲁米诺的pH为8.00.的1mol/L硼酸钠缓冲溶液的电致化学发光的强度,绘制工作曲线;葡萄糖在1.0×10-5~1.0×10-2mol/L浓度范围内与电致化学发光峰强度呈良好的线性关系:ip=65.4C+23.9,相关系数R=0.9987,检测限为1μmol/L。At room temperature, the scan rate is 50mV/s, the scan range is +0.2~+1.4V (vs. SCE), the high voltage of the photomultiplier tube is 600v, the sampling rate is 10T/S, the number of amplification stages is 3, and the measurement time is 60s for cyclic voltammetry Method test, measuring the intensity of electrochemiluminescence of different concentrations of glucose in 1mol/L sodium borate buffer solution containing 0.5mmol/L luminol at a pH of 8.00 , and drawing a working curve; Within the concentration range of ×10 -2 mol/L, there is a good linear relationship with the peak intensity of electrochemiluminescence: i p =65.4C+23.9, the correlation coefficient R=0.9987, and the detection limit is 1 μmol/L.
本发明克服了现有技术存在过于复杂等诸多缺点,灵敏度高,对于葡萄糖的检测易于自动化。The invention overcomes many disadvantages of the prior art such as being too complicated, has high sensitivity, and is easy to automate the detection of glucose.
附图说明Description of drawings
图1为本发明实施例葡萄糖含量与电致化学发光峰强度ip的关系图。Fig. 1 is a graph showing the relationship between the glucose content and the electrochemiluminescence peak intensity ip in an example of the present invention.
图2为本发明实施例溶液pH值对电致化学发光峰强度ip的影响。Fig. 2 is the effect of the pH value of the solution of the embodiment of the present invention on the electrochemiluminescence peak intensity i p .
图3为本发明实施例鲁米诺的含量与电致化学发光峰强度ip的关系图。Fig. 3 is a graph showing the relationship between the content of luminol and the peak intensity ip of electrochemiluminescence in an embodiment of the present invention.
具体实施方式 Detailed ways
实施例:Example:
(1)分别截取铁棒和玻璃管,并把铁棒和玻璃管的两端磨平、洗净;将固体石蜡和碳粉按质量比为3∶1比例混合,稍加热至石蜡熔化,搅拌均匀,填入玻璃管中;将铁棒插入玻璃管的一端中,用石蜡固定住,冷却后,除去管外多余杂物,并在光滑纸上抛光表面,为保证足够大的磁力;玻璃管的另一端电极端为石蜡碳糊薄层,制得固体石蜡碳糊电极;最后玻璃管石蜡碳糊的薄层的一端碳糊电极在使用前分别用体积比为1∶1的硝酸和无水乙醇清洗,然后用二次蒸馏水冲洗干净;(1) Cut out the iron rod and the glass tube respectively, and grind and clean both ends of the iron rod and the glass tube; mix the solid paraffin and carbon powder in a mass ratio of 3:1, heat slightly until the paraffin melts, and stir Evenly, fill it into the glass tube; insert an iron rod into one end of the glass tube, fix it with paraffin, after cooling, remove the excess debris outside the tube, and polish the surface on a smooth paper to ensure sufficient magnetic force; the glass tube The other end of the electrode end is a thin layer of paraffin carbon paste to obtain a solid paraffin carbon paste electrode; finally, the carbon paste electrode at one end of the thin layer of the glass tube paraffin carbon paste is treated with nitric acid and anhydrous water with a volume ratio of 1:1 before use. Washed with ethanol, then rinsed with double distilled water;
(2)称取FeCl3·6H2O和FeSO4·7H2O,以Fe2+/Fe3+=1∶2的摩尔比溶解在二次蒸馏水中得混合溶液,滴加体积百分比为25%的氨水使混合溶液pH=11,室温下搅拌30分钟,然后升温到80℃并保持溶液pH=11不变,加热熟化30分钟;制备的黑色悬浮液超声20分钟,在磁铁分离下,用热水洗涤到中性得磁性纳米Fe3O4粒子;(2) Weigh FeCl 3 6H 2 O and FeSO 4 7H 2 O, dissolve them in twice distilled water at a molar ratio of Fe 2+ /Fe 3+ = 1:2 to obtain a mixed solution, and add a volume percentage of 25 % ammonia water to make the pH of the mixed solution = 11, stir at room temperature for 30 minutes, then heat up to 80°C and keep the pH of the solution = 11, heat and mature for 30 minutes; the prepared black suspension is ultrasonicated for 20 minutes, and separated by a magnet. Washing with hot water until neutral to obtain magnetic nano-Fe 3 O 4 particles;
(3)称取48mg步骤(2)所得的磁性纳米Fe3O4粒子超声分散在20mL无水乙醇中,搅拌下加入0.2mL体积百分浓度为98%γ-氨丙基三乙氧基硅烷,室温下搅拌反应12小时,收集的磁性粒子分别用无水乙醇和二次蒸馏水超声清洗后定容得氨基化后的磁性纳米Fe3O4粒子;(3) Weigh 48 mg of the magnetic nano Fe 3 O 4 particles obtained in step (2) and ultrasonically disperse them in 20 mL of absolute ethanol, and add 0.2 mL of 98% γ-aminopropyltriethoxysilane under stirring , stirred and reacted at room temperature for 12 hours, the collected magnetic particles were ultrasonically cleaned with absolute ethanol and double-distilled water respectively, and then fixed to volume to obtain aminated magnetic nano-Fe 3 O 4 particles;
(4)用磁铁吸住步骤(1)制得的固体石蜡碳糊电极的铁棒端,取步骤(3)制得的氨基化后的磁性纳米Fe3O4粒子滴加在步骤(1)制得的电极表面,晾干后,滴加体积百分浓度为0.25%的戊二醛在修饰电极表面,放入4℃冰箱1小时后,用水淋洗并吹干,然后滴加葡萄糖氧化酶溶液,放入4℃冰箱中过夜。使用前,把电极置于搅动的蒸馏水中清洗8分钟。每次使用后,移去磁铁,用蒸馏水冲洗,洗去磁性纳米复合葡萄糖氧化酶粒子以便更新电极。电极不用时放入4℃冰箱中保存。(4) hold the iron bar end of the solid paraffin carbon paste electrode that step (1) makes with magnet, get the magnetic nanometer Fe after the amination that step (3) makes 3 O 4 particles are added dropwise in step (1) After the surface of the prepared electrode is dried, add glutaraldehyde with a volume percentage concentration of 0.25% on the surface of the modified electrode, put it in a refrigerator at 4°C for 1 hour, rinse with water and dry it, and then add glucose oxidase dropwise solution and placed in a 4°C refrigerator overnight. Before use, rinse the electrodes in agitated distilled water for 8 minutes. After each use, remove the magnet, rinse with distilled water, and wash away the magnetic nanocomposite glucose oxidase particles to refresh the electrodes. Store the electrodes in a 4°C refrigerator when not in use.
(4)检测方法:(4) Detection method:
室温下,选取扫描速率为50mV/s,扫描范围为+0.2~+1.4V(vs.SCE),光电倍增管高压600v,采样速率10T/S,放大倍数3,测量时间60s进行循环伏安法试验,测量不同浓度葡萄糖在含0.5mmol/L鲁米诺的0.1mol/L硼酸钠缓冲溶液(pH 8.0)的电致化学发光的强度,绘制工作曲线,其结果见附图1。葡萄糖在1×10-5~1.0×10-2mol/L浓度范围内与电致化学发光强度呈良好的线性关系:ip=65.4C+23.9,相关系数R=0.9987,检测限为1μmol/L。At room temperature, select a scan rate of 50mV/s, a scan range of +0.2 to +1.4V (vs. SCE), a photomultiplier tube with a high voltage of 600v, a sampling rate of 10T/S, a magnification of 3, and a measurement time of 60s for cyclic voltammetry Test, measure the intensity of the electrochemiluminescence of different concentration glucose in the 0.1mol/L sodium borate buffer solution (pH 8.0) containing 0.5mmol/L luminol, draw working curve, its result is shown in accompanying drawing 1. Glucose has a good linear relationship with the electrochemiluminescence intensity in the concentration range of 1×10 -5 ~ 1.0×10 -2 mol/L: i p =65.4C+23.9, the correlation coefficient R=0.9987, and the detection limit is 1 μmol/L L.
pH值和温度的影响:Effect of pH and temperature:
鲁米诺的ECL反应需在碱性条件下进行(pH 8.5~10.0),考虑到葡萄糖氧化酶的生物活性受pH值影响较大,本文考察了pH=7.0~9.5的范围内,电致化学发光强度的变化。在鲁米诺浓度为0.1mmol/L,葡萄糖浓度为1mmol/L时,pH值的影响结果见附图2。从图中可以看出,当pH=8.0时,鲁米诺的ECL强度最大,实验选择测定在pH=8.0的硼酸钠缓冲溶液中进行。The ECL reaction of luminol needs to be carried out under alkaline conditions (pH 8.5-10.0). Considering that the biological activity of glucose oxidase is greatly affected by the pH value, this paper investigates the range of pH = 7.0-9.5. Changes in luminous intensity. When the concentration of luminol is 0.1mmol/L and the concentration of glucose is 1mmol/L, the results of the influence of the pH value are shown in Figure 2. It can be seen from the figure that when the pH=8.0, the ECL intensity of luminol is the largest, and the experiment was chosen to measure in the sodium borate buffer solution with pH=8.0.
同时,酶的催化活性与温度也有很大关系,实验用集热式恒温加热磁力搅拌器控制水浴温度,考察了20~60℃范围内酶电极的电流响应,发现当温度达到40℃时,电流响应最大,随着温度的升高,电流有下降的趋势。考虑到温度过高,葡萄糖氧化酶因变性而影响酶电极的使用寿命,实验均在室温25℃下进行。At the same time, the catalytic activity of the enzyme also has a great relationship with the temperature. In the experiment, the temperature of the water bath was controlled by a heat-collecting constant temperature heating magnetic stirrer, and the current response of the enzyme electrode in the range of 20-60°C was investigated. It was found that when the temperature reached 40°C, the current The response is the largest, and the current tends to decrease as the temperature increases. Considering that the temperature is too high and the service life of the enzyme electrode is affected by the denaturation of glucose oxidase, the experiments are all carried out at room temperature of 25°C.
鲁米诺的浓度的影响:The effect of the concentration of luminol:
固定其他条件不变,在0.01~1.2mmol/L范围内考察了鲁米诺的浓度对电致化学发光强度的影响。所得结果见附图3。由图可见,葡萄糖浓度是1mmol/L时,随着鲁米诺的浓度由0.01mmol/L增大到0.5mmol/L时,溶液的ECL值快速增大,当鲁米诺的浓度大于0.5mmol/L时,ECL的强度趋于平稳。因此,实验中鲁米诺的用量为0.5mmol/L。Keeping other conditions unchanged, the influence of the concentration of luminol on the intensity of electrochemiluminescence was investigated in the range of 0.01~1.2mmol/L. The results obtained are shown in Figure 3. It can be seen from the figure that when the glucose concentration is 1mmol/L, as the concentration of luminol increases from 0.01mmol/L to 0.5mmol/L, the ECL value of the solution increases rapidly. When the concentration of luminol is greater than 0.5mmol /L, the intensity of ECL tends to be stable. Therefore, the dosage of luminol in the experiment was 0.5mmol/L.
电极在分析测试中的应用:Application of electrodes in analytical testing:
对人血清中葡萄糖的含量进行了测定,结果表明,该方法和医院采用的临床分析方法所得结果相吻合。为进一步验证该方法的准确性,采用标准加入法测定了样品的回收率,结果见表1。可见,该方法用于临床样品的分析测定,结果令人满意。The content of glucose in human serum was measured, and the results showed that the method was consistent with the results obtained by the clinical analysis method adopted by the hospital. In order to further verify the accuracy of the method, the standard addition method was used to measure the recovery rate of the samples, and the results are shown in Table 1. It can be seen that this method is used for the analysis and determination of clinical samples, and the results are satisfactory.
表1:人血清中葡萄糖的测定及回收率试验结果(n=5)Table 1: Determination and recovery test results of glucose in human serum (n=5)
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110391001XA CN102495047A (en) | 2011-11-29 | 2011-11-29 | Method for determining trace glucose via fixing glucose oxidase through magnetic nanoparticle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110391001XA CN102495047A (en) | 2011-11-29 | 2011-11-29 | Method for determining trace glucose via fixing glucose oxidase through magnetic nanoparticle |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102495047A true CN102495047A (en) | 2012-06-13 |
Family
ID=46186888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110391001XA Pending CN102495047A (en) | 2011-11-29 | 2011-11-29 | Method for determining trace glucose via fixing glucose oxidase through magnetic nanoparticle |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102495047A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105929007A (en) * | 2016-06-15 | 2016-09-07 | 河南大学 | Construction method of photoelectrochemical glucose oxidase sensor using graphite-like phase g-C3N4-TiO2 nanosheet composite as enzyme molecular immobilization scaffold |
CN106908502A (en) * | 2017-03-27 | 2017-06-30 | 电子科技大学 | The preparation method of the glucose sensor enzyme electrode of carbon-coated magnetic ferrite modification |
CN111595917A (en) * | 2020-04-07 | 2020-08-28 | 淮阴师范学院 | Nanocomposite electrochemical sensor, construction method and application of nanocomposite electrochemical sensor in electrochemical luminescence detection of glucose |
CN111896529A (en) * | 2020-06-17 | 2020-11-06 | 安徽师范大学 | One-dimensional ferric oxide@silica magnetic nanochains and preparation method and application of immobilized glucose oxidase |
-
2011
- 2011-11-29 CN CN201110391001XA patent/CN102495047A/en active Pending
Non-Patent Citations (1)
Title |
---|
熊志刚等: "《磁性纳米粒子固定葡萄糖氧化酶修饰电极电致化学发光葡萄糖传感器》", 《分析化学(FENXIHUAXUE)研究报告》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105929007A (en) * | 2016-06-15 | 2016-09-07 | 河南大学 | Construction method of photoelectrochemical glucose oxidase sensor using graphite-like phase g-C3N4-TiO2 nanosheet composite as enzyme molecular immobilization scaffold |
CN106908502A (en) * | 2017-03-27 | 2017-06-30 | 电子科技大学 | The preparation method of the glucose sensor enzyme electrode of carbon-coated magnetic ferrite modification |
CN106908502B (en) * | 2017-03-27 | 2019-03-01 | 电子科技大学 | The preparation method of the glucose sensor enzyme electrode of carbon-coated magnetic ferrite modification |
CN111595917A (en) * | 2020-04-07 | 2020-08-28 | 淮阴师范学院 | Nanocomposite electrochemical sensor, construction method and application of nanocomposite electrochemical sensor in electrochemical luminescence detection of glucose |
CN111896529A (en) * | 2020-06-17 | 2020-11-06 | 安徽师范大学 | One-dimensional ferric oxide@silica magnetic nanochains and preparation method and application of immobilized glucose oxidase |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102507689B (en) | Manufacturing method and application of electrochemiluminescence sensor for detecting thrombin | |
CN104020198B (en) | A kind of signal amplification technique electrochemical sensor detects the method for DNA | |
Li et al. | Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines | |
Han et al. | Electrochemiluminescent biosensing of carbohydrate-functionalized CdS nanocomposites for in situ label-free analysis of cell surface carbohydrate | |
Hu et al. | Double-strand DNA-templated synthesis of copper nanoclusters as novel fluorescence probe for label-free detection of biothiols | |
CN113075269B (en) | An electrochemiluminescence aptasensor for specific detection of chloramphenicol and its preparation method and application | |
CN104374765B (en) | A kind of electrochemiluminescence aptamer sensor, Its Preparation Method And Use | |
CN103364353B (en) | A kind of aptamer nanogold Resonance Rayleigh Scattering Spectra method measuring lysozyme | |
Hun et al. | Aptamer biosensor for highly sensitive and selective detection of dopamine using ubiquitous personal glucose meters | |
CN106583747B (en) | The preparation of nucleoprotamine gold nanoclusters and the application in analogue enztme colorimetric and fluoroscopic examination | |
CN104634779B (en) | The assay method of urase and its inhibitor based on nm of gold Mimetic enzyme | |
CN101936940A (en) | A method for detecting ochratoxin A by electrochemiluminescence aptasensor | |
CN106248960B (en) | A kind of high-throughput nucleic acid aptamer sensor for detecting insulin and preparation method thereof | |
CN105462590B (en) | A kind of boration quantum dot ratio fluorescent probe and its preparation method and application | |
CN107064264A (en) | A kind of construction method for being used to detect the optical electro-chemistry sensor of dopamine without enzyme | |
CN102288656A (en) | Sandwich-type electrochemical sensor for detecting ovarian SKOV-3 cancer cell | |
CN102495047A (en) | Method for determining trace glucose via fixing glucose oxidase through magnetic nanoparticle | |
Ding et al. | A strand-elongation initiated DNAzyme walker for terminal deoxynucleotidyl transferase activity detection | |
CN104330393B (en) | Method for determining glucose by using gold nano-cluster as fluorescence probe | |
CN108398406B (en) | A biosensor for detecting uracil glycosylase (UDG) and its application | |
CN110672696A (en) | Novel electrochemical method for detecting copper ions, phosphate ions and alkaline phosphatase and application thereof | |
Zang et al. | An ultrasensitive electrochemiluminescence immunosensor based on zeolitic imidazolate frameworks encapsulating spherical graphite crystals | |
CN103616357A (en) | Visual biosensor device and preparation method thereof | |
Qin et al. | Carbon Nanotube Paper‐based Electrode for Electrochemical Detection of Chemicals in Rat Microdialysate | |
CN104076025B (en) | A kind of antibacterial peptide electrochemical luminous sensor and preparation method thereof and detection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120613 |