CN102495035A - Quick and high-efficiency fluorescence detection method for phosphate ions - Google Patents
Quick and high-efficiency fluorescence detection method for phosphate ions Download PDFInfo
- Publication number
- CN102495035A CN102495035A CN2011103993309A CN201110399330A CN102495035A CN 102495035 A CN102495035 A CN 102495035A CN 2011103993309 A CN2011103993309 A CN 2011103993309A CN 201110399330 A CN201110399330 A CN 201110399330A CN 102495035 A CN102495035 A CN 102495035A
- Authority
- CN
- China
- Prior art keywords
- solution
- fast
- cadmium
- phosphate ion
- detection method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims abstract description 12
- 238000001917 fluorescence detection Methods 0.000 title description 2
- 229940085991 phosphate ion Drugs 0.000 claims abstract description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 13
- 238000001514 detection method Methods 0.000 claims abstract description 10
- -1 Rare earth ions Chemical class 0.000 claims abstract description 9
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 8
- 239000000243 solution Substances 0.000 claims description 29
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 16
- 239000002086 nanomaterial Substances 0.000 claims description 15
- 239000007864 aqueous solution Substances 0.000 claims description 8
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 8
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 claims description 6
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical group [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 6
- 239000007853 buffer solution Substances 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 239000003607 modifier Substances 0.000 claims description 6
- 229910052711 selenium Inorganic materials 0.000 claims description 6
- 239000011669 selenium Chemical group 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 239000011593 sulfur Substances 0.000 claims description 6
- 229910052714 tellurium Inorganic materials 0.000 claims description 6
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical group [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 6
- 150000001661 cadmium Chemical class 0.000 claims description 4
- YKYOUMDCQGMQQO-UHFFFAOYSA-L cadmium dichloride Chemical compound Cl[Cd]Cl YKYOUMDCQGMQQO-UHFFFAOYSA-L 0.000 claims description 4
- 239000012266 salt solution Substances 0.000 claims description 4
- 239000012086 standard solution Substances 0.000 claims description 4
- 229910052684 Cerium Inorganic materials 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 239000011734 sodium Substances 0.000 claims description 3
- HELHAJAZNSDZJO-OLXYHTOASA-L sodium L-tartrate Chemical compound [Na+].[Na+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O HELHAJAZNSDZJO-OLXYHTOASA-L 0.000 claims description 3
- 239000001433 sodium tartrate Substances 0.000 claims description 3
- DKIDEFUBRARXTE-UHFFFAOYSA-N 3-mercaptopropanoic acid Chemical compound OC(=O)CCS DKIDEFUBRARXTE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 2
- 229910052691 Erbium Inorganic materials 0.000 claims description 2
- 229910052693 Europium Inorganic materials 0.000 claims description 2
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 2
- 229910052689 Holmium Inorganic materials 0.000 claims description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 claims description 2
- 229910052765 Lutetium Inorganic materials 0.000 claims description 2
- 229910052779 Neodymium Inorganic materials 0.000 claims description 2
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 2
- 229910052772 Samarium Inorganic materials 0.000 claims description 2
- 229910052771 Terbium Inorganic materials 0.000 claims description 2
- 229910052775 Thulium Inorganic materials 0.000 claims description 2
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 2
- XIEPJMXMMWZAAV-UHFFFAOYSA-N cadmium nitrate Inorganic materials [Cd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XIEPJMXMMWZAAV-UHFFFAOYSA-N 0.000 claims description 2
- QCUOBSQYDGUHHT-UHFFFAOYSA-L cadmium sulfate Chemical compound [Cd+2].[O-]S([O-])(=O)=O QCUOBSQYDGUHHT-UHFFFAOYSA-L 0.000 claims description 2
- 229910000331 cadmium sulfate Inorganic materials 0.000 claims description 2
- WLZRMCYVCSSEQC-UHFFFAOYSA-N cadmium(2+) Chemical compound [Cd+2] WLZRMCYVCSSEQC-UHFFFAOYSA-N 0.000 claims description 2
- PSIBWKDABMPMJN-UHFFFAOYSA-L cadmium(2+);diperchlorate Chemical compound [Cd+2].[O-]Cl(=O)(=O)=O.[O-]Cl(=O)(=O)=O PSIBWKDABMPMJN-UHFFFAOYSA-L 0.000 claims description 2
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 claims description 2
- 235000018417 cysteine Nutrition 0.000 claims description 2
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 claims description 2
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 claims description 2
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 claims description 2
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 claims description 2
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 claims description 2
- 229910052746 lanthanum Inorganic materials 0.000 claims description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 2
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 claims description 2
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 2
- NMHMNPHRMNGLLB-UHFFFAOYSA-N phloretic acid Chemical compound OC(=O)CCC1=CC=C(O)C=C1 NMHMNPHRMNGLLB-UHFFFAOYSA-N 0.000 claims description 2
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 claims description 2
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 claims description 2
- 229960002167 sodium tartrate Drugs 0.000 claims description 2
- 235000011004 sodium tartrates Nutrition 0.000 claims description 2
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 claims description 2
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims 2
- 235000005979 Citrus limon Nutrition 0.000 claims 1
- 244000248349 Citrus limon Species 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000003786 synthesis reaction Methods 0.000 claims 1
- SOBHUZYZLFQYFK-UHFFFAOYSA-K trisodium;hydroxy-[[phosphonatomethyl(phosphonomethyl)amino]methyl]phosphinate Chemical compound [Na+].[Na+].[Na+].OP(O)(=O)CN(CP(O)([O-])=O)CP([O-])([O-])=O SOBHUZYZLFQYFK-UHFFFAOYSA-K 0.000 claims 1
- 239000002096 quantum dot Substances 0.000 abstract description 19
- 239000000523 sample Substances 0.000 abstract description 10
- 238000010791 quenching Methods 0.000 abstract description 5
- 230000000171 quenching effect Effects 0.000 abstract description 5
- 150000001450 anions Chemical class 0.000 abstract description 4
- 239000007850 fluorescent dye Substances 0.000 abstract description 3
- 230000004044 response Effects 0.000 abstract description 2
- 229910004613 CdTe Inorganic materials 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 4
- 229910017604 nitric acid Inorganic materials 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- CWERGRDVMFNCDR-UHFFFAOYSA-N thioglycolic acid Chemical compound OC(=O)CS CWERGRDVMFNCDR-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 229910020366 ClO 4 Inorganic materials 0.000 description 2
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 2
- GAGGCOKRLXYWIV-UHFFFAOYSA-N europium(3+);trinitrate Chemical compound [Eu+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O GAGGCOKRLXYWIV-UHFFFAOYSA-N 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- QIJRTFXNRTXDIP-UHFFFAOYSA-N (1-carboxy-2-sulfanylethyl)azanium;chloride;hydrate Chemical compound O.Cl.SCC(N)C(O)=O QIJRTFXNRTXDIP-UHFFFAOYSA-N 0.000 description 1
- FBEHFRAORPEGFH-UHFFFAOYSA-N Allyxycarb Chemical compound CNC(=O)OC1=CC(C)=C(N(CC=C)CC=C)C(C)=C1 FBEHFRAORPEGFH-UHFFFAOYSA-N 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- OZECDDHOAMNMQI-UHFFFAOYSA-H cerium(3+);trisulfate Chemical compound [Ce+3].[Ce+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O OZECDDHOAMNMQI-UHFFFAOYSA-H 0.000 description 1
- 229910000333 cerium(III) sulfate Inorganic materials 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229960002433 cysteine Drugs 0.000 description 1
- 229960001305 cysteine hydrochloride Drugs 0.000 description 1
- 230000004295 detection of phosphate ion Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 235000019524 disodium tartrate Nutrition 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000000695 excitation spectrum Methods 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 238000002795 fluorescence method Methods 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 1
- 229940038773 trisodium citrate Drugs 0.000 description 1
- 235000019263 trisodium citrate Nutrition 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明提供磷酸根离子的快速、高效荧光检测方法。稀土离子能使量子点的荧光发生猝灭,加入磷酸根离子后量子点的荧光得以有效地恢复。与最常见的基于量子点的荧光猝灭型探针相比,该新型“关-开”型量子点荧光探针能够有效的避免溶液中其它因素所导致的荧光猝灭,使测定的选择性大大提高。据我们所知,该方法是量子点首次在磷酸根离子测定方面的应用。本发明能够对磷酸根离子实现高灵敏测定,线性范围为1×10-7mol/L to 5×10-6mol/L,检测限为5×10-8mol/L。常见的阴离子几乎没有荧光响应信号,表明该方法具有良好的选择性,对模拟水样中的磷酸根离子的测定具有满意结果,有望用作水体中磷酸根离子的检测。
The invention provides a fast and efficient fluorescent detection method for phosphate ions. Rare earth ions can quench the fluorescence of quantum dots, and the fluorescence of quantum dots can be effectively restored after adding phosphate ions. Compared with the most common fluorescent quenching probes based on quantum dots, the new "off-on" quantum dot fluorescent probes can effectively avoid fluorescence quenching caused by other factors in the solution, making the determination more selective. Greatly improve. To our knowledge, this method is the first application of quantum dots in the determination of phosphate ions. The invention can realize highly sensitive determination of phosphate ion, the linear range is 1×10 -7 mol/L to 5×10 -6 mol/L, and the detection limit is 5×10 -8 mol/L. Common anions have almost no fluorescence response signal, indicating that the method has good selectivity, and has satisfactory results for the determination of phosphate ions in simulated water samples, and is expected to be used for the detection of phosphate ions in water.
Description
技术领域: Technical field:
本发明涉及分析检测领域,尤其涉及水溶性、高稳定性的量子点光学探针的合成方法及其在荧光检测水体中磷酸根离子方面的应用。The invention relates to the field of analysis and detection, in particular to a synthesis method of a water-soluble and highly stable quantum dot optical probe and its application in fluorescence detection of phosphate ions in water bodies.
背景技术: Background technique:
磷酸根离子在众多涉及生命、环境及化学过程中起着举足轻重的作用[P.D.Beer and E.J.Hayes,Coord.Chem.Rev.,2003,240,167-189.]。人们日常生活中洗涤用品及农田施肥均会产生磷酸根离子的排放,造成天然水体中磷酸根的含量不断增大。但水中磷含量过高(>0.2mg·L-1),则会使水体营养化富集,造成藻类及其它水生植物公害的过度繁殖,致使水质恶化,给水体带来异味,造成环境污染[H.P.Jarvie,C.Neal,P.J.A.Withers,A.Robinson and N.Salter,Hydrol.Earth Syst.Sci.,2003,7,722-743;P.Stalnacke,S.M.Vandsemb,A.Vassiljev,A.Grimvalland G.Jolankal,Water Sci.Technol.,2004,49,29-36;P.W.Balls,A.Macdonald,K.Pugh and A.C.Edwards,Environ.Pollut.,1995,90,311-321]。而造成了对环境的污染,因此,环境中磷酸根离子的检测具有现实意义。目前报道的磷酸根离子的测定方法主要有分光光度法[F.Pena-Pereira,N.Cabaleiro,I.de la Calle,M.Costas,S.Gil,I.Lavilla and C.Bendicho.Talanta,2011,85,1100-1104;C.M.Li,Y.F.Li,J.Wang and C.Z.Huang.Talanta,2010,81,1339-1345]、荧光法[Y.Udnan,I.D.McKelvie,M.R.Grace,J.Jakmunee and K.Grudpan.Talanta,2005,66,461-466]、色谱法[J.B.Quintana,R.Rodil and T.Reemtsma.Anal.Chem.,2006,78,1644-1650]、电化学法[W.L.Cheng,J.W.Sue,W.C.Chen,J.L.Chang and J.M.Zen.Anal.Chem.,2010,82,1157-1161;L.Gilbert,A.T.A.Jenkins,S.Browning and J.P.Hart.Anal.Biochem.,2009,393,242-247]、ICP-MS[Z.X.Guo,Q.Cai and Z.Yang.J.Chromatogr.A,2005,1100,160-167]等方法。但是这些方法往往比较耗时,而且往往存在较为严重的干扰现象。Phosphate ion plays a pivotal role in many processes involving life, environment and chemistry [PDBeer and EJHayes, Coord.Chem.Rev., 2003, 240, 167-189.]. People's daily washing products and farmland fertilization will produce the discharge of phosphate ions, resulting in the increasing content of phosphate in natural water. However, if the phosphorus content in the water is too high (>0.2mg·L -1 ), it will make the water body nutrient-enriched, causing excessive reproduction of algae and other aquatic plant hazards, resulting in deterioration of water quality, bringing peculiar smell to the water body, and causing environmental pollution[ HP Jarvie, C. Neal, PJA Withers, A. Robinson and N. Salter, Hydrol. Earth Syst. Sci., 2003, 7, 722-743; P. Stalnacke, SM Vandsemb, A. Vassiljev, A. Grimvalland G. Jolankal, Water Sci. Technol., 2004, 49, 29-36; PW Balls, A. Macdonald, K. Pugh and ACE Edwards, Environ. Pollut., 1995, 90, 311-321]. And caused the pollution to the environment, therefore, the detection of phosphate ion in the environment has practical significance. Currently reported methods for the determination of phosphate ions mainly include spectrophotometry [F.Pena-Pereira, N.Cabaleiro, I.de la Calle, M.Costas, S.Gil, I.Lavilla and C.Bendicho.Talanta, 2011 , 85, 1100-1104; CMLi, YFLi, J.Wang and CZHuang.Talanta, 2010, 81, 1339-1345], fluorescence [Y.Udnan, IDMcKelvie, MRGrace, J.Jakmunee and K.Grudpan.Talanta, 2005 , 66, 461-466], chromatography [JBQuintana, R.Rodil and T.Reemtsma.Anal.Chem., 2006, 78, 1644-1650], electrochemical method [WLCheng, JWSue, WCChen, JLChang and JMZen.Anal .Chem., 2010, 82, 1157-1161; L.Gilbert, ATA, Jenkins, S.Browning and JPHart.Anal.Biochem., 2009, 393, 242-247], ICP-MS [ZXGuo, Q.Cai and Z. Yang.J.Chromatogr.A, 2005, 1100, 160-167] and other methods. However, these methods are often time-consuming, and there are often serious interference phenomena.
半导体纳米粒子(又称量子点),具有独特而优异的光学性质如:宽的激发光谱、窄的发射光谱,发射波长与纳米粒子的粒径有关、优异的抗光漂白性等[A.P.Alivisatos,Science,1996,271,933-937]。因此,量子点受到了广泛关注,是一种非常有希望取代有机染料的荧光探针[J.M.Klostranec and W.C.W.Chan.Adv.Mater.,2006,18,1953-1964;M.J.Bruchez,M.Moronneand A.P.Alivisatos.Science,1998,281,2013-2016]。功能性量子点作为光学探针荧光法法检测Hg2+,Pb2+,Cu2+[Y.F.Chen and R.Z.Zeev,Anal.Chem.,2002,7,5132-5138;Z.X.Cai,H.Yang,Y.Zhang and X.P.Yan,Anal.Chim.Acta,2006,559,234-239;G.L.Wang,Y.M.Dong and Z.J.Li,Nanotechnology,2011,2,5503-5508]显示了良好的效果。另外,量子点在CN-[A.Touceda-Varela,E.I.Stevenson,J.A.Galve-Gasión,D.T.F.Dryden and J.C.Mareque-Rivas.Chem.Commun.,2008,1998-2000;W.J.Jin,M.T.Fernández-Argüelles,J.M.Costa-Fernández,R.Pereiro and A.Sanz-Medel.Chem.Commun.,2005,883-885;]、Cl-[M.J.Ruedas-Rama and E.A.H.Hall.Analyst,2008,133,1556-1566]、I-[H.Li,C.Han and L.Zhang.J.Mater.Chem.,2008,18,4543-4548]等阴离子的测定方面也显示了较强的优越性。上述研究都是基于离子对量子点的猝灭效应来检测的。但是,溶液中很多因素会导致量子点的荧光猝灭,会导致虚假信号。本发明利用“关-开”型原理建立了磷酸根离子的新型测定方法,消除了溶液中其它因素对量子点猝灭的干扰信号,成功地进行了磷酸根离子的快速、高效测定。据我们所知,该方法是量子点作为荧光探针首次在磷酸根离子测定方面的应用。Semiconductor nanoparticles (also known as quantum dots) have unique and excellent optical properties such as: wide excitation spectrum, narrow emission spectrum, emission wavelength is related to the particle size of nanoparticles, excellent photobleaching resistance, etc. [AP Alivisatos, Science , 1996, 271, 933-937]. Therefore, quantum dots have received extensive attention, and are a very promising fluorescent probe to replace organic dyes [JMKlostranec and WCWChan.Adv.Mater., 2006, 18, 1953-1964; , 281, 2013-2016]. Functional quantum dots as optical probes to detect Hg 2+ , Pb 2+ , Cu 2+ by fluorescence method [YFChen and RZZeev, Anal.Chem., 2002, 7, 5132-5138; ZXCai, H.Yang, Y.Zhang and XPYan, Anal.Chim.Acta, 2006, 559, 234-239; GLWang, YMDong and ZJLi, Nanotechnology, 2011, 2, 5503-5508] showed good results. In addition, quantum dots in CN - [A.Touceda-Varela, EIStevenson, JAGalve-Gasión, DTFDryden and JCMareque-Rivas.Chem.Commun., 2008, 1998-2000; WJJin, MT Fernández-Argüelles, JMCosta-Fernández, R.Pereiro and A.Sanz-Medel.Chem.Commun., 2005, 883-885;], Cl - [MJRuedas-Rama and EAHHall.Analyst, 2008, 133, 1556-1566], I - [H.Li, C.Han and L.Zhang.J.Mater.Chem., 2008, 18, 4543-4548] and other anions also show strong advantages. The above studies are all based on the quenching effect of ions on quantum dots. However, many factors in the solution can cause the fluorescence of quantum dots to be quenched, resulting in false signals. The invention uses the "off-on" principle to establish a novel determination method for phosphate ions, eliminates the interference signal of quantum dot quenching caused by other factors in the solution, and successfully performs rapid and efficient determination of phosphate ions. To the best of our knowledge, this method is the first application of quantum dots as fluorescent probes in the determination of phosphate ions.
发明内容: Invention content:
本发明的目的是提供一种快速、高效的磷酸根离子的测定方法;尤其是提供量子点作为纳米光学探针在阴离子测定方面的新用途。The purpose of the present invention is to provide a fast and efficient method for measuring phosphate ions; especially to provide a new application of quantum dots as nanometer optical probes in the determination of anions.
本发明的目的之一可通过如下技术措施来实现:One of purpose of the present invention can be realized by following technical measures:
a、一定量的表面修饰剂与80ml 0.001M的镉盐溶液混合后,加入0.1M的NaOH溶液调节溶液的pH;a. After mixing a certain amount of surface modifier with 80ml 0.001M cadmium salt solution, add 0.1M NaOH solution to adjust the pH of the solution;
b、上述混合液中,通入高纯氮气30分钟后,加入20ml 0.002M的Na2S(或者NaHSe、NaHTe)水溶液,继续通氮气搅拌下反应20分钟,得水溶性CdX(X代表硫、硒、碲)纳米材料;b. In the above mixed liquid, after passing high-purity nitrogen gas for 30 minutes, add 20ml of 0.002M Na 2 S (or NaHSe, NaHTe) aqueous solution, and continue to react under nitrogen gas stirring for 20 minutes to obtain water-soluble CdX (X represents sulfur, Selenium, tellurium) nanomaterials;
c、将0.25ml所得的水溶性CdX(X代表硫、硒、碲)纳米材料与0.65ml 0.1M的Tris-HCl缓冲溶液混合,加入一定浓度的稀土离子溶液,反应1分钟后,加入不同浓度的待测磷酸根离子标准溶液或者含有磷酸根离子的模拟水样进行荧光测定。c. Mix 0.25ml of the obtained water-soluble CdX (X represents sulfur, selenium, tellurium) nanomaterials with 0.65ml 0.1M Tris-HCl buffer solution, add a certain concentration of rare earth ion solution, react for 1 minute, and then add different concentrations The standard solution of phosphate ion to be tested or the simulated water sample containing phosphate ion is used for fluorescence measurement.
本发明的目的还可通过如下技术措施来实现:The purpose of the present invention can also be achieved through the following technical measures:
所述的CdX(X代表硫、硒、碲)纳米材料的表面修饰剂,分别选自巯基乙酸,巯基丙酸,半胱氨酸,柠檬酸三钠,酒石酸钠;所述的表面修饰剂的量为镉离子的物质的量的1-5倍;所述的镉盐溶液选自硝酸镉、硫酸镉、氯化镉、高氯酸镉中的一种;所述的合成CdX(X代表硫、硒、碲)纳米材料时调节的溶液pH为7.0-11.0;所述的稀土离子分别为镧、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、钇中的一种;所述的稀土离子的浓度为1×10-6-1×10-5mol/L。The surface modifier of the CdX (X represents sulfur, selenium, tellurium) nanomaterials is selected from thioglycolic acid, mercaptopropionic acid, cysteine, trisodium citrate, sodium tartrate respectively; the surface modifier of the Amount is 1-5 times of the amount of substance of cadmium ion; Described cadmium salt solution is selected from a kind of in cadmium nitrate, cadmium sulfate, cadmium chloride, cadmium perchlorate; Described synthetic CdX (X represents sulfur , selenium, tellurium) nanomaterials, the adjusted pH of the solution is 7.0-11.0; the rare earth ions are respectively lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, One of lutetium and yttrium; the concentration of the rare earth ions is 1×10 -6 -1×10 -5 mol/L.
本发明所制备的量子点探针在稀土离子的存在下荧光发生猝灭,磷酸根离子加入后荧光明显恢复。此“关-开”型探针能够有效的避免溶液中其它因素造成的荧光猝灭的干扰,选择性大大提高。The fluorescence of the quantum dot probe prepared by the invention is quenched in the presence of rare earth ions, and the fluorescence recovers obviously after the phosphate ion is added. The "off-on" probe can effectively avoid the interference of fluorescence quenching caused by other factors in the solution, and the selectivity is greatly improved.
附图说明:Description of drawings:
图1是发明制备的半胱氨酸修饰的CdS量子点(a)及其加入1.0×10-6mol/L的铈离子以及6.0×10-6mol/L的磷酸根离子的荧光光谱。Figure 1 is the fluorescence spectrum of the cysteine-modified CdS quantum dot (a) prepared by the invention and its addition of 1.0×10 -6 mol/L cerium ion and 6.0×10 -6 mol/L phosphate ion.
图2是发明制备的巯基乙酸修饰的CdS量子点的荧光强度随磷酸根离子浓度变化的关系图。Figure 2 is a graph showing the relationship between the fluorescence intensity of thioglycolic acid-modified CdS quantum dots and the concentration of phosphate ions.
图3是发明制备的巯基乙酸修饰的CdS量子点对其它阴离子的荧光响应图。Fig. 3 is a graph showing the fluorescence response of the thioglycolic acid-modified CdS quantum dots prepared by the invention to other anions.
图4是溶液pH的变化对磷酸根离子测定效果的影响。Fig. 4 is the influence of the change of solution pH on the determination effect of phosphate ion.
图5是Ce3+的浓度变化对磷酸根离子测定效果的影响。Fig. 5 is the effect of the concentration change of Ce 3+ on the determination effect of phosphate ion.
具体实施方式: Detailed ways:
实施实例1:Implementation example 1:
a、0.013g的半胱氨酸盐酸盐与80ml 0.001M的CdCl2溶液混合后,加入0.1M的NaOH溶液调节溶液的pH为7.5;a, 0.013g of cysteine hydrochloride mixed with 80ml of 0.001M CdCl solution, adding 0.1M of NaOH solution to adjust the pH of the solution to be 7.5;
b、上述混合液中,通入高纯氮气30分钟后,加入20ml 0.002M的Na2S水溶液,继续通氮气搅拌下反应20分钟,得水溶性CdS纳米材料;b. In the above mixed liquid, after passing high-purity nitrogen gas for 30 minutes, add 20ml of 0.002M Na 2 S aqueous solution, and continue to react under nitrogen gas stirring for 20 minutes to obtain water-soluble CdS nanomaterials;
c、将0.25ml所得的水溶性CdS纳米材料与0.65ml 0.1M的Tris-HCl缓冲溶液混合,加入0.5ml的1.0×10-4mol/L的硝酸镧溶液,反应1分钟后,加入不同浓度的待测磷酸根离子标准溶液或者含有磷酸根离子的模拟水样进行荧光测定。c. Mix 0.25ml of the obtained water-soluble CdS nanomaterial with 0.65ml of 0.1M Tris-HCl buffer solution, add 0.5ml of 1.0×10 -4 mol/L lanthanum nitrate solution, react for 1 minute, then add different concentrations The standard solution of phosphate ion to be tested or the simulated water sample containing phosphate ion is used for fluorescence measurement.
实施实例2:Implementation example 2:
a、10mL 0.01mol/L的巯基乙酸溶液与80ml 0.001M的Cd(ClO4)2溶液混合后,加入0.1M的NaOH溶液调节溶液的pH为9.0;a. After mixing 10mL 0.01mol/L thioglycolic acid solution with 80ml 0.001M Cd(ClO 4 ) 2 solution, add 0.1M NaOH solution to adjust the pH of the solution to 9.0;
b、上述混合液中,通入高纯氮气30分钟后,加入20ml 0.002M的NaHSe水溶液,继续通氮气搅拌下反应20分钟,得水溶性CdSe纳米材料;b. In the above mixed solution, after feeding high-purity nitrogen gas for 30 minutes, add 20ml of 0.002M NaHSe aqueous solution, and continue to react under nitrogen gas stirring for 20 minutes to obtain water-soluble CdSe nanomaterials;
c、将0.25ml所得的水溶性CdSe纳米材料与0.65ml 0.1M的Tris-HCl缓冲溶液混合,加入0.1ml的1.0×10-4mol/L的硫酸铈(III)溶液,反应1分钟后,加入不同浓度的待测磷酸根离子标准溶液进行荧光测定。c. Mix 0.25ml of the obtained water-soluble CdSe nanomaterial with 0.65ml of 0.1M Tris-HCl buffer solution, add 0.1ml of 1.0×10 -4 mol/L cerium (III) sulfate solution, and react for 1 minute, Add different concentrations of phosphate ion standard solution to be tested for fluorescence measurement.
实施实例3:Implementation example 3:
a、0.118g的二水合柠檬酸三钠与80ml 0.001M的Cd(ClO4)2溶液混合后,加入0.1M的NaOH溶液调节溶液的pH为7.0;a, 0.118g of trisodium citrate dihydrate and 80ml of 0.001M Cd(ClO 4 ) 2 solution were mixed, and then 0.1M of NaOH solution was added to adjust the pH of the solution to 7.0;
b、上述混合液中,通入高纯氮气30分钟后,加入20ml 0.002M的NaHTe水溶液,继续通氮气搅拌下反应20分钟,得水溶性CdTe纳米材料;b. In the above mixed solution, after feeding high-purity nitrogen for 30 minutes, add 20ml of 0.002M NaHTe aqueous solution, and continue to react for 20 minutes under nitrogen stirring to obtain water-soluble CdTe nanomaterials;
c、将0.25ml所得的水溶性CdTe纳米材料与0.65ml 0.1M的Tris-HCl缓冲溶液混合,加入0.1ml的1.0×10-4mol/L的硝酸铕溶液(用Eu2O3加硝酸溶解后的水溶液加热将蒸发掉硝酸制得),反应1分钟后,加入含有1.0×10-5mol/L磷酸根离子的模拟水样1mL进行荧光测定。c. Mix 0.25ml of the obtained water-soluble CdTe nanomaterial with 0.65ml of 0.1M Tris-HCl buffer solution, add 0.1ml of 1.0×10 -4 mol/L europium nitrate solution (dissolve with Eu 2 O 3 and nitric acid After the aqueous solution is heated to evaporate nitric acid), after reacting for 1 minute, add 1 mL of simulated water sample containing 1.0×10 -5 mol/L phosphate ion for fluorescence measurement.
实施实例4:Implementation example 4:
a、0.100g的酒石酸二钠与80ml 0.001M的Cd(NO3)2溶液混合后,加入0.1M的NaOH溶液调节溶液的pH为11.0;a, 0.100g of disodium tartrate mixed with 80ml of 0.001M Cd(NO 3 ) 2 solution, adding 0.1M NaOH solution to adjust the pH of the solution to 11.0;
b、上述混合液中,通入高纯氮气30分钟后,加入20ml 0.002M的NaHTe水溶液,继续通氮气搅拌下反应20分钟,得水溶性CdTe纳米材料;b. In the above mixed solution, after feeding high-purity nitrogen for 30 minutes, add 20ml of 0.002M NaHTe aqueous solution, and continue to react for 20 minutes under nitrogen stirring to obtain water-soluble CdTe nanomaterials;
c、将0.25ml所得的水溶性CdTe纳米材料与0.65ml 0.1M的Tris-HCl缓冲溶液混合,加入0.5ml的1.0×10-4mol/L的硝酸铕溶液(用Eu2O3加硝酸溶解后的水溶液加热将蒸发掉硝酸制得),反应1分钟后,加入含有1.0×10-5mol/L磷酸根离子的模拟水样1mL进行荧光测定。c. Mix 0.25ml of the resulting water-soluble CdTe nanomaterial with 0.65ml of 0.1M Tris-HCl buffer solution, add 0.5ml of 1.0×10 -4 mol/L europium nitrate solution (dissolve with Eu 2 O 3 and nitric acid After the aqueous solution is heated to evaporate nitric acid), after reacting for 1 minute, add 1 mL of simulated water sample containing 1.0×10 -5 mol/L phosphate ion for fluorescence measurement.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103993309A CN102495035A (en) | 2011-12-06 | 2011-12-06 | Quick and high-efficiency fluorescence detection method for phosphate ions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103993309A CN102495035A (en) | 2011-12-06 | 2011-12-06 | Quick and high-efficiency fluorescence detection method for phosphate ions |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102495035A true CN102495035A (en) | 2012-06-13 |
Family
ID=46186876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011103993309A Pending CN102495035A (en) | 2011-12-06 | 2011-12-06 | Quick and high-efficiency fluorescence detection method for phosphate ions |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102495035A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104017582A (en) * | 2014-06-12 | 2014-09-03 | 安徽师范大学 | Fluorescent probe and detection method of citrate in human urine |
CN104267029A (en) * | 2014-10-23 | 2015-01-07 | 攀枝花钢企欣宇化工有限公司 | Quantitative analysis method for phosphate radical |
CN106349167A (en) * | 2016-10-21 | 2017-01-25 | 齐齐哈尔大学 | Benzimidazole derivative phosphate anion fluorescence probe synthesis and application method |
CN106525806A (en) * | 2017-01-13 | 2017-03-22 | 中国农业大学 | Method for detecting ethrel by using fluorescent nitrogen doped carbon quantum dot |
CN107356577A (en) * | 2017-07-25 | 2017-11-17 | 陕西师范大学 | A kind of universal sulfotransferase activity assays |
CN110095434A (en) * | 2019-06-17 | 2019-08-06 | 广西师范大学 | A method of phosphate radical is measured with Resonance Rayleigh Scattering Spectra |
CN111257291A (en) * | 2020-01-20 | 2020-06-09 | 武汉理工大学 | A kind of quantitative detection method of phosphate ion and its application |
CN111351924A (en) * | 2018-12-20 | 2020-06-30 | 中国科学院福建物质结构研究所 | A near-infrared fluorescence immunoassay kit and detection method based on enzyme-induced phosphate ion activation |
CN111521594A (en) * | 2020-05-13 | 2020-08-11 | 重庆工程职业技术学院 | A new type of nanocomposite and its preparation method and application in sewage detection |
CN112280556A (en) * | 2020-11-14 | 2021-01-29 | 西北农林科技大学 | Preparation of phosphate radical responsive carbon quantum dots and application of phosphate radical responsive carbon quantum dots in fingerprint fluorescence identification |
CN114849659A (en) * | 2022-05-27 | 2022-08-05 | 湖南大学 | Preparation method and application of lanthanum-iron-loaded chitosan microsphere adsorbent for removing heavy metal cadmium and phosphate in water |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101973514A (en) * | 2010-09-07 | 2011-02-16 | 江南大学 | Synthesis and application of water-soluble ZnxCd(1-x)S nanocomposites for detecting copper ions |
-
2011
- 2011-12-06 CN CN2011103993309A patent/CN102495035A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101973514A (en) * | 2010-09-07 | 2011-02-16 | 江南大学 | Synthesis and application of water-soluble ZnxCd(1-x)S nanocomposites for detecting copper ions |
Non-Patent Citations (1)
Title |
---|
曹春 等: "基于自然尺寸分布的单一CdTe量子点样品中Eu(III)诱导的能量转移测定磷酸根离子", 《中国科学:化学》 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104017582A (en) * | 2014-06-12 | 2014-09-03 | 安徽师范大学 | Fluorescent probe and detection method of citrate in human urine |
CN104267029A (en) * | 2014-10-23 | 2015-01-07 | 攀枝花钢企欣宇化工有限公司 | Quantitative analysis method for phosphate radical |
CN106349167A (en) * | 2016-10-21 | 2017-01-25 | 齐齐哈尔大学 | Benzimidazole derivative phosphate anion fluorescence probe synthesis and application method |
CN106525806A (en) * | 2017-01-13 | 2017-03-22 | 中国农业大学 | Method for detecting ethrel by using fluorescent nitrogen doped carbon quantum dot |
CN106525806B (en) * | 2017-01-13 | 2019-05-21 | 中国农业大学 | A method of utilizing fluorescence nitrogen-doped carbon quantum dots characterization ethephon (CEPHA),2-(chloroethyl) phosphonic acid |
CN107356577A (en) * | 2017-07-25 | 2017-11-17 | 陕西师范大学 | A kind of universal sulfotransferase activity assays |
CN111351924A (en) * | 2018-12-20 | 2020-06-30 | 中国科学院福建物质结构研究所 | A near-infrared fluorescence immunoassay kit and detection method based on enzyme-induced phosphate ion activation |
CN110095434A (en) * | 2019-06-17 | 2019-08-06 | 广西师范大学 | A method of phosphate radical is measured with Resonance Rayleigh Scattering Spectra |
CN111257291A (en) * | 2020-01-20 | 2020-06-09 | 武汉理工大学 | A kind of quantitative detection method of phosphate ion and its application |
CN111257291B (en) * | 2020-01-20 | 2020-12-22 | 武汉理工大学 | A kind of quantitative detection method of phosphate ion and its application |
CN111521594A (en) * | 2020-05-13 | 2020-08-11 | 重庆工程职业技术学院 | A new type of nanocomposite and its preparation method and application in sewage detection |
CN112280556A (en) * | 2020-11-14 | 2021-01-29 | 西北农林科技大学 | Preparation of phosphate radical responsive carbon quantum dots and application of phosphate radical responsive carbon quantum dots in fingerprint fluorescence identification |
CN112280556B (en) * | 2020-11-14 | 2022-12-09 | 西北农林科技大学 | Preparation of a phosphate-responsive carbon quantum dot and its application in fingerprint fluorescence recognition |
CN114849659A (en) * | 2022-05-27 | 2022-08-05 | 湖南大学 | Preparation method and application of lanthanum-iron-loaded chitosan microsphere adsorbent for removing heavy metal cadmium and phosphate in water |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102495035A (en) | Quick and high-efficiency fluorescence detection method for phosphate ions | |
Zhang et al. | Fluorescent probes for “off–on” highly sensitive detection of Hg2+ and L-cysteine based on nitrogen-doped carbon dots | |
Xu et al. | Fluorescent nitrogen and sulfur co-doped carbon dots from casein and their applications for sensitive detection of Hg2+ and biothiols and cellular imaging | |
Liu et al. | Sensitive and selective detection of Hg 2+ and Cu 2+ ions by fluorescent Ag nanoclusters synthesized via a hydrothermal method | |
Liu et al. | Cu nanoclusters-based ratiometric fluorescence probe for ratiometric and visualization detection of copper ions | |
Zhao et al. | Highly selective detection of phosphate in very complicated matrixes with an off–on fluorescent probe of europium-adjusted carbon dots | |
Lin et al. | A critical review of copper nanoclusters for monitoring of water quality | |
Chen et al. | Silver nanoclusters as fluorescent nanosensors for selective and sensitive nitrite detection | |
Zhou et al. | Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg 2+ and biothiols in complex matrices | |
Ran et al. | Ag nanoparticle-decorated graphene quantum dots for label-free, rapid and sensitive detection of Ag+ and biothiols | |
Liu et al. | Colorimetric sensing of copper (II) based on catalytic etching of gold nanoparticles | |
Liu et al. | Synthesis of highly fluorescent carbon dots as a dual-excitation rationmetric fluorescent probe for the fast detection of chlorogenic acid | |
Wang et al. | Fabrication of an “ion-imprinting” dual-emission quantum dot nanohybrid for selective fluorescence turn-on and ratiometric detection of cadmium ions | |
Yao et al. | A Eu3+-based high sensitivity ratiometric fluorescence sensor for determination of tetracycline combining bi-functional carbon dots by surface functionalization and heteroatom doping | |
Liu et al. | Branched polyethylenimine-functionalized carbon dots as sensitive and selective fluorescent probes for N-acetylcysteine via an off–on mechanism | |
Zou et al. | Synthesis in aqueous solution and characterisation of a new cobalt-doped ZnS quantum dot as a hybrid ratiometric chemosensor | |
Bhopate et al. | A highly selective and sensitive single click novel fluorescent off–on sensor for copper and sulfide ions detection directly in aqueous solution using curcumin nanoparticles | |
Zhao et al. | Synthesis of highly luminescent POSS-coated CdTe quantum dots and their application in trace Cu 2+ detection | |
Zhang et al. | Fluorescent method for the determination of sulfide anion with ZnS: Mn quantum dots | |
Chaiendoo et al. | A highly selective colorimetric sensor for ferrous ion based on polymethylacrylic acid-templated silver nanoclusters | |
Sha et al. | CdTe QDs functionalized mesoporous silica nanoparticles loaded with conjugated polymers: A facile sensing platform for cupric (II) ion detection in water through FRET | |
Tang et al. | A novel method for iodate determination using cadmium sulfide quantum dots as fluorescence probes | |
Xie et al. | The synthesis of gold nanoclusters with high stability and their application in fluorometric detection for Hg2+ and cell imaging | |
CN103149183B (en) | Method for swiftly detecting Leersia hexandra middlechro (VI) ion concentration | |
CN103616363B (en) | With the copper ion rapid assay methods that the gold nano cluster of methionine protection is fluorescence probe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120613 |