CN102495035A - Quick and high-efficiency fluorescence detection method for phosphate ions - Google Patents

Quick and high-efficiency fluorescence detection method for phosphate ions Download PDF

Info

Publication number
CN102495035A
CN102495035A CN2011103993309A CN201110399330A CN102495035A CN 102495035 A CN102495035 A CN 102495035A CN 2011103993309 A CN2011103993309 A CN 2011103993309A CN 201110399330 A CN201110399330 A CN 201110399330A CN 102495035 A CN102495035 A CN 102495035A
Authority
CN
China
Prior art keywords
solution
fast
cadmium
phosphate ion
detection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011103993309A
Other languages
Chinese (zh)
Inventor
王光丽
焦焕军
董玉明
朱晓瑛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN2011103993309A priority Critical patent/CN102495035A/en
Publication of CN102495035A publication Critical patent/CN102495035A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明提供磷酸根离子的快速、高效荧光检测方法。稀土离子能使量子点的荧光发生猝灭,加入磷酸根离子后量子点的荧光得以有效地恢复。与最常见的基于量子点的荧光猝灭型探针相比,该新型“关-开”型量子点荧光探针能够有效的避免溶液中其它因素所导致的荧光猝灭,使测定的选择性大大提高。据我们所知,该方法是量子点首次在磷酸根离子测定方面的应用。本发明能够对磷酸根离子实现高灵敏测定,线性范围为1×10-7mol/L to 5×10-6mol/L,检测限为5×10-8mol/L。常见的阴离子几乎没有荧光响应信号,表明该方法具有良好的选择性,对模拟水样中的磷酸根离子的测定具有满意结果,有望用作水体中磷酸根离子的检测。

Figure 201110399330

The invention provides a fast and efficient fluorescent detection method for phosphate ions. Rare earth ions can quench the fluorescence of quantum dots, and the fluorescence of quantum dots can be effectively restored after adding phosphate ions. Compared with the most common fluorescent quenching probes based on quantum dots, the new "off-on" quantum dot fluorescent probes can effectively avoid fluorescence quenching caused by other factors in the solution, making the determination more selective. Greatly improve. To our knowledge, this method is the first application of quantum dots in the determination of phosphate ions. The invention can realize highly sensitive determination of phosphate ion, the linear range is 1×10 -7 mol/L to 5×10 -6 mol/L, and the detection limit is 5×10 -8 mol/L. Common anions have almost no fluorescence response signal, indicating that the method has good selectivity, and has satisfactory results for the determination of phosphate ions in simulated water samples, and is expected to be used for the detection of phosphate ions in water.

Figure 201110399330

Description

磷酸根离子的快速、高效荧光检测方法A Rapid and Efficient Fluorescent Detection Method for Phosphate Ions

技术领域: Technical field:

本发明涉及分析检测领域,尤其涉及水溶性、高稳定性的量子点光学探针的合成方法及其在荧光检测水体中磷酸根离子方面的应用。The invention relates to the field of analysis and detection, in particular to a synthesis method of a water-soluble and highly stable quantum dot optical probe and its application in fluorescence detection of phosphate ions in water bodies.

背景技术: Background technique:

磷酸根离子在众多涉及生命、环境及化学过程中起着举足轻重的作用[P.D.Beer and E.J.Hayes,Coord.Chem.Rev.,2003,240,167-189.]。人们日常生活中洗涤用品及农田施肥均会产生磷酸根离子的排放,造成天然水体中磷酸根的含量不断增大。但水中磷含量过高(>0.2mg·L-1),则会使水体营养化富集,造成藻类及其它水生植物公害的过度繁殖,致使水质恶化,给水体带来异味,造成环境污染[H.P.Jarvie,C.Neal,P.J.A.Withers,A.Robinson and N.Salter,Hydrol.Earth Syst.Sci.,2003,7,722-743;P.Stalnacke,S.M.Vandsemb,A.Vassiljev,A.Grimvalland G.Jolankal,Water Sci.Technol.,2004,49,29-36;P.W.Balls,A.Macdonald,K.Pugh and A.C.Edwards,Environ.Pollut.,1995,90,311-321]。而造成了对环境的污染,因此,环境中磷酸根离子的检测具有现实意义。目前报道的磷酸根离子的测定方法主要有分光光度法[F.Pena-Pereira,N.Cabaleiro,I.de la Calle,M.Costas,S.Gil,I.Lavilla and C.Bendicho.Talanta,2011,85,1100-1104;C.M.Li,Y.F.Li,J.Wang and C.Z.Huang.Talanta,2010,81,1339-1345]、荧光法[Y.Udnan,I.D.McKelvie,M.R.Grace,J.Jakmunee and K.Grudpan.Talanta,2005,66,461-466]、色谱法[J.B.Quintana,R.Rodil and T.Reemtsma.Anal.Chem.,2006,78,1644-1650]、电化学法[W.L.Cheng,J.W.Sue,W.C.Chen,J.L.Chang and J.M.Zen.Anal.Chem.,2010,82,1157-1161;L.Gilbert,A.T.A.Jenkins,S.Browning and J.P.Hart.Anal.Biochem.,2009,393,242-247]、ICP-MS[Z.X.Guo,Q.Cai and Z.Yang.J.Chromatogr.A,2005,1100,160-167]等方法。但是这些方法往往比较耗时,而且往往存在较为严重的干扰现象。Phosphate ion plays a pivotal role in many processes involving life, environment and chemistry [PDBeer and EJHayes, Coord.Chem.Rev., 2003, 240, 167-189.]. People's daily washing products and farmland fertilization will produce the discharge of phosphate ions, resulting in the increasing content of phosphate in natural water. However, if the phosphorus content in the water is too high (>0.2mg·L -1 ), it will make the water body nutrient-enriched, causing excessive reproduction of algae and other aquatic plant hazards, resulting in deterioration of water quality, bringing peculiar smell to the water body, and causing environmental pollution[ HP Jarvie, C. Neal, PJA Withers, A. Robinson and N. Salter, Hydrol. Earth Syst. Sci., 2003, 7, 722-743; P. Stalnacke, SM Vandsemb, A. Vassiljev, A. Grimvalland G. Jolankal, Water Sci. Technol., 2004, 49, 29-36; PW Balls, A. Macdonald, K. Pugh and ACE Edwards, Environ. Pollut., 1995, 90, 311-321]. And caused the pollution to the environment, therefore, the detection of phosphate ion in the environment has practical significance. Currently reported methods for the determination of phosphate ions mainly include spectrophotometry [F.Pena-Pereira, N.Cabaleiro, I.de la Calle, M.Costas, S.Gil, I.Lavilla and C.Bendicho.Talanta, 2011 , 85, 1100-1104; CMLi, YFLi, J.Wang and CZHuang.Talanta, 2010, 81, 1339-1345], fluorescence [Y.Udnan, IDMcKelvie, MRGrace, J.Jakmunee and K.Grudpan.Talanta, 2005 , 66, 461-466], chromatography [JBQuintana, R.Rodil and T.Reemtsma.Anal.Chem., 2006, 78, 1644-1650], electrochemical method [WLCheng, JWSue, WCChen, JLChang and JMZen.Anal .Chem., 2010, 82, 1157-1161; L.Gilbert, ATA, Jenkins, S.Browning and JPHart.Anal.Biochem., 2009, 393, 242-247], ICP-MS [ZXGuo, Q.Cai and Z. Yang.J.Chromatogr.A, 2005, 1100, 160-167] and other methods. However, these methods are often time-consuming, and there are often serious interference phenomena.

半导体纳米粒子(又称量子点),具有独特而优异的光学性质如:宽的激发光谱、窄的发射光谱,发射波长与纳米粒子的粒径有关、优异的抗光漂白性等[A.P.Alivisatos,Science,1996,271,933-937]。因此,量子点受到了广泛关注,是一种非常有希望取代有机染料的荧光探针[J.M.Klostranec and W.C.W.Chan.Adv.Mater.,2006,18,1953-1964;M.J.Bruchez,M.Moronneand A.P.Alivisatos.Science,1998,281,2013-2016]。功能性量子点作为光学探针荧光法法检测Hg2+,Pb2+,Cu2+[Y.F.Chen and R.Z.Zeev,Anal.Chem.,2002,7,5132-5138;Z.X.Cai,H.Yang,Y.Zhang and X.P.Yan,Anal.Chim.Acta,2006,559,234-239;G.L.Wang,Y.M.Dong and Z.J.Li,Nanotechnology,2011,2,5503-5508]显示了良好的效果。另外,量子点在CN-[A.Touceda-Varela,E.I.Stevenson,J.A.Galve-Gasión,D.T.F.Dryden and J.C.Mareque-Rivas.Chem.Commun.,2008,1998-2000;W.J.Jin,M.T.Fernández-Argüelles,J.M.Costa-Fernández,R.Pereiro and A.Sanz-Medel.Chem.Commun.,2005,883-885;]、Cl-[M.J.Ruedas-Rama and E.A.H.Hall.Analyst,2008,133,1556-1566]、I-[H.Li,C.Han and L.Zhang.J.Mater.Chem.,2008,18,4543-4548]等阴离子的测定方面也显示了较强的优越性。上述研究都是基于离子对量子点的猝灭效应来检测的。但是,溶液中很多因素会导致量子点的荧光猝灭,会导致虚假信号。本发明利用“关-开”型原理建立了磷酸根离子的新型测定方法,消除了溶液中其它因素对量子点猝灭的干扰信号,成功地进行了磷酸根离子的快速、高效测定。据我们所知,该方法是量子点作为荧光探针首次在磷酸根离子测定方面的应用。Semiconductor nanoparticles (also known as quantum dots) have unique and excellent optical properties such as: wide excitation spectrum, narrow emission spectrum, emission wavelength is related to the particle size of nanoparticles, excellent photobleaching resistance, etc. [AP Alivisatos, Science , 1996, 271, 933-937]. Therefore, quantum dots have received extensive attention, and are a very promising fluorescent probe to replace organic dyes [JMKlostranec and WCWChan.Adv.Mater., 2006, 18, 1953-1964; , 281, 2013-2016]. Functional quantum dots as optical probes to detect Hg 2+ , Pb 2+ , Cu 2+ by fluorescence method [YFChen and RZZeev, Anal.Chem., 2002, 7, 5132-5138; ZXCai, H.Yang, Y.Zhang and XPYan, Anal.Chim.Acta, 2006, 559, 234-239; GLWang, YMDong and ZJLi, Nanotechnology, 2011, 2, 5503-5508] showed good results. In addition, quantum dots in CN - [A.Touceda-Varela, EIStevenson, JAGalve-Gasión, DTFDryden and JCMareque-Rivas.Chem.Commun., 2008, 1998-2000; WJJin, MT Fernández-Argüelles, JMCosta-Fernández, R.Pereiro and A.Sanz-Medel.Chem.Commun., 2005, 883-885;], Cl - [MJRuedas-Rama and EAHHall.Analyst, 2008, 133, 1556-1566], I - [H.Li, C.Han and L.Zhang.J.Mater.Chem., 2008, 18, 4543-4548] and other anions also show strong advantages. The above studies are all based on the quenching effect of ions on quantum dots. However, many factors in the solution can cause the fluorescence of quantum dots to be quenched, resulting in false signals. The invention uses the "off-on" principle to establish a novel determination method for phosphate ions, eliminates the interference signal of quantum dot quenching caused by other factors in the solution, and successfully performs rapid and efficient determination of phosphate ions. To the best of our knowledge, this method is the first application of quantum dots as fluorescent probes in the determination of phosphate ions.

发明内容: Invention content:

本发明的目的是提供一种快速、高效的磷酸根离子的测定方法;尤其是提供量子点作为纳米光学探针在阴离子测定方面的新用途。The purpose of the present invention is to provide a fast and efficient method for measuring phosphate ions; especially to provide a new application of quantum dots as nanometer optical probes in the determination of anions.

本发明的目的之一可通过如下技术措施来实现:One of purpose of the present invention can be realized by following technical measures:

a、一定量的表面修饰剂与80ml 0.001M的镉盐溶液混合后,加入0.1M的NaOH溶液调节溶液的pH;a. After mixing a certain amount of surface modifier with 80ml 0.001M cadmium salt solution, add 0.1M NaOH solution to adjust the pH of the solution;

b、上述混合液中,通入高纯氮气30分钟后,加入20ml 0.002M的Na2S(或者NaHSe、NaHTe)水溶液,继续通氮气搅拌下反应20分钟,得水溶性CdX(X代表硫、硒、碲)纳米材料;b. In the above mixed liquid, after passing high-purity nitrogen gas for 30 minutes, add 20ml of 0.002M Na 2 S (or NaHSe, NaHTe) aqueous solution, and continue to react under nitrogen gas stirring for 20 minutes to obtain water-soluble CdX (X represents sulfur, Selenium, tellurium) nanomaterials;

c、将0.25ml所得的水溶性CdX(X代表硫、硒、碲)纳米材料与0.65ml 0.1M的Tris-HCl缓冲溶液混合,加入一定浓度的稀土离子溶液,反应1分钟后,加入不同浓度的待测磷酸根离子标准溶液或者含有磷酸根离子的模拟水样进行荧光测定。c. Mix 0.25ml of the obtained water-soluble CdX (X represents sulfur, selenium, tellurium) nanomaterials with 0.65ml 0.1M Tris-HCl buffer solution, add a certain concentration of rare earth ion solution, react for 1 minute, and then add different concentrations The standard solution of phosphate ion to be tested or the simulated water sample containing phosphate ion is used for fluorescence measurement.

本发明的目的还可通过如下技术措施来实现:The purpose of the present invention can also be achieved through the following technical measures:

所述的CdX(X代表硫、硒、碲)纳米材料的表面修饰剂,分别选自巯基乙酸,巯基丙酸,半胱氨酸,柠檬酸三钠,酒石酸钠;所述的表面修饰剂的量为镉离子的物质的量的1-5倍;所述的镉盐溶液选自硝酸镉、硫酸镉、氯化镉、高氯酸镉中的一种;所述的合成CdX(X代表硫、硒、碲)纳米材料时调节的溶液pH为7.0-11.0;所述的稀土离子分别为镧、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、钇中的一种;所述的稀土离子的浓度为1×10-6-1×10-5mol/L。The surface modifier of the CdX (X represents sulfur, selenium, tellurium) nanomaterials is selected from thioglycolic acid, mercaptopropionic acid, cysteine, trisodium citrate, sodium tartrate respectively; the surface modifier of the Amount is 1-5 times of the amount of substance of cadmium ion; Described cadmium salt solution is selected from a kind of in cadmium nitrate, cadmium sulfate, cadmium chloride, cadmium perchlorate; Described synthetic CdX (X represents sulfur , selenium, tellurium) nanomaterials, the adjusted pH of the solution is 7.0-11.0; the rare earth ions are respectively lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, One of lutetium and yttrium; the concentration of the rare earth ions is 1×10 -6 -1×10 -5 mol/L.

本发明所制备的量子点探针在稀土离子的存在下荧光发生猝灭,磷酸根离子加入后荧光明显恢复。此“关-开”型探针能够有效的避免溶液中其它因素造成的荧光猝灭的干扰,选择性大大提高。The fluorescence of the quantum dot probe prepared by the invention is quenched in the presence of rare earth ions, and the fluorescence recovers obviously after the phosphate ion is added. The "off-on" probe can effectively avoid the interference of fluorescence quenching caused by other factors in the solution, and the selectivity is greatly improved.

附图说明:Description of drawings:

图1是发明制备的半胱氨酸修饰的CdS量子点(a)及其加入1.0×10-6mol/L的铈离子以及6.0×10-6mol/L的磷酸根离子的荧光光谱。Figure 1 is the fluorescence spectrum of the cysteine-modified CdS quantum dot (a) prepared by the invention and its addition of 1.0×10 -6 mol/L cerium ion and 6.0×10 -6 mol/L phosphate ion.

图2是发明制备的巯基乙酸修饰的CdS量子点的荧光强度随磷酸根离子浓度变化的关系图。Figure 2 is a graph showing the relationship between the fluorescence intensity of thioglycolic acid-modified CdS quantum dots and the concentration of phosphate ions.

图3是发明制备的巯基乙酸修饰的CdS量子点对其它阴离子的荧光响应图。Fig. 3 is a graph showing the fluorescence response of the thioglycolic acid-modified CdS quantum dots prepared by the invention to other anions.

图4是溶液pH的变化对磷酸根离子测定效果的影响。Fig. 4 is the influence of the change of solution pH on the determination effect of phosphate ion.

图5是Ce3+的浓度变化对磷酸根离子测定效果的影响。Fig. 5 is the effect of the concentration change of Ce 3+ on the determination effect of phosphate ion.

具体实施方式: Detailed ways:

实施实例1:Implementation example 1:

a、0.013g的半胱氨酸盐酸盐与80ml 0.001M的CdCl2溶液混合后,加入0.1M的NaOH溶液调节溶液的pH为7.5;a, 0.013g of cysteine hydrochloride mixed with 80ml of 0.001M CdCl solution, adding 0.1M of NaOH solution to adjust the pH of the solution to be 7.5;

b、上述混合液中,通入高纯氮气30分钟后,加入20ml 0.002M的Na2S水溶液,继续通氮气搅拌下反应20分钟,得水溶性CdS纳米材料;b. In the above mixed liquid, after passing high-purity nitrogen gas for 30 minutes, add 20ml of 0.002M Na 2 S aqueous solution, and continue to react under nitrogen gas stirring for 20 minutes to obtain water-soluble CdS nanomaterials;

c、将0.25ml所得的水溶性CdS纳米材料与0.65ml 0.1M的Tris-HCl缓冲溶液混合,加入0.5ml的1.0×10-4mol/L的硝酸镧溶液,反应1分钟后,加入不同浓度的待测磷酸根离子标准溶液或者含有磷酸根离子的模拟水样进行荧光测定。c. Mix 0.25ml of the obtained water-soluble CdS nanomaterial with 0.65ml of 0.1M Tris-HCl buffer solution, add 0.5ml of 1.0×10 -4 mol/L lanthanum nitrate solution, react for 1 minute, then add different concentrations The standard solution of phosphate ion to be tested or the simulated water sample containing phosphate ion is used for fluorescence measurement.

实施实例2:Implementation example 2:

a、10mL 0.01mol/L的巯基乙酸溶液与80ml 0.001M的Cd(ClO4)2溶液混合后,加入0.1M的NaOH溶液调节溶液的pH为9.0;a. After mixing 10mL 0.01mol/L thioglycolic acid solution with 80ml 0.001M Cd(ClO 4 ) 2 solution, add 0.1M NaOH solution to adjust the pH of the solution to 9.0;

b、上述混合液中,通入高纯氮气30分钟后,加入20ml 0.002M的NaHSe水溶液,继续通氮气搅拌下反应20分钟,得水溶性CdSe纳米材料;b. In the above mixed solution, after feeding high-purity nitrogen gas for 30 minutes, add 20ml of 0.002M NaHSe aqueous solution, and continue to react under nitrogen gas stirring for 20 minutes to obtain water-soluble CdSe nanomaterials;

c、将0.25ml所得的水溶性CdSe纳米材料与0.65ml 0.1M的Tris-HCl缓冲溶液混合,加入0.1ml的1.0×10-4mol/L的硫酸铈(III)溶液,反应1分钟后,加入不同浓度的待测磷酸根离子标准溶液进行荧光测定。c. Mix 0.25ml of the obtained water-soluble CdSe nanomaterial with 0.65ml of 0.1M Tris-HCl buffer solution, add 0.1ml of 1.0×10 -4 mol/L cerium (III) sulfate solution, and react for 1 minute, Add different concentrations of phosphate ion standard solution to be tested for fluorescence measurement.

实施实例3:Implementation example 3:

a、0.118g的二水合柠檬酸三钠与80ml 0.001M的Cd(ClO4)2溶液混合后,加入0.1M的NaOH溶液调节溶液的pH为7.0;a, 0.118g of trisodium citrate dihydrate and 80ml of 0.001M Cd(ClO 4 ) 2 solution were mixed, and then 0.1M of NaOH solution was added to adjust the pH of the solution to 7.0;

b、上述混合液中,通入高纯氮气30分钟后,加入20ml 0.002M的NaHTe水溶液,继续通氮气搅拌下反应20分钟,得水溶性CdTe纳米材料;b. In the above mixed solution, after feeding high-purity nitrogen for 30 minutes, add 20ml of 0.002M NaHTe aqueous solution, and continue to react for 20 minutes under nitrogen stirring to obtain water-soluble CdTe nanomaterials;

c、将0.25ml所得的水溶性CdTe纳米材料与0.65ml 0.1M的Tris-HCl缓冲溶液混合,加入0.1ml的1.0×10-4mol/L的硝酸铕溶液(用Eu2O3加硝酸溶解后的水溶液加热将蒸发掉硝酸制得),反应1分钟后,加入含有1.0×10-5mol/L磷酸根离子的模拟水样1mL进行荧光测定。c. Mix 0.25ml of the obtained water-soluble CdTe nanomaterial with 0.65ml of 0.1M Tris-HCl buffer solution, add 0.1ml of 1.0×10 -4 mol/L europium nitrate solution (dissolve with Eu 2 O 3 and nitric acid After the aqueous solution is heated to evaporate nitric acid), after reacting for 1 minute, add 1 mL of simulated water sample containing 1.0×10 -5 mol/L phosphate ion for fluorescence measurement.

实施实例4:Implementation example 4:

a、0.100g的酒石酸二钠与80ml 0.001M的Cd(NO3)2溶液混合后,加入0.1M的NaOH溶液调节溶液的pH为11.0;a, 0.100g of disodium tartrate mixed with 80ml of 0.001M Cd(NO 3 ) 2 solution, adding 0.1M NaOH solution to adjust the pH of the solution to 11.0;

b、上述混合液中,通入高纯氮气30分钟后,加入20ml 0.002M的NaHTe水溶液,继续通氮气搅拌下反应20分钟,得水溶性CdTe纳米材料;b. In the above mixed solution, after feeding high-purity nitrogen for 30 minutes, add 20ml of 0.002M NaHTe aqueous solution, and continue to react for 20 minutes under nitrogen stirring to obtain water-soluble CdTe nanomaterials;

c、将0.25ml所得的水溶性CdTe纳米材料与0.65ml 0.1M的Tris-HCl缓冲溶液混合,加入0.5ml的1.0×10-4mol/L的硝酸铕溶液(用Eu2O3加硝酸溶解后的水溶液加热将蒸发掉硝酸制得),反应1分钟后,加入含有1.0×10-5mol/L磷酸根离子的模拟水样1mL进行荧光测定。c. Mix 0.25ml of the resulting water-soluble CdTe nanomaterial with 0.65ml of 0.1M Tris-HCl buffer solution, add 0.5ml of 1.0×10 -4 mol/L europium nitrate solution (dissolve with Eu 2 O 3 and nitric acid After the aqueous solution is heated to evaporate nitric acid), after reacting for 1 minute, add 1 mL of simulated water sample containing 1.0×10 -5 mol/L phosphate ion for fluorescence measurement.

Claims (6)

1.磷酸根离子的快速、高效荧光检测方法,其特征在于:1. the fast, efficient fluorescent detection method of phosphate ion, it is characterized in that: a、一定量的表面修饰剂与80ml 0.001M的镉盐溶液混合后,加入0.1M的NaOH溶液调节溶液的pH;a. After mixing a certain amount of surface modifier with 80ml 0.001M cadmium salt solution, add 0.1M NaOH solution to adjust the pH of the solution; b、上述混合液中,通入高纯氮气30分钟后,加入20ml 0.002M的Na2S(或者NaHSe、NaHTe)水溶液,继续通氮气搅拌下反应20分钟,得水溶性CdX(X代表硫、硒、碲)纳米材料;b. In the above mixed liquid, after passing high-purity nitrogen gas for 30 minutes, add 20ml of 0.002M Na 2 S (or NaHSe, NaHTe) aqueous solution, and continue to react under nitrogen gas stirring for 20 minutes to obtain water-soluble CdX (X represents sulfur, Selenium, tellurium) nanomaterials; c、将0.25ml所得的水溶性CdX(X代表硫、硒、碲)纳米材料与0.65ml 0.1M的Tris-HCl缓冲溶液混合,加入一定浓度的稀土离子溶液,反应1分钟后,加入不同浓度的待测磷酸根离子标准溶液或者含有磷酸根离子的模拟水样进行荧光测定。c. Mix 0.25ml of the obtained water-soluble CdX (X represents sulfur, selenium, tellurium) nanomaterials with 0.65ml 0.1M Tris-HCl buffer solution, add a certain concentration of rare earth ion solution, react for 1 minute, and then add different concentrations The standard solution of phosphate ion to be tested or the simulated water sample containing phosphate ion is used for fluorescence measurement. 2.根据权利要求1所述的磷酸根离子的快速、高效检测方法,其特征在于所述的CdS纳米材料的表面修饰剂,分别选自高巯基乙酸,巯基丙酸,半胱氨酸,柠檬酸三钠,酒石酸钠;所述的表面修饰剂的量为镉离子的物质的量的1-5倍。2. the fast, efficient detection method of phosphate ion according to claim 1 is characterized in that the surface modifier of described CdS nano material is selected from respectively homothioglycolic acid, mercaptopropionic acid, cysteine, lemon trisodium acid, sodium tartrate; the amount of the surface modifier is 1-5 times the amount of the cadmium ion. 3.根据权利要求1所述的磷酸根离子的快速、高效检测方法,其特征在于所述的镉盐溶液选自硝酸镉、硫酸镉、氯化镉、高氯酸镉中的一种。3. the fast, efficient detection method of phosphate ion according to claim 1 is characterized in that described cadmium salt solution is selected from the one in cadmium nitrate, cadmium sulfate, cadmium chloride, cadmium perchlorate. 4.根据权利要求1所述的磷酸根离子的快速、高效检测方法,其特征在于合成时调节的溶液pH为7.0-11.0。4. the fast, efficient detection method of phosphate ion according to claim 1, is characterized in that the solution pH that adjusts during synthesis is 7.0-11.0. 5.根据权利要求1所述的磷酸根离子的快速、高效检测方法,其特征在于选用的稀土离子分别为镧、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、钇中的一种。5. the fast, efficient detection method of phosphate ion according to claim 1 is characterized in that the rare earth ion selected is respectively lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, One of thulium, ytterbium, lutetium, and yttrium. 6.根据权利要求1所述的磷酸根离子的快速、高效检测方法,其特征在于选用的稀土离子的浓度为1×10-6-1×10-5mol/L。6. The method for fast and efficient detection of phosphate ions according to claim 1, characterized in that the concentration of the selected rare earth ions is 1×10 -6 -1×10 -5 mol/L.
CN2011103993309A 2011-12-06 2011-12-06 Quick and high-efficiency fluorescence detection method for phosphate ions Pending CN102495035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011103993309A CN102495035A (en) 2011-12-06 2011-12-06 Quick and high-efficiency fluorescence detection method for phosphate ions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011103993309A CN102495035A (en) 2011-12-06 2011-12-06 Quick and high-efficiency fluorescence detection method for phosphate ions

Publications (1)

Publication Number Publication Date
CN102495035A true CN102495035A (en) 2012-06-13

Family

ID=46186876

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011103993309A Pending CN102495035A (en) 2011-12-06 2011-12-06 Quick and high-efficiency fluorescence detection method for phosphate ions

Country Status (1)

Country Link
CN (1) CN102495035A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104017582A (en) * 2014-06-12 2014-09-03 安徽师范大学 Fluorescent probe and detection method of citrate in human urine
CN104267029A (en) * 2014-10-23 2015-01-07 攀枝花钢企欣宇化工有限公司 Quantitative analysis method for phosphate radical
CN106349167A (en) * 2016-10-21 2017-01-25 齐齐哈尔大学 Benzimidazole derivative phosphate anion fluorescence probe synthesis and application method
CN106525806A (en) * 2017-01-13 2017-03-22 中国农业大学 Method for detecting ethrel by using fluorescent nitrogen doped carbon quantum dot
CN107356577A (en) * 2017-07-25 2017-11-17 陕西师范大学 A kind of universal sulfotransferase activity assays
CN110095434A (en) * 2019-06-17 2019-08-06 广西师范大学 A method of phosphate radical is measured with Resonance Rayleigh Scattering Spectra
CN111257291A (en) * 2020-01-20 2020-06-09 武汉理工大学 A kind of quantitative detection method of phosphate ion and its application
CN111351924A (en) * 2018-12-20 2020-06-30 中国科学院福建物质结构研究所 A near-infrared fluorescence immunoassay kit and detection method based on enzyme-induced phosphate ion activation
CN111521594A (en) * 2020-05-13 2020-08-11 重庆工程职业技术学院 A new type of nanocomposite and its preparation method and application in sewage detection
CN112280556A (en) * 2020-11-14 2021-01-29 西北农林科技大学 Preparation of phosphate radical responsive carbon quantum dots and application of phosphate radical responsive carbon quantum dots in fingerprint fluorescence identification
CN114849659A (en) * 2022-05-27 2022-08-05 湖南大学 Preparation method and application of lanthanum-iron-loaded chitosan microsphere adsorbent for removing heavy metal cadmium and phosphate in water

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101973514A (en) * 2010-09-07 2011-02-16 江南大学 Synthesis and application of water-soluble ZnxCd(1-x)S nanocomposites for detecting copper ions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101973514A (en) * 2010-09-07 2011-02-16 江南大学 Synthesis and application of water-soluble ZnxCd(1-x)S nanocomposites for detecting copper ions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
曹春 等: "基于自然尺寸分布的单一CdTe量子点样品中Eu(III)诱导的能量转移测定磷酸根离子", 《中国科学:化学》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104017582A (en) * 2014-06-12 2014-09-03 安徽师范大学 Fluorescent probe and detection method of citrate in human urine
CN104267029A (en) * 2014-10-23 2015-01-07 攀枝花钢企欣宇化工有限公司 Quantitative analysis method for phosphate radical
CN106349167A (en) * 2016-10-21 2017-01-25 齐齐哈尔大学 Benzimidazole derivative phosphate anion fluorescence probe synthesis and application method
CN106525806A (en) * 2017-01-13 2017-03-22 中国农业大学 Method for detecting ethrel by using fluorescent nitrogen doped carbon quantum dot
CN106525806B (en) * 2017-01-13 2019-05-21 中国农业大学 A method of utilizing fluorescence nitrogen-doped carbon quantum dots characterization ethephon (CEPHA),2-(chloroethyl) phosphonic acid
CN107356577A (en) * 2017-07-25 2017-11-17 陕西师范大学 A kind of universal sulfotransferase activity assays
CN111351924A (en) * 2018-12-20 2020-06-30 中国科学院福建物质结构研究所 A near-infrared fluorescence immunoassay kit and detection method based on enzyme-induced phosphate ion activation
CN110095434A (en) * 2019-06-17 2019-08-06 广西师范大学 A method of phosphate radical is measured with Resonance Rayleigh Scattering Spectra
CN111257291A (en) * 2020-01-20 2020-06-09 武汉理工大学 A kind of quantitative detection method of phosphate ion and its application
CN111257291B (en) * 2020-01-20 2020-12-22 武汉理工大学 A kind of quantitative detection method of phosphate ion and its application
CN111521594A (en) * 2020-05-13 2020-08-11 重庆工程职业技术学院 A new type of nanocomposite and its preparation method and application in sewage detection
CN112280556A (en) * 2020-11-14 2021-01-29 西北农林科技大学 Preparation of phosphate radical responsive carbon quantum dots and application of phosphate radical responsive carbon quantum dots in fingerprint fluorescence identification
CN112280556B (en) * 2020-11-14 2022-12-09 西北农林科技大学 Preparation of a phosphate-responsive carbon quantum dot and its application in fingerprint fluorescence recognition
CN114849659A (en) * 2022-05-27 2022-08-05 湖南大学 Preparation method and application of lanthanum-iron-loaded chitosan microsphere adsorbent for removing heavy metal cadmium and phosphate in water

Similar Documents

Publication Publication Date Title
CN102495035A (en) Quick and high-efficiency fluorescence detection method for phosphate ions
Zhang et al. Fluorescent probes for “off–on” highly sensitive detection of Hg2+ and L-cysteine based on nitrogen-doped carbon dots
Xu et al. Fluorescent nitrogen and sulfur co-doped carbon dots from casein and their applications for sensitive detection of Hg2+ and biothiols and cellular imaging
Liu et al. Sensitive and selective detection of Hg 2+ and Cu 2+ ions by fluorescent Ag nanoclusters synthesized via a hydrothermal method
Liu et al. Cu nanoclusters-based ratiometric fluorescence probe for ratiometric and visualization detection of copper ions
Zhao et al. Highly selective detection of phosphate in very complicated matrixes with an off–on fluorescent probe of europium-adjusted carbon dots
Lin et al. A critical review of copper nanoclusters for monitoring of water quality
Chen et al. Silver nanoclusters as fluorescent nanosensors for selective and sensitive nitrite detection
Zhou et al. Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg 2+ and biothiols in complex matrices
Ran et al. Ag nanoparticle-decorated graphene quantum dots for label-free, rapid and sensitive detection of Ag+ and biothiols
Liu et al. Colorimetric sensing of copper (II) based on catalytic etching of gold nanoparticles
Liu et al. Synthesis of highly fluorescent carbon dots as a dual-excitation rationmetric fluorescent probe for the fast detection of chlorogenic acid
Wang et al. Fabrication of an “ion-imprinting” dual-emission quantum dot nanohybrid for selective fluorescence turn-on and ratiometric detection of cadmium ions
Yao et al. A Eu3+-based high sensitivity ratiometric fluorescence sensor for determination of tetracycline combining bi-functional carbon dots by surface functionalization and heteroatom doping
Liu et al. Branched polyethylenimine-functionalized carbon dots as sensitive and selective fluorescent probes for N-acetylcysteine via an off–on mechanism
Zou et al. Synthesis in aqueous solution and characterisation of a new cobalt-doped ZnS quantum dot as a hybrid ratiometric chemosensor
Bhopate et al. A highly selective and sensitive single click novel fluorescent off–on sensor for copper and sulfide ions detection directly in aqueous solution using curcumin nanoparticles
Zhao et al. Synthesis of highly luminescent POSS-coated CdTe quantum dots and their application in trace Cu 2+ detection
Zhang et al. Fluorescent method for the determination of sulfide anion with ZnS: Mn quantum dots
Chaiendoo et al. A highly selective colorimetric sensor for ferrous ion based on polymethylacrylic acid-templated silver nanoclusters
Sha et al. CdTe QDs functionalized mesoporous silica nanoparticles loaded with conjugated polymers: A facile sensing platform for cupric (II) ion detection in water through FRET
Tang et al. A novel method for iodate determination using cadmium sulfide quantum dots as fluorescence probes
Xie et al. The synthesis of gold nanoclusters with high stability and their application in fluorometric detection for Hg2+ and cell imaging
CN103149183B (en) Method for swiftly detecting Leersia hexandra middlechro (VI) ion concentration
CN103616363B (en) With the copper ion rapid assay methods that the gold nano cluster of methionine protection is fluorescence probe

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20120613