CN102494689A - 基于角速度的欧拉角多项式类近似输出方法 - Google Patents

基于角速度的欧拉角多项式类近似输出方法 Download PDF

Info

Publication number
CN102494689A
CN102494689A CN2011103879712A CN201110387971A CN102494689A CN 102494689 A CN102494689 A CN 102494689A CN 2011103879712 A CN2011103879712 A CN 2011103879712A CN 201110387971 A CN201110387971 A CN 201110387971A CN 102494689 A CN102494689 A CN 102494689A
Authority
CN
China
Prior art keywords
angle
omega
angular velocity
pitching
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011103879712A
Other languages
English (en)
Inventor
史忠科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN2011103879712A priority Critical patent/CN102494689A/zh
Publication of CN102494689A publication Critical patent/CN102494689A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

本发明公开了一种基于角速度的欧拉角多项式类近似输出方法,用于解决现有的飞行器机动飞行时欧拉角输出精度差的技术问题。技术方案是通过引入多个参数并采用可以描述任意有限的统一多项式对滚转、俯仰、偏航角速度p,q,r进行近似逼近描述,可以根据工程精度的要求,可以事先定义常数矩阵M,减少对滚转、俯仰、偏航角速度p,q,r多项式描述的阶次,按照依次求解俯仰角、滚转角、偏航角,直接对欧拉角的表达式进行高阶逼近积分,使得欧拉角的求解按照超线性逼近,保证了确定欧拉角的时间更新迭代计算精度,从而提高了惯性设备输出飞行姿态的准确性。

Description

基于角速度的欧拉角多项式类近似输出方法
技术领域
本发明涉及一种飞行器机动飞行姿态确定方法,特别是涉及一种基于角速度的欧拉角多项式类近似输出方法。
背景技术
惯性设备在运动体导航和控制中具有重要作用;刚体运动的加速度、角速度和姿态等通常都依赖于惯性设备输出,因此提高惯性设备的输出精度具有明确的实际意义;在惯性设备中,加速度采用加速度计、角速度采用角速率陀螺直接测量方式,刚体的姿态精度要求很高时如飞行试验等采用姿态陀螺测量,但在很多应用领域都有角速度等测量直接解算输出;主要原因是由于动态姿态传感器价格昂贵、体积大,导致很多飞行器采用角速率陀螺等解算三个欧拉角,使得姿态时间更新输出成为导航等核心内容,也使其成为影响惯导系统精度的主要因素之一,因此设计和采用合理的姿态时间更新输出方法就成为研究的热点课题;从公开发表的文献中对姿态输出主要基于角速度采用欧拉方程直接近似法或采用近似龙格库塔方法解算(孙丽、秦永元,捷联惯导系统姿态算法比较,中国惯性技术学报,2006,Vol.14(3):6-10;Pu Li,Wang TianMiao,Liang JianHong,Wang Song,An Attitude Estimate Approach using MEMS Sensors forSmall UAVs,2006,IEEE International Conference on Industrial Informatics,1113-1117);由于欧拉方程中三个欧拉角互相耦合,属于非线性微分方程,在不同初始条件和不同飞行状态下的误差范围不同,难以保证实际工程要求的精度。
发明内容
为了克服现有的飞行器机动飞行时欧拉角输出精度差的问题,本发明提供一种基于角速度的欧拉角多项式类近似输出方法。该方法通过引入多个参数并采用可以描述任意有限的统一多项式对滚转、俯仰、偏航角速度p,q,r进行近似逼近描述,通过按照依次求解俯仰角、滚转角、偏航角,直接对欧拉角的表达式进行高阶逼近积分,使得欧拉角的求解按照超线性逼近,从而可以保证确定欧拉角的时间更新迭代计算精度和惯性单元的输出精度。
本发明解决其技术问题所采用的技术方案是:一种基于角速度的欧拉角多项式类近似输出方法,其特点是包括以下步骤:
1、(a)根据欧拉方程:
Figure BDA0000114040050000021
式中:
Figure BDA0000114040050000022
ψ分别指滚转、俯仰、偏航角;p,q,r分别为滚转、俯仰、偏航角速度;全文参数定义相同;这三个欧拉角的计算按照依次求解俯仰角、滚转角、偏航角的步骤进行;滚转、俯仰、偏航角速度p,q,r的展开式分别为
p(t)=[p0 p1 L pn-1 pn]M[1 t L tn-1 tn]T
q(t)=[q0 q1 L qn-1 qn]M[1 t L tn-1 tn]T
r(t)=[r0 r1 L rn-1 rn]M[1 t L tn-1 tn]T
其中:M为事先定义的常数矩阵;定义T为采样周期,全文符号定义相同;
(b)俯仰角的时间更新求解式为:
Figure BDA0000114040050000023
式中:
a 1 = 1 + p 0 p 1 L p n - 1 p n MΩ ( t ) | kT ( k + 1 ) T H T M T p 0 p 1 L p n - 1 p n T
+ q 0 q 1 L q n - 1 q n MΩ ( t ) | kT ( k + 1 ) T H T M T q 0 q 1 L q n - 1 q n T
+ r 0 r 1 L r n - 1 r n MΩ ( t ) | kT ( k + 1 ) T H T M T r 0 r 1 L r n - 1 r n T
- p 0 p 1 L p n - 1 p n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T .
ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T M T p 0 p 1 L p n - 1 p n T
- q 0 q 1 L q n - 1 q n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T .
ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T M T q 0 q 1 L q n - 1 q n T
- r 0 r 1 L r n - 1 r n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T .
ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T M T r 0 r 1 L r n - 1 r n T
+ 0.25 { p 0 p 1 L p n - 1 p n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
+ 0.25 { q 0 q 1 L q n - 1 q n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
- 0.25 { r 0 r 1 L r n - 1 r n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
a 2 = q 0 q 1 L q n - 1 q n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
- 0.5 r 0 r 1 L r n - 1 r n MΩ ( t ) | kT ( k + 1 ) T H T M T p 0 p 1 L p n - 1 p n T
+ 0.5 r 0 r 1 L r n - 1 r n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
· ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T M T p 0 p 1 L p n - 1 p n T
a 3 = r 0 r 1 L r n - 1 r n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T
+ 0.5 q 0 q 1 L q n - 1 q n MΩ ( t ) | kT ( k + 1 ) T H T M T p 0 p 1 L p n - 1 p n T
- 0.5 q 0 q 1 L q n - 1 q n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
· ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T M T p 0 p 1 L p n - 1 p n T
H = diag { 1 , 1 2 , 1 3 , L , 1 n , 1 n + 1 } ;
Ω ( t ) = 1 2 t 2 1 3 t 3 L 1 n + 1 t n + 1 1 n + 2 t n + 2 1 3 t 3 1 4 t 4 L 1 n + 2 t n + 2 1 n + 3 t n + 3 M M O M M 1 n + 1 t n + 1 1 n + 2 t n + 2 L 1 2 n t 2 n 1 2 n + 1 t 2 n + 1 1 n + 2 t n + 2 1 n + 3 t n + 3 L 1 2 n + 1 t 2 n + 1 1 2 n + 2 t 2 n + 2
2、(a)在已知俯仰角的情况下,滚转角的时间更新求解式为:
Figure BDA00001140400500000311
其中
a 4 = 1 + p 0 p 1 L p n - 1 p n MΩ ( t ) | kT ( k + 1 ) T H T M T p 0 p 1 L p n - 1 p n T
+ q 0 q 1 L q n - 1 q n MΩ ( t ) | kT ( k + 1 ) T H T M T q 0 q 1 L q n - 1 q n T
+ r 0 r 1 L r n - 1 r n MΩ ( t ) | kT ( k + 1 ) T H T M T r 0 r 1 L r n - 1 r n T
- p 0 p 1 L p n - 1 p n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T .
ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T M T p 0 p 1 L p n - 1 p n T
- q 0 q 1 L q n - 1 q n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T .
ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T M T q 0 q 1 L q n - 1 q n T
- r 0 r 1 L r n - 1 r n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T .
ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T M T r 0 r 1 L r n - 1 r n T
+ 0.25 { p 0 p 1 L p n - 1 p n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
- 0.25 { r 0 r 1 L r n - 1 r n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
- 0.25 { q 0 q 1 L q n - 1 q n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
a 5 = p 0 p 1 L p n - 1 p n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
+ 0.5 r 0 r 1 L r n - 1 r n MΩ ( t ) | kT ( k + 1 ) T H T M T q 0 q 1 L q n - 1 q n T
- 0.5 r 0 r 1 L r n - 1 r n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
· ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T M T q 0 q 1 L q n - 1 q n T
a 6 = r 0 r 1 L r n - 1 r n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
- 0.5 p 0 p 1 L p n - 1 p n MΩ ( t ) | kT ( k + 1 ) T H T M T q 0 q 1 L q n - 1 q n T
+ 0.5 p 0 p 1 L p n - 1 p n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
· ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T M T q 0 q 1 L q n - 1 q n T
(b)在俯仰角、滚转角已知情况下,偏航角的求解式为:
ψ ( t ) = ψ ( kT ) + ∫ kT t [ b 1 ( t ) + b 2 ( t ) ] dt
式中:
Figure BDA00001140400500000410
Figure BDA00001140400500000411
本发明的有益效果是:由于通过引入多个参数并采用可以描述任意有限的统一多项式对滚转、俯仰、偏航角速度p,q,r进行近似逼近描述,通过按照依次求解俯仰角、滚转角、偏航角,直接对欧拉角的表达式进行高阶逼近积分,使得欧拉角的求解按照超线性逼近,从而保证了确定欧拉角的时间更新迭代计算精度和惯性单元的输出精度。
下面结合具体实施方式对本发明作详细说明。
具体实施方式
1、(a)根据刚体姿态方程(欧拉方程):
Figure BDA00001140400500000412
Figure BDA00001140400500000413
ψ分别指滚转、俯仰、偏航角;p,q,r分别为滚转、俯仰、偏航角速度;全文参数定义相同;这三个欧拉角的计算按照依次求解俯仰角、滚转角、偏航角的步骤进行;滚转、俯仰、偏航角速度p,q,r的展开式分别为
p(t)=[p0 p1 L pn-1 pn]M[1 t L tn-1 tn]T
q(t)=[q0 q1 L qn-1 qn]M[1 t L tn-1 tn]T
r(t)=[r0 r1 L rn-1 rn]M[1 t L tn-1 tn]T
其中:M为事先定义的常数矩阵,定义T为采样周期;
对于Chebyshev(切比雪夫)正交多项式:
ξ 0 ( t ) = 1 ξ 1 ( t ) = 1 - 2 t / b ξ 2 ( t ) = 8 ( t / b ) 2 - 8 ( t / b ) + 1 M ξ i + 1 ( t ) = 2 ξ 1 ( t ) ξ i ( t ) - ξ i - 1 ( t ) i=2,3,L,n-1,0≤t≤NT,b=NT
则常数矩阵
M = { m ( i , j ) } = m 1 m 2 m 3 M m N = 1 0 0 L 0 1 - 2 b 0 L 0 1 - 8 b 8 b 2 L 0 M M M O M
m ( i , j ) = 2 m ( i - 1 , j ) - m ( i - 2 , j ) - 4 b m ( i - 1 , j - 1 ) , (i=3,4,L,N;j=1,2,L,i)
m(i,j)=0,(j>i)
m(i,0)=0,(j=1,2,L,N)
b)俯仰角的时间更新求解式为:
Figure BDA0000114040050000054
式中:
a 1 = 1 + p 0 p 1 L p n - 1 p n MΩ ( t ) | kT ( k + 1 ) T H T M T p 0 p 1 L p n - 1 p n T
+ q 0 q 1 L q n - 1 q n MΩ ( t ) | kT ( k + 1 ) T H T M T q 0 q 1 L q n - 1 q n T
+ r 0 r 1 L r n - 1 r n MΩ ( t ) | kT ( k + 1 ) T H T M T r 0 r 1 L r n - 1 r n T
- p 0 p 1 L p n - 1 p n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T .
ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T M T p 0 p 1 L p n - 1 p n T
- q 0 q 1 L q n - 1 q n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T .
ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T M T q 0 q 1 L q n - 1 q n T
- r 0 r 1 L r n - 1 r n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T .
ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T M T r 0 r 1 L r n - 1 r n T
+ 0.25 { p 0 p 1 L p n - 1 p n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
+ 0.25 { q 0 q 1 L q n - 1 q n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
- 0.25 { r 0 r 1 L r n - 1 r n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
a 2 = q 0 q 1 L q n - 1 q n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
- 0.5 r 0 r 1 L r n - 1 r n MΩ ( t ) | kT ( k + 1 ) T H T M T p 0 p 1 L p n - 1 p n T
+ 0.5 r 0 r 1 L r n - 1 r n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
· ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T M T p 0 p 1 L p n - 1 p n T
a 3 = r 0 r 1 L r n - 1 r n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T
+ 0.5 q 0 q 1 L q n - 1 q n MΩ ( t ) | kT ( k + 1 ) T H T M T p 0 p 1 L p n - 1 p n T
- 0.5 q 0 q 1 L q n - 1 q n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
· ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T M T p 0 p 1 L p n - 1 p n T
H = diag { 1 , 1 2 , 1 3 , L , 1 n , 1 n + 1 } ;
Ω ( t ) = 1 2 t 2 1 3 t 3 L 1 n + 1 t n + 1 1 n + 2 t n + 2 1 3 t 3 1 4 t 4 L 1 n + 2 t n + 2 1 n + 3 t n + 3 M M O M M 1 n + 1 t n + 1 1 n + 2 t n + 2 L 1 2 n t 2 n 1 2 n + 1 t 2 n + 1 1 n + 2 t n + 2 1 n + 3 t n + 3 L 1 2 n + 1 t 2 n + 1 1 2 n + 2 t 2 n + 2
2a)在已知俯仰角的情况下,滚转角的时间更新求解式为:
Figure BDA00001140400500000611
其中
a 4 = 1 + p 0 p 1 L p n - 1 p n MΩ ( t ) | kT ( k + 1 ) T H T M T p 0 p 1 L p n - 1 p n T
+ q 0 q 1 L q n - 1 q n MΩ ( t ) | kT ( k + 1 ) T H T M T q 0 q 1 L q n - 1 q n T
+ r 0 r 1 L r n - 1 r n MΩ ( t ) | kT ( k + 1 ) T H T M T r 0 r 1 L r n - 1 r n T
- p 0 p 1 L p n - 1 p n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T .
ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T M T p 0 p 1 L p n - 1 p n T
- q 0 q 1 L q n - 1 q n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T .
ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T M T q 0 q 1 L q n - 1 q n T
- r 0 r 1 L r n - 1 r n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T .
ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T M T r 0 r 1 L r n - 1 r n T
+ 0.25 { p 0 p 1 L p n - 1 p n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
- 0.25 { r 0 r 1 L r n - 1 r n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
- 0.25 { q 0 q 1 L q n - 1 q n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
a 5 = p 0 p 1 L p n - 1 p n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
+ 0.5 r 0 r 1 L r n - 1 r n MΩ ( t ) | kT ( k + 1 ) T H T M T q 0 q 1 L q n - 1 q n T
- 0.5 r 0 r 1 L r n - 1 r n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
· ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T M T q 0 q 1 L q n - 1 q n T
a 6 = r 0 r 1 L r n - 1 r n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
- 0.5 p 0 p 1 L p n - 1 p n MΩ ( t ) | kT ( k + 1 ) T H T M T q 0 q 1 L q n - 1 q n T
+ 0.5 p 0 p 1 L p n - 1 p n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
· ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T M T q 0 q 1 L q n - 1 q n T
b)在俯仰角、滚转角已知情况下,偏航角的求解式为:
ψ ( t ) = ψ ( kT ) + ∫ kT t [ b 1 ( t ) + b 2 ( t ) ] dt
式中:
Figure BDA00001140400500000710
Figure BDA00001140400500000711
当对惯性设备直接输出滚转、俯仰、偏航角速度p,q,r采用三阶逼近描述时,所得结果也接近O(T3),相比欧拉方程直接近似法或采用近似龙格库塔方法解算等方法的O(T2)精度要高。

Claims (1)

1.一种基于角速度的欧拉角多项式类近似输出方法,其特征在于包括以下步骤:
步骤1、(a)根据欧拉方程:
式中:ψ分别指滚转、俯仰、偏航角;p,q,r分别为滚转、俯仰、偏航角速度;全文参数定义相同;这三个欧拉角的计算按照依次求解俯仰角、滚转角、偏航角的步骤进行;滚转、俯仰、偏航角速度p,q,r的展开式分别为
p(t)=[p0 p1 L pn-1 pn]M[1 t L tn-1 tn]T
q(t)=[q0 q1 L qn-1 qn]M[1 t L tn-1 tn]T
r(t)=[r0 r1 L rn-1 rn]M[1 t L tn-1 tn]T
其中:M为事先定义的常数矩阵;定义T为采样周期,全文符号定义相同;
(b)俯仰角的时间更新求解式为:
Figure FDA0000114040040000013
式中:
a 1 = 1 + p 0 p 1 L p n - 1 p n MΩ ( t ) | kT ( k + 1 ) T H T M T p 0 p 1 L p n - 1 p n T
+ q 0 q 1 L q n - 1 q n MΩ ( t ) | kT ( k + 1 ) T H T M T q 0 q 1 L q n - 1 q n T
+ r 0 r 1 L r n - 1 r n MΩ ( t ) | kT ( k + 1 ) T H T M T r 0 r 1 L r n - 1 r n T
- p 0 p 1 L p n - 1 p n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T .
ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T M T p 0 p 1 L p n - 1 p n T
- q 0 q 1 L q n - 1 q n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T .
ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T M T q 0 q 1 L q n - 1 q n T
- r 0 r 1 L r n - 1 r n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T .
ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T M T r 0 r 1 L r n - 1 r n T
+ 0.25 { p 0 p 1 L p n - 1 p n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
+ 0.25 { q 0 q 1 L q n - 1 q n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
- 0.25 { r 0 r 1 L r n - 1 r n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
a 2 = q 0 q 1 L q n - 1 q n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
- 0.5 r 0 r 1 L r n - 1 r n MΩ ( t ) | kT ( k + 1 ) T H T M T p 0 p 1 L p n - 1 p n T
+ 0.5 r 0 r 1 L r n - 1 r n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
· ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T M T p 0 p 1 L p n - 1 p n T
a 3 = r 0 r 1 L r n - 1 r n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T
+ 0.5 q 0 q 1 L q n - 1 q n MΩ ( t ) | kT ( k + 1 ) T H T M T p 0 p 1 L p n - 1 p n T
- 0.5 q 0 q 1 L q n - 1 q n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
· ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T M T p 0 p 1 L p n - 1 p n T
H = diag { 1 , 1 2 , 1 3 , L , 1 n , 1 n + 1 } ;
Ω ( t ) = 1 2 t 2 1 3 t 3 L 1 n + 1 t n + 1 1 n + 2 t n + 2 1 3 t 3 1 4 t 4 L 1 n + 2 t n + 2 1 n + 3 t n + 3 M M O M M 1 n + 1 t n + 1 1 n + 2 t n + 2 L 1 2 n t 2 n 1 2 n + 1 t 2 n + 1 1 n + 2 t n + 2 1 n + 3 t n + 3 L 1 2 n + 1 t 2 n + 1 1 2 n + 2 t 2 n + 2
步骤2、(a)在已知俯仰角的情况下,滚转角的时间更新求解式为:
其中
a 4 = 1 + p 0 p 1 L p n - 1 p n MΩ ( t ) | kT ( k + 1 ) T H T M T p 0 p 1 L p n - 1 p n T
+ q 0 q 1 L q n - 1 q n MΩ ( t ) | kT ( k + 1 ) T H T M T q 0 q 1 L q n - 1 q n T
+ r 0 r 1 L r n - 1 r n MΩ ( t ) | kT ( k + 1 ) T H T M T r 0 r 1 L r n - 1 r n T
- p 0 p 1 L p n - 1 p n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T .
ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T M T p 0 p 1 L p n - 1 p n T
- q 0 q 1 L q n - 1 q n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T .
ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T M T q 0 q 1 L q n - 1 q n T
- r 0 r 1 L r n - 1 r n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T .
ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T M T r 0 r 1 L r n - 1 r n T
+ 0.25 { p 0 p 1 L p n - 1 p n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
- 0.25 { r 0 r 1 L r n - 1 r n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
- 0.25 { q 0 q 1 L q n - 1 q n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T } 2
a 5 = p 0 p 1 L p n - 1 p n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
+ 0.5 r 0 r 1 L r n - 1 r n MΩ ( t ) | kT ( k + 1 ) T H T M T q 0 q 1 L q n - 1 q n T
- 0.5 r 0 r 1 L r n - 1 r n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
· ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T M T q 0 q 1 L q n - 1 q n T
a 6 = r 0 r 1 L r n - 1 r n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
- 0.5 p 0 p 1 L p n - 1 p n MΩ ( t ) | kT ( k + 1 ) T H T M T q 0 q 1 L q n - 1 q n T
+ 0.5 p 0 p 1 L p n - 1 p n MH ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) T | kT ( k + 1 ) T
· ξ 0 ( t ) ξ 1 ( t ) L ξ n ( t ) ξ n + 1 ( t ) kT H T M T q 0 q 1 L q n - 1 q n T
(b)在俯仰角、滚转角已知情况下,偏航角的求解式为:
ψ ( t ) = ψ ( kT ) + ∫ kT t [ b 1 ( t ) + b 2 ( t ) ] dt
式中:
Figure FDA00001140400400000310
Figure FDA00001140400400000311
CN2011103879712A 2011-11-30 2011-11-30 基于角速度的欧拉角多项式类近似输出方法 Pending CN102494689A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011103879712A CN102494689A (zh) 2011-11-30 2011-11-30 基于角速度的欧拉角多项式类近似输出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011103879712A CN102494689A (zh) 2011-11-30 2011-11-30 基于角速度的欧拉角多项式类近似输出方法

Publications (1)

Publication Number Publication Date
CN102494689A true CN102494689A (zh) 2012-06-13

Family

ID=46186533

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011103879712A Pending CN102494689A (zh) 2011-11-30 2011-11-30 基于角速度的欧拉角多项式类近似输出方法

Country Status (1)

Country Link
CN (1) CN102494689A (zh)

Similar Documents

Publication Publication Date Title
CN105737823B (zh) 一种基于五阶ckf的gps/sins/cns组合导航方法
CN103776446B (zh) 一种基于双mems-imu的行人自主导航解算算法
CN106643737A (zh) 风力干扰环境下四旋翼飞行器姿态解算方法
WO2018214227A1 (zh) 一种无人车实时姿态测量方法
CN108318038A (zh) 一种四元数高斯粒子滤波移动机器人姿态解算方法
CN105300381A (zh) 一种基于改进互补滤波的自平衡移动机器人姿态快速收敛方法
CN103900574A (zh) 一种基于迭代容积卡尔曼滤波姿态估计方法
CN102519466A (zh) 基于角速度的欧拉角勒让德指数近似输出方法
CN102519467B (zh) 基于角速度的欧拉角切比雪夫指数近似输出方法
CN102494690A (zh) 基于角速度的欧拉角任意步长正交级数近似输出方法
CN102495828B (zh) 基于角速度的欧拉角Hartley近似输出方法
CN102506873B (zh) 基于角速度的欧拉角拉盖尔近似输出方法
CN110095118A (zh) 一种车身姿态角的实时测量方法及系统
CN102506870B (zh) 基于角速度的欧拉角埃米特指数近似输出方法
CN102494689A (zh) 基于角速度的欧拉角多项式类近似输出方法
CN102519462B (zh) 基于角速度的欧拉角指数输出方法
CN102495827B (zh) 基于角速度的欧拉角埃米特近似输出方法
CN102519457B (zh) 基于角速度的欧拉角傅里埃近似输出方法
CN102435192B (zh) 基于角速度的欧拉角任意步长正交级数指数型近似输出方法
CN102495826B (zh) 基于角速度的欧拉角切比雪夫近似输出方法
CN102519464B (zh) 基于角速度的欧拉角Hartley指数近似输出方法
CN102519465B (zh) 基于角速度的欧拉角傅里埃指数近似输出方法
CN102519461B (zh) 基于角速度的欧拉角沃尔什指数近似输出方法
CN102506869B (zh) 基于角速度的欧拉角多项式类指数近似输出方法
CN102519468B (zh) 基于角速度的欧拉角拉盖尔指数近似输出方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20120613

RJ01 Rejection of invention patent application after publication