CN102422386B - 光伏装置 - Google Patents

光伏装置 Download PDF

Info

Publication number
CN102422386B
CN102422386B CN201080021370.3A CN201080021370A CN102422386B CN 102422386 B CN102422386 B CN 102422386B CN 201080021370 A CN201080021370 A CN 201080021370A CN 102422386 B CN102422386 B CN 102422386B
Authority
CN
China
Prior art keywords
semiconductor
layer
absorption layer
silicon
window layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201080021370.3A
Other languages
English (en)
Other versions
CN102422386A (zh
Inventor
熊刚
里奇·C·鲍威尔
亚伦·洛奇林
昆拓·库马
阿诺德·阿莱林克
肯·云
查理斯·威克沙姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
First Solar Inc
Original Assignee
First Solar Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by First Solar Inc filed Critical First Solar Inc
Publication of CN102422386A publication Critical patent/CN102422386A/zh
Application granted granted Critical
Publication of CN102422386B publication Critical patent/CN102422386B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02963Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种提高基于CdTe的光伏装置的效率的方法。基于CdTe的光伏装置可以在半导体层中包括氧或硅。

Description

光伏装置
要求优先权
本申请要求于2009年5月12日提交的第61/177,502号美国临时专利申请的优先权,该申请通过引用全部包含于此。
技术领域
本发明涉及一种具有提高的效率的光伏装置。
背景技术
在光伏装置的制造过程中,可以以一层作为窗口层和第二层作为吸收层的方式将半导体材料层涂覆到基底上。窗口层可以使太阳辐射穿过以到达吸收层,在吸收层,光能被转换为电能。一些光伏装置可以使用透明薄膜,所述透明薄膜也是电荷的导体。导电的薄膜可以包括透明导电层,透明导电层包含诸如掺杂氟的氧化锡、掺杂铝的氧化锌或者氧化铟锡的透明导电氧化物(TCO)。TCO可以使光穿过半导体窗口层以到达活性光吸收材料,并且还可用作欧姆接触件来传送光生电荷载流子离开光吸收材料。光伏装置可以具有作为半导体窗口层的硫化镉(CdS)层和作为半导体吸收层的碲化镉(CdTe)层。可以在半导体层的背表面上形成背电极。背电极可以包含导电材料,例如金属银、镍、铜、铝、钛、钯、铬、钼或它们的任何实际组合。
发明内容
本发明提供了一种具有提高的效率的光伏装置。
根据本发明的一方面,一种制造光伏装置的方法包括以下步骤:将透明导电氧化物层沉积为与基底相邻;将半导体窗口层沉积为与透明导电氧化物层相邻;将半导体吸收层沉积为与半导体窗口层相邻,其中,半导体窗口层和半导体吸收层中的一个或多个包括载流子浓度调节剂;以及将背接触层沉积为与半导体吸收层相邻。
根据本发明的另一方面,一种光伏装置包括:透明导电氧化物层;半导体双层,与透明导电氧化物层相邻,其中,半导体双层包括半导体吸收层和半导体窗口层,半导体窗口层和半导体吸收层中的一个或多个包括载流子浓度调节剂;背接触层,与半导体双层相邻。
附图说明
图1是具有金属背接触件和多个半导体层的光伏装置的示意图。
具体实施方式
光伏装置可以包括半导体材料层和与基底相邻的透明导电氧化物层。半导体材料层可以包括双层,所述双层可以包括n型半导体窗口层和p型半导体吸收层。n型窗口层和p型吸收层可以设置为彼此接触以产生电场。光子与n型窗口层接触可以释放电子-空穴对,将电子发送到n侧并将空穴发送到p侧。电子可以通过外部的电流通路流回到p侧。这样得到的电子流提供电流,电流与由电场得到的电压结合来产生能量。结果是光子能转换为电能。
技术的研发已经进展到扩大基于CdTe的光伏器件装置中的pn结耗尽宽度。用这种方法,可以通过提高收集效率来实现高效率的光伏装置,从而闭路电流密度Jsc较高。扩大CdTe中的pn结耗尽宽度的方法包括但不限于改变p型层和/或n型层中的膜性质。例如,可通过向CdTe和/或n型窗口层添加特定类型的材料来实现扩大CdTe中的pn结耗尽宽度。添加的材料可以包括诸如含硅的材料,但不限于含硅的材料。可以在涂覆工艺或沉积后处理期间通过原材料处理来引入这样的添加。还发现这些材料中的一些材料可以起到改变CdTe晶体生长的助熔剂的作用。还观察到亚带隙光学性质的改变。
在一个方面,制造光伏装置的方法可以包括下面的步骤:沉积与基底相邻的透明导电氧化物层;沉积与透明导电氧化物层相邻的半导体窗口层;沉积与半导体窗口层相邻的半导体吸收层;沉积与半导体吸收层相邻的背接触层。半导体窗口层和半导体吸收层中的一个或多个可以包括载流子浓度调节剂。半导体窗口层和半导体吸收层中的一个或多个可以包括II-VI族半导体。半导体窗口层可以包括硫化镉(CdS)。半导体吸收层可以包括碲化镉(CdTe)。载流子浓度调节剂可以包括氧。载流子浓度调节剂可以包括硅。该方法还可以包括提高半导体窗口层中的载流子浓度的手段。
该方法还可包括减小半导体吸收层中的载流子浓度的手段。该方法还可以包括向半导体吸收层中添加包含硅的材料的手段。该方法还可以包括向半导体吸收层中添加包含氧的材料的手段。该方法还可以包括向半导体窗口层中添加包含氧的材料的手段。该方法还可以包括向半导体吸收层和半导体窗口层中添加包含氧的材料的手段。沉积半导体吸收层的步骤包括来自镉和碲源的气相传输沉积(VTD)。
气相传输沉积(VTD)可以包括将包含氧的材料与镉和碲源混合。气相传输沉积(VTD)可以包括将包含硅的材料与镉和碲源混合。沉积半导体吸收层的步骤可以包括使用包含氧的前驱体。沉积半导体吸收层的步骤可以包括使用包含硅的前驱体。该方法还可包括在包括氧的环境中对半导体吸收层和半导体窗口层进行沉积后处理的步骤。该方法还可包括在包括硅的环境中对半导体吸收层和半导体窗口层上进行沉积后处理的步骤。该方法还可以包括沉积含氧的附加层的步骤,其中,附加层的氧可以扩散到半导体吸收层和半导体窗口层中。该方法还可以包括沉积含硅的附加层的步骤,其中,附加层的硅可以扩散到半导体吸收层和半导体窗口层中。
透明导电氧化物层可以包括氧,其中,透明导电氧化物层的氧可以扩散到半导体吸收层和半导体窗口层中。透明导电氧化物层可以包括硅,其中,透明导电氧化物层的硅可以扩散到半导体吸收层和半导体窗口层中。背接触层可以包括氧,其中,背接触层的氧可以扩散到半导体吸收层和半导体窗口层中。背接触层可以包括硅,其中,背接触层的硅可以扩散到半导体吸收层和半导体窗口层中。
该方法还可以包括向半导体吸收层中添加包含第Ⅳ族元素的材料的手段。该方法还可以包括向半导体窗口层中添加包含第Ⅳ族元素的材料的手段。该方法还可以包括向半导体吸收层和半导体窗口层中添加包含第Ⅳ族元素的材料的手段。该方法还可以包括向半导体吸收层中添加包含第Ⅵ族元素的材料的手段。该方法还可以包括向半导体窗口层中添加包含第Ⅵ族元素的材料的手段。该方法还可以包括向半导体吸收层和半导体窗口层中添加包含第Ⅵ族元素的材料的手段。
在一个方面,基于CdTe的光伏装置可以包括透明导电氧化物层、与透明导电氧化物层相邻的半导体双层和与半导体双层相邻的背接触层。半导体双层可以包括半导体吸收层和半导体窗口层,并且半导体窗口层和半导体吸收层中的一个或多个可以包括载流子浓度调节剂。半导体窗口层可以包括增大的载流子浓度。半导体吸收层可以包括减小的载流子浓度。半导体吸收层可以包括含硅的材料。半导体吸收层可以包括含氧的材料。半导体窗口层可以包括含氧的材料。半导体窗口层和半导体吸收层可以包括含氧的材料。
参照图1,光伏装置100可以包括沉积为与基底110相邻的透明导电氧化物层120。可通过溅射或蒸发将透明导电氧化物层120沉积在基底110上。基底110可以包括玻璃,诸如钠钙玻璃。透明导电氧化物层120可以包括任何合适的透明导电氧化物材料(包括锡酸镉、掺杂铟的氧化镉或掺杂锡的氧化铟)。半导体双层130可以形成或沉积为与退火的透明导电氧化物层120相邻。半导体双层130可以包括半导体窗口层131和半导体吸收层132。半导体双层130的半导体窗口层131可以沉积为与退火的透明导电氧化物层120相邻。半导体窗口层131可以包括任何合适的窗口材料(诸如硫化镉),并且可以由任何合适的沉积方法(诸如溅射或气相传输沉积)形成。半导体吸收层132可以沉积为与半导体窗口层131相邻。半导体吸收层132可以沉积在半导体窗口层131上。半导体吸收层132可以是任何合适的吸收材料(诸如碲化镉),并且可以由任何合适的方法(诸如溅射或气相传输沉积)形成。背接触件140可以沉积为与半导体吸收层132相邻。背接触件140可以沉积为与半导体双层130相邻。可以将背支撑件150设置为与背接触件140相邻。光伏装置可以具有作为半导体窗口层的硫化镉(CdS)层和作为半导体吸收层的碲化镉(CdTe)层。
在基于CdTe的光伏器件装置中,因为与n-型层相比,耗尽区通常很少被掺杂,所以主要在CdTe层内。耗尽宽度的扩大增加了可以有效地收集光生载流子的深度,这样会提高光电流和太阳能效率。结果,人们希望看到更高的总电流和在整个太阳光谱整体较高的量子效率。有多种方法来扩大耗尽宽度。例如,当CdTe中的自由载流子浓度减小时,耗尽宽度通常增加。可以通过减小CdTe层中掺杂水平的浓度或在半导体的能隙内引入补偿水平来实现CdTe中的自由载流子浓度的减小。虽然引入补偿水平可能会通过这些水平的额外复合来降低装置开路电压和填充因子,但我们发现在某些情况下,闭路电流密度(Jsc)的改善占优势,从而得到较高效率的装置。闭路电流密度(Jsc)是当输出端短路时从光伏装置输出的光电流。例如,发现添加硅对这种效率改善非常有效。早期添加硅的方法是利用来自气相传输沉积(VTD)工具的元素。这些元素包括硅,所述硅可以被热致释放或当与包括O2、H2、H2O乃至周围的空气的其它反应物反应时被释放。释放的硅包括在已沉积的膜(as-deposited film)中,并可以用成分分析技术(诸如二次离子质谱(SIMS)或ICP-MS)来检测释放的硅。需要注意的是,这种方法可以很容易地以除了VTD之外的其它沉积工具实施。
在一个示例中,Si可以从VTD元件释放并通过提高的Jsc带来更高的效率。当强制Si从一个涂布机释放时,可以提高效率并由Jsc来推动效率。与在另一个VTD工具上同时运行但没有强制的Si释放的控制样品的IV参数相比,具有强制的Si释放的样品的Jsc和效率可以高大约4%。掺杂硅的浓度可以在从1×1016/cm3至1×1018/cm3的范围内。
在VTD工艺过程中添加氧也可以得到高Jsc的装置。在VTD工艺过程中添加氧的通常方法是在沉积过程中引入含氧源。通过在膜生长过程中向VTD室中提供氧,可以实现Jsc的提高。二次离子质谱(SIMS)可以显示CdTe中实际的氧结合。
在VTD工艺过程中直接添加包括硅的材料对产生高Jsc装置也是非常有效的。在一个示例中,通过将含硅粉末与CdTe粉末以一定的混合比例混合来实现高Jsc装置。可以通过二次离子质谱(SIMS)测量材料中包含的Si。可以通过这种方法来实现高Jsc装置,在特定掺杂条件(诸如850ppm)下,可以实现较高效率的装置。Si的混合百分比可以在0.001%至1%的范围内,或者在0.01%至0.2%的范围内。与不含Si的样品相比,含有Si的样品的Jsc和效率可以高大约1%、大约2%、大约3%、大约4%或大约5%。在一个示例中,硅可以改变CdTe的生长和晶体结构。当结晶取向从没有添加Si的(001)变为添加适量Si的(011)和添加大量Si的(012)时,由于包含硅,CdTe的晶粒尺寸显著减小。还可以发现通过包含硅改善了光透射、光反射和光吸收。通常,发现在能带隙内,随着膜中硅浓度的增加,透射和反射将减小,吸收将增加。包含含硅材料可以导致在亚带隙吸收(800-1400nm)中的可测量的变化。
已经描述了本发明的多个实施例。然而,应该理解的是,在不脱离本发明的精神和范围的情况下可以做出各种修改。还应该理解的是,附图不必按比例,附图展示了本发明的基本原理的各种优选的特征说明的某种程度上简化的表达。

Claims (23)

1.一种制造光伏装置的方法,所述方法包括以下步骤:
将透明导电氧化物层沉积为与基底相邻;
将半导体窗口层沉积为与透明导电氧化物层相邻;
将半导体吸收层沉积为与半导体窗口层相邻,其中,半导体窗口层和半导体吸收层中的一个或多个包括载流子浓度调节剂,其中,载流子浓度调节剂包含硅;以及
将背接触层沉积为与半导体吸收层相邻。
2.根据权利要求1所述的方法,其中,半导体窗口层和半导体吸收层中的一个或多个包括II-VI族半导体。
3.根据权利要求1所述的方法,其中,半导体窗口层包含硫化镉。
4.根据权利要求1所述的方法,其中,半导体吸收层包括碲化镉。
5.根据权利要求1所述的方法,所述方法还包括增大半导体窗口层中的载流子浓度的手段。
6.根据权利要求1所述的方法,所述方法还减小半导体吸收层中的载流子浓度的手段。
7.根据权利要求1所述的方法,所述方法还包括向半导体吸收层中添加含硅材料的手段。
8.根据权利要求1所述的方法,其中,沉积半导体吸收层的步骤包括从镉和碲源的气相传输沉积。
9.根据权利要求8所述的方法,其中,气相传输沉积包括将包含硅的材料与镉和碲源混合。
10.根据权利要求1所述的方法,其中,沉积半导体吸收层的步骤包括使用包含硅的前驱体。
11.根据权利要求1所述的方法,所述方法还包括在包含硅的环境中对半导体吸收层和半导体窗口层进行沉积后处理的步骤。
12.根据权利要求1所述的方法,所述方法还包括沉积包含硅的附加层的步骤,其中,附加层的硅能够扩散到半导体吸收层和半导体窗口层中。
13.根据权利要求1所述的方法,其中,透明导电氧化物层包含硅,其中,透明导电氧化物层的硅能够扩散到半导体吸收层和半导体窗口层中。
14.根据权利要求1所述的方法,其中,背接触层包含硅,其中,背接触层的硅能够扩散到半导体吸收层和半导体窗口层中。
15.根据权利要求1所述的方法,所述方法还包括向半导体吸收层中添加包含第IV族元素的材料的手段。
16.根据权利要求1所述的方法,所述方法还包括向半导体窗口层中添加包含第IV族元素的材料的手段。
17.根据权利要求1所述的方法,所述方法还包括向半导体吸收层和半导体窗口层中添加包含第IV族元素的材料的手段。
18.根据权利要求1所述的方法,所述方法还包括向半导体吸收层中添加包含第VI族元素的材料的手段。
19.根据权利要求1所述的方法,所述方法还包括向半导体窗口层中添加包含第VI族元素的材料的手段。
20.根据权利要求1所述的方法,所述方法还包括向半导体吸收层和半导体窗口层中添加包含第VI族元素的材料的手段。
21.一种基于CdTe的光伏装置,所述光伏装置包括:
透明导电氧化物层;
半导体双层,与透明导电氧化物层相邻,其中,半导体双层包括半导体吸收层和半导体窗口层,半导体窗口层和半导体吸收层中的一个或多个包括载流子浓度调节剂,其中,载流子浓度调节剂包含硅;和
背接触层,与半导体双层相邻。
22.根据权利要求21所述的基于CdTe的光伏装置,其中,半导体吸收层包括减小的载流子浓度。
23.根据权利要求21所述的基于CdTe的光伏装置,其中,半导体吸收层包括含硅的材料。
CN201080021370.3A 2009-05-12 2010-02-19 光伏装置 Active CN102422386B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US17750209P 2009-05-12 2009-05-12
US61/177,502 2009-05-12
PCT/US2010/024782 WO2010132138A1 (en) 2009-05-12 2010-02-19 Photovolaic device

Publications (2)

Publication Number Publication Date
CN102422386A CN102422386A (zh) 2012-04-18
CN102422386B true CN102422386B (zh) 2014-06-18

Family

ID=43067538

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080021370.3A Active CN102422386B (zh) 2009-05-12 2010-02-19 光伏装置

Country Status (5)

Country Link
US (2) US8497151B2 (zh)
EP (1) EP2430648B1 (zh)
CN (1) CN102422386B (zh)
MX (1) MX2011011952A (zh)
WO (1) WO2010132138A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9608144B2 (en) * 2011-06-01 2017-03-28 First Solar, Inc. Photovoltaic devices and method of making
US9447489B2 (en) * 2011-06-21 2016-09-20 First Solar, Inc. Methods of making photovoltaic devices and photovoltaic devices
EP2849943A2 (en) 2012-05-16 2015-03-25 NovoPolymers N.V. Multilayer encapsulant film for photovoltaic modules
WO2014028603A1 (en) 2012-08-17 2014-02-20 First Solar, Inc. Method and apparatus providing multi-step deposition of thin film layer
US9000549B2 (en) 2012-11-14 2015-04-07 First Solar, Inc. Spatially distributed CdS in thin film photovoltaic devices and their methods of manufacture
EP3387679B1 (en) 2015-12-09 2022-04-27 First Solar, Inc. Photovoltaic devices and method of manufacturing
WO2017176463A1 (en) 2016-04-07 2017-10-12 First Solar, Inc. Devices and methods for making polycrystalline alloys

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217539A (en) * 1991-09-05 1993-06-08 The Boeing Company III-V solar cells and doping processes
WO2009058985A1 (en) * 2007-11-02 2009-05-07 First Solar, Inc. Photovoltaic devices including doped semiconductor films

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002248199A1 (en) * 2001-12-13 2003-06-30 Midwest Research Institute Semiconductor device with higher oxygen (o2) concentration within window layers and method for making
AU2003275239A1 (en) * 2002-09-30 2004-04-23 Miasole Manufacturing apparatus and method for large-scale production of thin-film solar cells
US7667133B2 (en) * 2003-10-29 2010-02-23 The University Of Toledo Hybrid window layer for photovoltaic cells
US20070111367A1 (en) * 2005-10-19 2007-05-17 Basol Bulent M Method and apparatus for converting precursor layers into photovoltaic absorbers
US20090014055A1 (en) * 2006-03-18 2009-01-15 Solyndra, Inc. Photovoltaic Modules Having a Filling Material
MX2010003227A (es) * 2007-09-25 2010-04-07 First Solar Inc Dispositivos fotovoltaicos que incluyen una capa interfacial.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217539A (en) * 1991-09-05 1993-06-08 The Boeing Company III-V solar cells and doping processes
WO2009058985A1 (en) * 2007-11-02 2009-05-07 First Solar, Inc. Photovoltaic devices including doped semiconductor films

Also Published As

Publication number Publication date
EP2430648A1 (en) 2012-03-21
MX2011011952A (es) 2011-11-29
US20100288359A1 (en) 2010-11-18
US8785232B2 (en) 2014-07-22
EP2430648A4 (en) 2013-08-21
CN102422386A (zh) 2012-04-18
EP2430648B1 (en) 2014-09-17
US20130298992A1 (en) 2013-11-14
US8497151B2 (en) 2013-07-30
WO2010132138A1 (en) 2010-11-18

Similar Documents

Publication Publication Date Title
US20240154049A1 (en) Photovoltaic devices and method of making
KR101503557B1 (ko) 계면 층을 포함한 광기전 장치
CN102422386B (zh) 光伏装置
CN107658350B (zh) 光伏装置及制作方法
KR101538817B1 (ko) 헤테로접합을 포함하는 광기전 장치
CN105914241B (zh) 光伏装置和形成光伏装置的方法
EP0306297B1 (en) Pin junction photovoltaic element wherein the I-type semiconductor layer is formed of ZnSe or ZnSeTe containing 1-4 atomic % hydrogen
US8283187B2 (en) Photovoltaic device and method for making
US20100051095A1 (en) Hybrid Photovoltaic Cell Using Amorphous Silicon Germanium Absorbers With Wide Bandgap Dopant Layers and an Up-Converter
CA1298639C (en) Pinjunction photovoltaic element with p or n-type semiconductor layercomprising non-single crystal material containing zn, se, te, h in anamount of 1 to 4 atomic % and a dopant and i-type semiconductor layer comprising non-single crystal si(h,f) material
CN102842647B (zh) 制造光伏器件的方法和光伏器件
US20130160810A1 (en) Photovoltaic device and method of making
JP2016225335A (ja) 化合物薄膜太陽電池用基材、化合物薄膜太陽電池、化合物薄膜太陽電池モジュール、化合物薄膜太陽電池用基材の製造方法、および、化合物薄膜太陽電池の製造方法
Jundt et al. Transparent Buffer Layer for Back Surface Passivation in CdTe Photovoltaics
US20120080306A1 (en) Photovoltaic device and method for making
US20140060608A1 (en) Photovoltaic device and method of making
Danielson et al. CdSexTe1-x/CdTe Devices With Reduced Interface Recombination Through Novel Back Contacts and Doping Strategies
Bahardoust et al. Defect density in doped amorphous layer and interface of silicon heterojunction devices obtained with the constant photocurrent method
KR101273095B1 (ko) 태양전지 및 이의 제조방법
Devaud et al. BF3-DOPED AMORPHOUS SILICON THIN FILMS
JP2016134494A (ja) 化合物薄膜太陽電池用基材、化合物薄膜太陽電池、化合物薄膜太陽電池モジュール、化合物薄膜太陽電池用基材の製造方法、および、化合物薄膜太陽電池の製造方法
JPS5861680A (ja) 半導体装置
KR20150072244A (ko) 전자빔을 이용하여 Ga 편석 방지가 가능한 CIGS 광흡수층 제조방법 및 이를 이용한 CIGS 태양전지 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant