CN102420559A - Generator wide-area damping control method based on system identification and genetic algorithm - Google Patents

Generator wide-area damping control method based on system identification and genetic algorithm Download PDF

Info

Publication number
CN102420559A
CN102420559A CN2011103405082A CN201110340508A CN102420559A CN 102420559 A CN102420559 A CN 102420559A CN 2011103405082 A CN2011103405082 A CN 2011103405082A CN 201110340508 A CN201110340508 A CN 201110340508A CN 102420559 A CN102420559 A CN 102420559A
Authority
CN
China
Prior art keywords
mrow
msub
wide
generator
math
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011103405082A
Other languages
Chinese (zh)
Other versions
CN102420559B (en
Inventor
柳勇军
赵艺
陆超
韩英铎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China South Power Grid International Co ltd
Tsinghua University
Original Assignee
China South Power Grid International Co ltd
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China South Power Grid International Co ltd, Tsinghua University filed Critical China South Power Grid International Co ltd
Priority to CN 201110340508 priority Critical patent/CN102420559B/en
Publication of CN102420559A publication Critical patent/CN102420559A/en
Application granted granted Critical
Publication of CN102420559B publication Critical patent/CN102420559B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Feedback Control In General (AREA)

Abstract

The invention relates to a generator wide area damping control method based on system identification and genetic algorithm, and belongs to the technical field of power system stability analysis. Firstly, a power system simulation model is established, a small-amplitude random disturbance time sequence signal is injected into a generator excitation end of a generator wide-area damping controller, a controlled system model identification module identifies an open-loop controlled system model between the generator excitation end and a wide-area feedback input time sequence signal, a continuous controlled system model is input into a controller parameter solving module by using a genetic algorithm, and parameters of the generator wide-area damping controller are calculated. The feedback signal of the generator wide-area damping controller obtained by the method has good observability on the interval low-frequency oscillation mode. The method can obviously improve the damping ratio of the interval low-frequency oscillation mode and ensure the safe and stable operation of the system. The structure of the generator wide-area damping controller adopted by the invention is the same as that of the traditional PSS, and the generator wide-area damping controller is simple and easy for engineering practice.

Description

Generator wide-area damping control method based on system identification and genetic algorithm
Technical Field
The invention relates to a generator wide area damping control method based on system identification and genetic algorithm, and belongs to the technical field of power system stability analysis.
Background
With interconnection of regional power grids and continuous expansion of the scale of a power system, the problem of low-frequency oscillation in the interval is increasingly prominent, and the safe and stable operation of the power system is seriously threatened.
The conventional method for suppressing low frequency oscillation is to apply an additional damping controller (hereinafter referred to as PSS) to the excitation side of the generator. However, since the PSS uses the local signal as the feedback input signal, the observability of the interval oscillation mode in the signal is poor, and coordination among a plurality of local controllers is difficult, the problem of interval low-frequency oscillation is still not solved effectively in a system with a large number of PSS.
A Wide Area Measurement System (WAMS) can acquire a far-end electric signal in real time by using a synchronous phasor Measurement unit, and provides a new selection scheme for a feedback signal of a generator Wide Area damping controller. The technology for suppressing the interval low-frequency oscillation by using the wide-area signal measured by the wide-area measurement system as the PSS feedback signal is called generator wide-area damping control. The generator wide-area damping controller well solves the problem of observability of the PSS signal, and therefore the generator wide-area damping controller has great potential for restraining low-frequency oscillation of a power system.
The traditional local damping controller design is usually carried out based on a single-machine infinite system, and the phase compensation of the controller is designed through a damping torque theory. In the generator wide-area damping control, the generator wide-area damping controller mounting point and the whole system are connected into a whole by acquiring wide-area feedback signals, and the assumption of a single-machine infinite system is not applicable any more.
Disclosure of Invention
The invention aims to provide a generator wide-area damping control method based on system identification and genetic algorithm, which is used for inhibiting interval low-frequency oscillation of a power system, improving the dynamic stability of the operation of the power system, obviously improving the damping ratio of a low-frequency oscillation mode after a controlled system is put into a generator wide-area damping controller, and ensuring the safe and stable operation of the system.
The invention provides a generator wide area damping control method based on system identification and genetic algorithm, which comprises the following steps:
(1) establishing a power system simulation model, wherein the model comprises equipment in a power system and power system operation parameters, the equipment comprises a generator, a regulator, a transformer, a bus, an alternating current line, a direct current line, a reactive power compensator and a parallel capacitor reactor, and the power system operation parameters comprise power flow and load of the power system; a controlled system model identification module is arranged and used for identifying an open-loop system model controlled by a generator wide-area damping controller; setting a module for solving parameters of the generator wide area damping controller by using a genetic algorithm, wherein the module is used for solving parameters of each link of the generator wide area damping controller; arranging a generator wide-area damping controller module for realizing the generator wide-area damping control;
(2) a generator excitation end of a generator wide-area damping controller is installed in a power system, and a small-amplitude random disturbance timing sequence signal { u } is injectedt},utFor the value of small amplitude random disturbance signal at time T, T is 1, 2 … Ttotal,TtotalIn order to simulate the total steps, the wide-area feedback input time sequence signal { y) of the generator wide-area damping controller is collected under the condition that the generator wide-area damping controller operates in an open loop modetWide-area feedback input timing signal ytThe number of data is N, TtotalWill signal { utAnd { y }tInputting the data into the model identification module of the controlled system;
(3) the controlled system model identification module identifies an open-loop controlled system model between a generator excitation end provided with a generator wide-area damping controller and a wide-area feedback input time sequence signal, and the specific process comprises the following steps:
(3-1) calculating the wide-area feedback input timing signal { y) according to the following equationtThe smoothed zero-mean timing signal ytcp0}:
<math> <mrow> <msub> <mi>y</mi> <mrow> <mi>tcp</mi> <mn>0</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>y</mi> <mi>t</mi> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>y</mi> <mi>t</mi> </msub> <mo>;</mo> </mrow> </math>
(3-2) setting the model structure of the open-loop controlled system to be U (theta), wherein the parameter vector
Figure BDA0000104445060000022
Obtaining a controlled system model set for the parameters of the model structure U (theta)
U*={U(θ)|θ∈Dμ}
Where D is the dimension of the parameter θ, DμA subset of the d-dimensional real number set;
(3-3) smoothing the zero mean value timing signal { y) of step (3-1)tcp0And the small-amplitude randomly disturbed input signal utSubstituting the predicted value into a prediction function, predicting a predicted value at the moment t of injecting a small-amplitude random disturbance timing sequence signal:
<math> <mrow> <mi>U</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>:</mo> <mover> <mi>y</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>|</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>u</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> </mrow> </math>
wherein g (y)t-1,ut-1θ) is a predictor function;
(3-4) calculating the true value y of the wide-area feedback time sequence signal of the power system at the time t of injecting the small-amplitude random disturbance time sequence signaltSum and t time predicted value
Figure BDA0000104445060000024
Error e (t, θ) between:
<math> <mrow> <mi>&epsiv;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>y</mi> <mi>t</mi> </msub> <mo>-</mo> <mover> <mi>y</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>|</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
(3-5) setting a forecast error criterion function of the power system as follows:
J1(θ)=Tr[ΛD(θ)]
wherein Λ is a weighted positive definite matrix, <math> <mrow> <mi>D</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mi>&epsiv;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <msup> <mi>&epsiv;</mi> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
(3-6) minimizing the prediction error criterion function:
<math> <mrow> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>N</mi> </msub> <mo>=</mo> <mi>arg</mi> <mi>min</mi> <msub> <mi>J</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> </mrow> </math>
wherein
Figure BDA0000104445060000028
Is a function of the prediction error criterion J1(θ) obtaining a minimum value of the model parameter value; model (model)
Figure BDA0000104445060000029
Is a controlled system model set U*The system model is used for enabling the prediction error criterion function to obtain a minimum value.
(3-7) repeating the steps (3-2) to (3-6) M times to obtain M controlled system models
Figure BDA0000104445060000031
Model set U ofI
<math> <mrow> <msub> <mi>U</mi> <mi>I</mi> </msub> <mo>=</mo> <mo>{</mo> <mi>U</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <msub> <mi>N</mi> <mi>i</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>|</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>M</mi> <mo>}</mo> </mrow> </math>
Wherein i is 1, 2 …, and M is the total number of times steps (3-2) to (3-6) are repeated;
(3-8) setting the true value y of the wide-area feedback input time sequence signal of the power system at the time t of injecting the small-amplitude random disturbance time sequence signaltPredicted value at time t
Figure BDA0000104445060000033
The degree of fit between them is:
<math> <mrow> <mi>fit</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>N</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mn>100</mn> <mo>&times;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msqrt> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mi>&epsiv;</mi> <msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>N</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>/</mo> <msqrt> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msup> <msub> <mi>y</mi> <mrow> <mi>tcp</mi> <mn>0</mn> </mrow> </msub> <mn>2</mn> </msup> </msqrt> </mrow> </mrow> </math>
obtaining a controlled system model set U according to the fitting degree calculation formulaIThe fitness value of each model in the system is selected as the system model with the highest fitness valueAn open-loop system model between the excitation end of the generator and the wide-area feedback time sequence signal is obtained;
(3-9) converting the open-loop controlled system model between the generator excitation end provided with the generator wide-area damping controller and the wide-area feedback input time sequence signal from a discrete form G (z) to a continuous form G(s) by adopting a zero-order holding conversion method;
(4) inputting the continuous controlled system model obtained in the step (3-9) into the parameter module for solving the controller by the genetic algorithm, and calculating the parameters of the wide area damping controller of the generator, wherein the specific process is as follows:
(4-1) the filtering of the generator wide-area damping controller in the power system adopts band-pass filtering, the band-pass filtering adopts a band-pass filter, and the transfer function expression of the band-pass filter is as follows:
<math> <mrow> <msub> <mi>H</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mfrac> <mn>1</mn> <mi>Q</mi> </mfrac> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mo>&CenterDot;</mo> <mi>s</mi> </mrow> <mrow> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <mfrac> <mn>1</mn> <mi>Q</mi> </mfrac> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mi>s</mi> <mo>+</mo> <msup> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>,</mo> </mrow> </math>
where Q is the quality factor of the band pass filter,
Figure BDA0000104445060000036
Δ ω is the pass band width of the band pass filter, ω0Is the center frequency, omega, of the band-pass filter0The value is the low-frequency oscillation frequency of the controlled power system interval;
(4-2) calculating to obtain the phase shift parameter and the gain parameter of the generator wide area damping controller according to the continuous controlled system model obtained in the step (3-9), wherein the specific process is as follows:
(4-2-1) setting the phase shift of the generator wide-area damping controller to adopt three lead-lag links, wherein the gain is a proportionality coefficient, and the expression of the transfer function of the phase shift and the gain is as follows:
<math> <mrow> <msub> <mi>H</mi> <mi>&theta;</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>K</mi> <mo>&times;</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>T</mi> <mn>1</mn> </msub> <mi>s</mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>T</mi> <mn>2</mn> </msub> <mi>s</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mn>3</mn> </msup> </mrow> </math>
wherein,
Figure BDA0000104445060000041
transfer function for lead-lag links, T1To advance the time constant, T2Is the lag time constant, K is the gain of the controller;
(4-2-2) setting the control targets of the generator wide area damping controller as follows: make the open loop continuously controlled system and the wide area resistor of the generatorThe damping ratio of all oscillation modes of a closed loop system consisting of the damping controller is improved to xi0
(4-2-3) according to the control target, establishing an objective function of the parameter module for solving the controller by using the genetic algorithm, and obtaining the objective function of the parameter module for solving the controller by using the genetic algorithm as follows:
<math> <mrow> <mi>min</mi> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> (i=1,2,…,n)
<math> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mn>0.15</mn> <mo>-</mo> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> </mtd> <mtd> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> <mo>&lt;</mo> <msub> <mi>&xi;</mi> <mn>0</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> <mo>&GreaterEqual;</mo> <msub> <mi>&xi;</mi> <mn>0</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math>
wherein: n represents the number of oscillation modes, xi, of the closed loop systemiRepresents the damping ratio of the ith oscillation mode;
(4-4) setting 0 < T1<1,0<T2< 1 and 0 < K < 10 as constraints of the objective function;
(4-5) setting calculation parameters of the genetic algorithm: the number of the populations is 200, the value range of the initial population is 0-1, the number of excellent individuals copied to the next generation is 20, the filial generation individuals are selected by adopting a championship method, the crossing proportion of the newly generated filial generation individuals is 0.8, and the variation adopts a self-adaptive mode;
(4-6) setting a DC blocking time constant of the generator wide area damping controller: t isw4, the output upper limit value of the generator wide-area damping controller is +0.1, the output lower limit value is-0.1, and the optimal solution of the target function of the controller parameter module solved by the genetic algorithm, namely the lead time constant T of the generator wide-area damping controller is solved according to the calculation parameters of the genetic algorithm and the constraint conditions of the target function1Hysteresis time constant T2And an optimal value of the gain K of the controller.
The invention provides a generator wide area damping control method based on system identification and genetic algorithm, which has the advantages that:
1. the feedback signal of the generator wide-area damping controller obtained by the method is a real-time wide-area signal measured by a wide-area measurement system, and the wide-area signal has good observability on an interval low-frequency oscillation mode.
2. By adopting the control method, the damping ratio of the inter-low-frequency oscillation mode in the power system can be obviously improved after the controlled system is put into the generator wide-area damping controller, and the safe and stable operation of the power system is ensured.
3. The structure of the generator wide-area damping controller adopted by the invention is the same as that of the traditional PSS, and the generator wide-area damping controller is simple and easy for engineering practice.
Drawings
FIG. 1 is a block flow diagram of the method of the present invention.
FIG. 2 is a flow chart of generator wide area damping control in the method of the present invention.
FIG. 3 is a block diagram of a closed loop system consisting of an open loop continuous controlled system and a generator wide area damping controller according to an embodiment of the method of the present invention.
FIG. 4 is a schematic diagram of a small amplitude random disturbance signal at the excitation end of a generator according to an embodiment of the method of the present invention.
FIG. 5 is a schematic diagram of the wide-area feedback input timing signal when the generator wide-area damping controller operates in an open loop according to an embodiment of the method of the present invention.
Fig. 6 is a diagram illustrating an effect of a change of an active power curve of a tie line before and after a wide-area damping controller of a generator is turned on when a three-phase instantaneous short-circuit fault occurs in the tie line in an interval of a power system in an embodiment of a method of the present invention.
Detailed Description
The invention provides a generator wide area damping control method based on system identification and genetic algorithm, a flow chart of which is shown in figure 1, and the specific process is as follows:
(1) establishing a power system simulation model, wherein the model comprises equipment in a power system and power system operation parameters, the equipment comprises a generator, a regulator, a transformer, a bus, an alternating current line, a direct current line, a reactive power compensator and a parallel capacitor reactor, and the power system operation parameters comprise power flow and load of the power system; a controlled system model identification module is arranged and used for identifying an open-loop system model controlled by a generator wide-area damping controller; setting a module for solving parameters of the generator wide area damping controller by using a genetic algorithm, wherein the module is used for solving parameters of each link of the generator wide area damping controller; and arranging a generator wide-area damping controller module for realizing the generator wide-area damping control.
(2) A generator excitation end of a generator wide-area damping controller is installed in a power system, and a small-amplitude random disturbance timing sequence signal { u } is injectedt},utFor the value of small amplitude random disturbance signal at time T, T is 1, 2 … Ttotal,TtotalIn order to simulate the total steps, the wide-area feedback input time sequence signal { y) of the generator wide-area damping controller is collected under the condition that the generator wide-area damping controller operates in an open loop modetWide-area feedback input timing signal ytThe number of data is N, TtotalWill signal { utAnd { y }tInputting the data into the model identification module of the controlled system;
if the interval low-frequency oscillation mode of the system is to be identified, the small-amplitude fluctuation excitation signal should be distributed uniformly in the frequency range smaller than 2Hz, and the system is disturbed equally. Therefore, a small random disturbance signal injected into the excitation end of the generator in the simulation power system is generated by small Gaussian white noise through a second-order low-pass filter with the cut-off frequency of 2 Hz.
The wide area feedback input time sequence signal collected by the invention is an interval bus frequency difference signal.
(3) The controlled system model identification module identifies an open-loop controlled system model between a generator excitation end provided with a generator wide-area damping controller and a wide-area feedback input time sequence signal, and the specific process comprises the following steps:
(3-1) calculating the wide-area feedback input timing signal { y) according to the following equationtThe smoothed zero-mean timing signal ytcp0}:
<math> <mrow> <msub> <mi>y</mi> <mrow> <mi>tcp</mi> <mn>0</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>y</mi> <mi>t</mi> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>y</mi> <mi>t</mi> </msub> <mo>;</mo> </mrow> </math>
(3-2) setting the model structure of the open-loop controlled system to be U (theta), wherein the parameter vector
Figure BDA0000104445060000052
Obtaining a controlled system model set for the parameters of the model structure U (theta)
U*={U(θ)|θ∈Dμ}
Where D is the dimension of the parameter θ, DμA subset of the d-dimensional real number set;
the model structure usually selected is BJ model, OE model, ARX model, state space model, etc.
(3-3) smoothing the zero mean value timing signal { y) of step (3-1)tcp0And the small-amplitude randomly disturbed input signal utSubstituting the predicted value into a prediction function, predicting a predicted value at the moment t of injecting a small-amplitude random disturbance timing sequence signal:
<math> <mrow> <mi>U</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>:</mo> <mover> <mi>y</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>|</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>u</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> </mrow> </math>
wherein g (y)t-1,ut-1θ) is a predictor function;
(3-4) calculating the true value y of the wide-area feedback time sequence signal of the power system at the time t of injecting the small-amplitude random disturbance time sequence signaltSum and t time predicted value
Figure BDA0000104445060000062
Error e (t, θ) between:
<math> <mrow> <mi>&epsiv;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>y</mi> <mi>t</mi> </msub> <mo>-</mo> <mover> <mi>y</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>|</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
(3-5) setting a forecast error criterion function of the power system as follows:
J1(θ)=Tr[ΛD(θ)]
wherein Λ is a weighted positive definite matrix, <math> <mrow> <mi>D</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mi>&epsiv;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <msup> <mi>&epsiv;</mi> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
(3-6) minimizing the prediction error criterion function:
<math> <mrow> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>N</mi> </msub> <mo>=</mo> <mi>arg</mi> <mi>min</mi> <msub> <mi>J</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> </mrow> </math>
wherein
Figure BDA0000104445060000066
Is a function of the prediction error criterion J1(θ) obtaining a minimum value of the model parameter value; model (model)
Figure BDA0000104445060000067
Is a controlled system model set U*The system model is used for enabling the prediction error criterion function to obtain a minimum value.
The smaller the value of the prediction error criterion function is, the closer the prediction value is to the true value, and the closer the model parameter value is to the true model is.
(3-7) repeating the steps (3-2) to (3-6) M times to obtain M controlled system models
Figure BDA0000104445060000068
Model set U ofI
<math> <mrow> <msub> <mi>U</mi> <mi>I</mi> </msub> <mo>=</mo> <mo>{</mo> <mi>U</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <msub> <mi>N</mi> <mi>i</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>|</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>M</mi> <mo>}</mo> </mrow> </math>
Where i is 1, 2 …, and M is the total number of times steps (3-2) to (3-6) are repeated.
(3-8) setting the true value y of the wide-area feedback input time sequence signal of the power system at the time t of injecting the small-amplitude random disturbance time sequence signaltPredicted value at time t
Figure BDA00001044450600000610
The degree of fit between them is:
<math> <mrow> <mi>fit</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>N</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mn>100</mn> <mo>&times;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msqrt> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mi>&epsiv;</mi> <msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>N</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>/</mo> <msqrt> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msup> <msub> <mi>y</mi> <mrow> <mi>tcp</mi> <mn>0</mn> </mrow> </msub> <mn>2</mn> </msup> </msqrt> </mrow> </mrow> </math>
obtaining a controlled system model set U according to the fitting degree calculation formulaISelecting a system model with the highest fitting degree value as an open-loop system model between a generator excitation end and a wide-area feedback time sequence signal according to the fitting degree value of each model; the higher the fitness value, the better the model can describe the controlled system.
(3-9) converting the open-loop controlled system model between the generator excitation end provided with the generator wide-area damping controller and the wide-area feedback input time sequence signal from a discrete form G (z) to a continuous form G(s) by adopting a zero-order holding conversion method;
(4) inputting the continuous controlled system model obtained in the step (3-9) into the module for solving the controller parameter by using the genetic algorithm, and calculating the parameter of the generator wide area damping controller, wherein the structure diagram of the wide area damping controller is shown in fig. 2, and the specific process is as follows:
(4-1) the filtering of the generator wide-area damping controller in the power system adopts band-pass filtering, the band-pass filtering adopts a band-pass filter, and the transfer function expression of the band-pass filter is as follows:
<math> <mrow> <msub> <mi>H</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mfrac> <mn>1</mn> <mi>Q</mi> </mfrac> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mo>&CenterDot;</mo> <mi>s</mi> </mrow> <mrow> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <mfrac> <mn>1</mn> <mi>Q</mi> </mfrac> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mi>s</mi> <mo>+</mo> <msup> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>,</mo> </mrow> </math>
where Q is the quality factor of the band pass filter,
Figure BDA0000104445060000072
Δ ω is the pass band width of the band pass filter, ω0Is the center frequency of the band-pass filter; omega0The value is the low-frequency oscillation frequency of the controlled system interval.
(4-2) calculating to obtain the phase shift parameter and the gain parameter of the generator wide area damping controller according to the continuous controlled system model obtained in the step (3-9), wherein the specific process is as follows:
(4-2-1) setting the phase shift of the generator wide-area damping controller to adopt three lead-lag links, wherein the gain is a proportionality coefficient, and the expression of the transfer function of the phase shift and the gain is as follows:
<math> <mrow> <msub> <mi>H</mi> <mi>&theta;</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>K</mi> <mo>&times;</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>T</mi> <mn>1</mn> </msub> <mi>s</mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>T</mi> <mn>2</mn> </msub> <mi>s</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mn>3</mn> </msup> </mrow> </math>
wherein,transfer function for lead-lag links, T1To advance the time constant, T2K is the gain of the controller for the lag time constant.
(4-2-2) setting the control targets of the generator wide area damping controller as follows: the damping ratio of all oscillation modes of a closed loop system consisting of the open loop continuous controlled system and the generator wide area damping controller is improved to xi0
(4-2-3) according to the control target, establishing an objective function of the parameter module for solving the controller by using the genetic algorithm, and obtaining the objective function of the parameter module for solving the controller by using the genetic algorithm as follows:
<math> <mrow> <mi>min</mi> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> (i=1,2,…,n)
<math> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mn>0.15</mn> <mo>-</mo> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> </mtd> <mtd> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> <mo>&lt;</mo> <msub> <mi>&xi;</mi> <mn>0</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> <mo>&GreaterEqual;</mo> <msub> <mi>&xi;</mi> <mn>0</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math>
wherein: n represents the number of oscillation modes, xi, of the closed loop systemiRepresenting the i-th oscillation mode damping ratio.
(4-4) given 0 < T1<1,0<T2< 1 and 0 < K < 10 as constraints of the objective function.
(4-5) setting calculation parameters of the genetic algorithm: the population number is 200, the value range of the initial population is 0-1, the number of excellent individuals copied to the next generation is 20, the filial generation individuals are selected by adopting a championship method, the crossing proportion of the newly generated filial generation individuals is 0.8, and the variation adopts a self-adaptive mode.
(4-6) setting a DC blocking time constant of the generator wide area damping controller: t isw4, the output upper limit value of the generator wide-area damping controller is +0.1, the output lower limit value is-0.1, and the optimal solution of the target function of the controller parameter module solved by the genetic algorithm, namely the lead time constant T of the generator wide-area damping controller is solved according to the calculation parameters of the genetic algorithm and the constraint conditions of the target function1Hysteresis time constant T2And an optimal value of the gain K of the controller.
The method comprises a simulation power system module, a controlled system model identification module and a controller parameter calculation module by using a genetic algorithm. The basic analysis process is that a small-amplitude random disturbance signal is injected into a generator excitation end provided with a generator wide-area damping controller in a simulation power system, a wide-area feedback input signal of the generator wide-area damping controller under an open-loop condition is collected, the small-amplitude disturbance signal and the wide-area feedback input signal are input into a controlled system model identification module as analysis objects, an open-loop system model between the generator excitation end provided with the generator wide-area damping controller and a wide-area feedback input sequential signal is obtained through identification, and generator wide-area damping controller parameters are optimized through a genetic algorithm solving controller parameter module according to a control target.
FIG. 2 shows a generator wide-area damping controller structure adopted by the method of the invention. Wherein Hθ(s) is the phase-shift and gain-link transfer function structure, HfAnd(s) is a band-pass filtering link transfer function structure. K is the gain, T1、T2Respectively a lead time constant and a lag time constant of the phase shifting link. Omega0And Q are the passband center frequency and the quality factor of the bandpass filter respectively.
The method combines system identification and genetic algorithm, and optimally designs parameters of a phase shift link and a gain link in the generator wide-area damping controller, so that the damping ratio of a controlled power system meets the requirement after the generator wide-area damping controller is put into use.
The following is one embodiment of the method of the present invention:
the generator wide-area damping control is implemented at the excitation end of the generator, and the purpose is to suppress interval low-frequency oscillation existing in different areas in a power grid. The wide-area feedback signal is selected from a bus frequency difference signal of two places. The designed generator wide area damping controller adopts a traditional generator PSS structure, as shown in figure 2. When a generator wide-area damping controller is not added, a three-phase instantaneous short-circuit fault is applied to a tie line in a power grid system interval, an active power curve of the tie line is measured, and a prony analysis shows that the frequency of an interval low-frequency oscillation mode is about 0.60Hz, and the damping ratio is 3.1%. The aim of the wide-area damping control of the generator is to improve the damping ratio of the low-frequency oscillation mode of the system to more than 15%.
Step 1: and injecting a small-amplitude random disturbance signal into the simulation power system, and collecting a bus frequency difference signal of two places as an open-loop wide-area feedback input signal of the generator wide-area damping controller.
The small random disturbance signal injected into the excitation end of the generator is obtained by Gaussian white noise through a low-pass filter with the cut-off frequency of 2 Hz. FIG. 4 is a schematic diagram of a small random disturbance signal injected into the excitation end of the generator. And collecting bus frequency difference signals of two places in the power system as open-loop wide-area feedback input signals of the generator wide-area damping controller. Fig. 5 shows the bus frequency difference signal between two locations.
Step 2: and identifying an open-loop system model between the generator excitation end and the bus frequency difference signals of the two places.
Firstly, mean value removing processing is carried out on the two-place bus frequency difference signals, and the processed two-place bus frequency difference signals and small-amplitude random disturbance signals are input into a controlled system model identification module. And aiming at a plurality of different model structures, a plurality of controlled system models are identified by using a controlled system model identification module, the fitting degree of each controlled system model is calculated, and the model with the maximum fitting degree value is selected as the controlled system model. Converting the model from a discrete form to a continuous form to obtain a continuous transfer function expression of a controlled system:
G ( s ) = 0.01035 s 4 + 0.07688 s 3 - 0.8249 s 2 - 5.179 s - 6.262 s 4 + 5.075 s 3 + 67.08 s 2 + 84.39 s + 736
and step 3: and optimizing parameters of each link of the generator wide area damping controller by adopting a genetic algorithm based on the controlled system model obtained by identification.
And extracting the cloud and precious oscillation mode component in the cloud and precious frequency difference feedback signal by using a band-pass filter. The quality factor Q of the band-pass filter is set to 1.5, the center frequency omega0Set to the yunrong low frequency oscillation mode frequency of 0.58 Hz. According to the band-pass filter transfer function expression:
<math> <mrow> <msub> <mi>H</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mfrac> <mn>1</mn> <mi>Q</mi> </mfrac> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mo>&CenterDot;</mo> <mi>s</mi> </mrow> <mrow> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <mfrac> <mn>1</mn> <mi>Q</mi> </mfrac> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mi>s</mi> <mo>+</mo> <msup> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>,</mo> </mrow> </math>
the available controller bandpass filter transfer function is:
H p ( s ) = 2.43 s s 2 + 2.43 s + 13.28
and (3) forming a closed-loop control system by using the identified transfer function G(s) of the controlled system and the transfer function H(s) of the generator wide-area damping controller, as shown in fig. 3.
The parameter to be solved by the generator wide-area damping controller is a lead time constant T1Hysteresis time constant T2And a gain K, calculating the optimal solution of the parameters meeting the generator wide-area damping control target by using a genetic algorithm
According to the aim of the wide-area damping control of the generator, the damping ratio of the low-frequency oscillation mode of the system is improved to 15%, and a genetic algorithm objective function is given:
<math> <mrow> <mi>min</mi> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> (i=1,2,…,n)
<math> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mn>0.15</mn> <mo>-</mo> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> </mtd> <mtd> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> <mo>&lt;</mo> <mn>15</mn> <mo>%</mo> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> <mo>&GreaterEqual;</mo> <mn>15</mn> <mo>%</mo> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
giving the lead time constant T of the parameter to be optimized1Hysteresis time constant T2And the value range of the gain: 0 < T1<1,0<T2< 1 and 0 < K < 10 as constraints of the objective function.
Setting calculation parameters of a genetic algorithm: the population number is 200, the value range of the initial population is 0-1, the number of excellent individuals copied to the next generation is 20, the filial generation individuals are selected by adopting a championship method, the crossing proportion of the newly generated filial generation individuals is 0.8, and the variation adopts a self-adaptive mode.
Setting a DC blocking time constant of the generator wide area damping controller: t isw4, the output upper limit value of the generator wide-area damping controller is +0.1, the output lower limit value is-0.1, and the optimal solution of the target function of the controller parameter module solved by the genetic algorithm, namely the lead time constant T of the generator wide-area damping controller is solved according to the calculation parameters of the genetic algorithm and the constraint conditions of the target function10.020, lag time constant T20.019 and the gain K of the controller-5.91.
And 4, step 4: the designed generator wide-area damping controller is put into a power grid system, the effect of the amplitude limiting link on the output of the controller is considered, and the gain of the controller is adjusted, so that the energy output of the controller is in a proper range.
The genetic algorithm optimizes the controller gain to-5.91, but under the gain, the controller output seriously exceeds the amplitude limit, and the controller gain is adjusted to-3.
The adjusted generator wide-area damping controller is put into a power grid system, a three-phase instantaneous short-circuit fault is applied to an interval tie line, a comparison graph of active power curve changes of the tie line before and after the generator wide-area damping controller is put into the interval tie line is shown in fig. 6, and the system damping ratio can be improved from 3.2% to 22.2% through prony analysis.

Claims (1)

1. A generator wide area damping control method based on system identification and genetic algorithm is characterized by comprising the following steps:
(1) establishing a power system simulation model, wherein the model comprises equipment in a power system and power system operation parameters, the equipment comprises a generator, a regulator, a transformer, a bus, an alternating current line, a direct current line, a reactive power compensator and a parallel capacitor reactor, and the power system operation parameters comprise power flow and load of the power system; a controlled system model identification module is arranged and used for identifying an open-loop system model controlled by a generator wide-area damping controller; setting a module for solving parameters of the generator wide area damping controller by using a genetic algorithm, wherein the module is used for solving parameters of each link of the generator wide area damping controller; arranging a generator wide-area damping controller module for realizing the generator wide-area damping control;
(2) a generator excitation end of a generator wide-area damping controller is installed in a power system, and a small-amplitude random disturbance timing sequence signal { u } is injectedt},utFor the value of small amplitude random disturbance signal at time T, T is 1, 2 … Ttotal,TtotalIn order to simulate the total steps, the wide-area feedback input time sequence signal { y) of the generator wide-area damping controller is collected under the condition that the generator wide-area damping controller operates in an open loop modetWide-area feedback input timing signal ytThe number of data is N, TtotalWill signal { utAnd { y }tInputting the data into the model identification module of the controlled system;
(3) the controlled system model identification module identifies an open-loop controlled system model between a generator excitation end provided with a generator wide-area damping controller and a wide-area feedback input time sequence signal, and the specific process comprises the following steps:
(3-1) calculating the wide-area feedback input timing signal { y) according to the following equationtThe smoothed zero-mean timing signal ytcp0}:
<math> <mrow> <msub> <mi>y</mi> <mrow> <mi>tcp</mi> <mn>0</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>y</mi> <mi>t</mi> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>y</mi> <mi>t</mi> </msub> <mo>;</mo> </mrow> </math>
(3-2) setting the model structure of the open-loop controlled system to be U (theta), wherein the parameter vector
Figure FDA0000104445050000012
Obtaining a controlled system model set for the parameters of the model structure U (theta)
U*={U(θ)|θ∈Dμ}
Where D is the dimension of the parameter θ, DμA subset of the d-dimensional real number set;
(3-3) smoothing the zero mean value timing signal { y) of step (3-1)tcp0And the small-amplitude randomly disturbed input signal utSubstituting the predicted value into a prediction function, predicting a predicted value at the moment t of injecting a small-amplitude random disturbance timing sequence signal:
<math> <mrow> <mi>U</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>:</mo> <mover> <mi>y</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>|</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>u</mi> <mrow> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> </mrow> </math>
wherein g (y)t-1,ut-1θ) is a predictor function;
(3-4) calculating the true value y of the wide-area feedback time sequence signal of the power system at the time t of injecting the small-amplitude random disturbance time sequence signaltSum and t time predicted value
Figure FDA0000104445050000014
Error e (t, θ) between:
<math> <mrow> <mi>&epsiv;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>y</mi> <mi>t</mi> </msub> <mo>-</mo> <mover> <mi>y</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>|</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
(3-5) setting a forecast error criterion function of the power system as follows:
J1(θ)=Tr[ΛD(θ)]
wherein Λ is a weighted positive definite matrix, <math> <mrow> <mi>D</mi> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mi>&epsiv;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <msup> <mi>&epsiv;</mi> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
(3-6) minimizing the prediction error criterion function:
<math> <mrow> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>N</mi> </msub> <mo>=</mo> <mi>arg</mi> <mi>min</mi> <msub> <mi>J</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>&theta;</mi> <mo>)</mo> </mrow> </mrow> </math>
whereinIs a function of the prediction error criterion J1(θ) obtaining a minimum value of the model parameter value; model (model)
Figure FDA0000104445050000024
Is a controlled system model set U*The system model is used for enabling the prediction error criterion function to obtain a minimum value.
(3-7) repeating the steps (3-2) to (3-6) M times to obtain M controlled system models
Figure FDA0000104445050000025
Model set U ofI
<math> <mrow> <msub> <mi>U</mi> <mi>I</mi> </msub> <mo>=</mo> <mo>{</mo> <mi>U</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <msub> <mi>N</mi> <mi>i</mi> </msub> </msub> <mo>)</mo> </mrow> <mo>|</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>M</mi> <mo>}</mo> </mrow> </math>
Wherein i is 1, 2 …, and M is the total number of times steps (3-2) to (3-6) are repeated;
(3-8) setting the true value y of the wide-area feedback input time sequence signal of the power system at the time t of injecting the small-amplitude random disturbance time sequence signaltPredicted value at time t
Figure FDA0000104445050000027
The degree of fit between them is:
<math> <mrow> <mi>fit</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>N</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mn>100</mn> <mo>&times;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msqrt> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mi>&epsiv;</mi> <msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>N</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </msqrt> <mo>/</mo> <msqrt> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msup> <msub> <mi>y</mi> <mrow> <mi>tcp</mi> <mn>0</mn> </mrow> </msub> <mn>2</mn> </msup> </msqrt> </mrow> </mrow> </math>
obtaining a controlled system model set U according to the fitting degree calculation formulaISelecting a system model with the highest fitting degree value as an open-loop system model between a generator excitation end and a wide-area feedback time sequence signal according to the fitting degree value of each model;
(3-9) converting the open-loop controlled system model between the generator excitation end provided with the generator wide-area damping controller and the wide-area feedback input time sequence signal from a discrete form G (z) to a continuous form G(s) by adopting a zero-order holding conversion method;
(4) inputting the continuous controlled system model obtained in the step (3-9) into the parameter module for solving the controller by the genetic algorithm, and calculating the parameters of the wide area damping controller of the generator, wherein the specific process is as follows:
(4-1) the filtering of the generator wide-area damping controller in the power system adopts band-pass filtering, the band-pass filtering adopts a band-pass filter, and the transfer function expression of the band-pass filter is as follows:
<math> <mrow> <msub> <mi>H</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mfrac> <mn>1</mn> <mi>Q</mi> </mfrac> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mo>&CenterDot;</mo> <mi>s</mi> </mrow> <mrow> <msup> <mi>s</mi> <mn>2</mn> </msup> <mo>+</mo> <mfrac> <mn>1</mn> <mi>Q</mi> </mfrac> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mi>s</mi> <mo>+</mo> <msup> <msub> <mi>&omega;</mi> <mn>0</mn> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>,</mo> </mrow> </math>
where Q is the quality factor of the band pass filter,
Figure FDA00001044450500000210
Δ ω is the pass band width of the band pass filter, ω0Is the center frequency, omega, of the band-pass filter0The value is the low-frequency oscillation frequency of the controlled power system interval;
(4-2) calculating to obtain the phase shift parameter and the gain parameter of the generator wide area damping controller according to the continuous controlled system model obtained in the step (3-9), wherein the specific process is as follows:
(4-2-1) setting the phase shift of the generator wide-area damping controller to adopt three lead-lag links, wherein the gain is a proportionality coefficient, and the expression of the transfer function of the phase shift and the gain is as follows:
<math> <mrow> <msub> <mi>H</mi> <mi>&theta;</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>K</mi> <mo>&times;</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>T</mi> <mn>1</mn> </msub> <mi>s</mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>T</mi> <mn>2</mn> </msub> <mi>s</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mn>3</mn> </msup> </mrow> </math>
wherein,transfer function for lead-lag links, T1To advance the time constant, T2Is the lag time constant, K is the gain of the controller;
(4-2-2) setting the control targets of the generator wide area damping controller as follows: the damping ratio of all oscillation modes of a closed loop system consisting of the open loop continuous controlled system and the generator wide area damping controller is improved to xi0
(4-2-3) according to the control target, establishing an objective function of the parameter module for solving the controller by using the genetic algorithm, and obtaining the objective function of the parameter module for solving the controller by using the genetic algorithm as follows:
<math> <mrow> <mi>min</mi> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> (i=1,2,…,n)
<math> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mn>0.15</mn> <mo>-</mo> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> </mtd> <mtd> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> <mo>&lt;</mo> <msub> <mi>&xi;</mi> <mn>0</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&xi;</mi> <mi>i</mi> </msub> <mo>&GreaterEqual;</mo> <msub> <mi>&xi;</mi> <mn>0</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math>
wherein: n represents the number of oscillation modes, xi, of the closed loop systemiRepresents the damping ratio of the ith oscillation mode;
(4-4) setting 0 < T1<1,0<T2< 1 and 0 < K < 10 as constraints of the objective function;
(4-5) setting calculation parameters of the genetic algorithm: the number of the populations is 200, the value range of the initial population is 0-1, the number of excellent individuals copied to the next generation is 20, the filial generation individuals are selected by adopting a championship method, the crossing proportion of the newly generated filial generation individuals is 0.8, and the variation adopts a self-adaptive mode;
(4-6) setting a DC blocking time constant of the generator wide area damping controller: t isw4, the output upper limit value of the generator wide-area damping controller is +0.1, the output lower limit value is-0.1, and the optimal solution of the target function of the controller parameter module solved by the genetic algorithm, namely the lead time constant T of the generator wide-area damping controller is solved according to the calculation parameters of the genetic algorithm and the constraint conditions of the target function1Hysteresis time constant T2And an optimal value of the gain K of the controller.
CN 201110340508 2011-11-01 2011-11-01 Generator wide-area damping control method based on system identification and genetic algorithm Active CN102420559B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110340508 CN102420559B (en) 2011-11-01 2011-11-01 Generator wide-area damping control method based on system identification and genetic algorithm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110340508 CN102420559B (en) 2011-11-01 2011-11-01 Generator wide-area damping control method based on system identification and genetic algorithm

Publications (2)

Publication Number Publication Date
CN102420559A true CN102420559A (en) 2012-04-18
CN102420559B CN102420559B (en) 2013-11-06

Family

ID=45944825

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110340508 Active CN102420559B (en) 2011-11-01 2011-11-01 Generator wide-area damping control method based on system identification and genetic algorithm

Country Status (1)

Country Link
CN (1) CN102420559B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013155651A1 (en) * 2012-04-19 2013-10-24 四川电力科学研究院 Method for controlling dynamic reactive power compensation in ac/dc hybrid power grid
CN103869697A (en) * 2014-03-18 2014-06-18 上海理工大学 Multivariate closed-loop identification method for generating set with regard to inoperable variable
CN105281347A (en) * 2014-07-03 2016-01-27 华北电力大学(保定) WAMS-based low-frequency oscillation decentralized controller design method considering interaction
CN108258703A (en) * 2018-02-11 2018-07-06 浙江工业大学 Wide area damp of electrical power system device with Redundant Control circuit
CN111007396A (en) * 2019-12-05 2020-04-14 广东电网有限责任公司 Method and device for detecting accuracy of PSS2A/B model and storage medium
CN113408093A (en) * 2021-06-29 2021-09-17 西南交通大学 Capacitive blocking device configuration optimization method based on genetic algorithm

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1130320A (en) * 1994-11-15 1996-09-04 株式会社东芝 Power stabilizer for electric generator
US5604420A (en) * 1994-11-30 1997-02-18 Mitsubishi Denki Kabushiki Kaisha Stabilizer for power system
US20060164045A1 (en) * 2005-01-24 2006-07-27 Eaton Corporation Power system stabilizer providing excitation limiter functions
CN101202451A (en) * 2007-12-13 2008-06-18 南方电网技术研究中心 System for controlling wide area damp of electrical power system and method thereof
US20090001940A1 (en) * 2007-06-29 2009-01-01 General Electric Company Power system stabilizer and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1130320A (en) * 1994-11-15 1996-09-04 株式会社东芝 Power stabilizer for electric generator
US5604420A (en) * 1994-11-30 1997-02-18 Mitsubishi Denki Kabushiki Kaisha Stabilizer for power system
US20060164045A1 (en) * 2005-01-24 2006-07-27 Eaton Corporation Power system stabilizer providing excitation limiter functions
US20090001940A1 (en) * 2007-06-29 2009-01-01 General Electric Company Power system stabilizer and method
CN101202451A (en) * 2007-12-13 2008-06-18 南方电网技术研究中心 System for controlling wide area damp of electrical power system and method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013155651A1 (en) * 2012-04-19 2013-10-24 四川电力科学研究院 Method for controlling dynamic reactive power compensation in ac/dc hybrid power grid
CN103869697A (en) * 2014-03-18 2014-06-18 上海理工大学 Multivariate closed-loop identification method for generating set with regard to inoperable variable
CN105281347A (en) * 2014-07-03 2016-01-27 华北电力大学(保定) WAMS-based low-frequency oscillation decentralized controller design method considering interaction
CN105281347B (en) * 2014-07-03 2017-11-17 华北电力大学(保定) The low-frequency oscillation decentralized controller design method of interaction is considered based on WAMS
CN108258703A (en) * 2018-02-11 2018-07-06 浙江工业大学 Wide area damp of electrical power system device with Redundant Control circuit
CN108258703B (en) * 2018-02-11 2020-05-26 浙江工业大学 Power system wide area damper with redundant control loop
CN111007396A (en) * 2019-12-05 2020-04-14 广东电网有限责任公司 Method and device for detecting accuracy of PSS2A/B model and storage medium
CN111007396B (en) * 2019-12-05 2022-01-11 广东电网有限责任公司 Method and device for detecting accuracy of PSS2A/B model and storage medium
CN113408093A (en) * 2021-06-29 2021-09-17 西南交通大学 Capacitive blocking device configuration optimization method based on genetic algorithm
CN113408093B (en) * 2021-06-29 2022-04-29 西南交通大学 Capacitive blocking device configuration optimization method based on genetic algorithm

Also Published As

Publication number Publication date
CN102420559B (en) 2013-11-06

Similar Documents

Publication Publication Date Title
CN102420559B (en) Generator wide-area damping control method based on system identification and genetic algorithm
CN103490413B (en) A kind of intelligent power generation control method based on intelligent body equalization algorithm
CN103036462B (en) Model prediction control method of voltage source type rectifier when network voltage is unbalanced
CN104734545B (en) The control method of the PWM rectifier controlled based on model prediction and voltage squared
CN103472731B (en) Method for analyzing stability of small signals of micro-grid and coordinating and setting parameters
CN103530650B (en) Power grid low-frequency oscillation noise signal identification method
CN103870703B (en) A kind of dynamic short-circuit ratio computational methods based on Thevenin&#39;s equivalence parameter tracking
CN106961115B (en) High-voltage direct-current power transmission system equivalent current voltage source modeling method and model
CN102723721A (en) Power system reactive power optimization method based on individual optimal position self-adaptive variation disturbance particle swarm algorithm
CN103124072A (en) Load characteristic considered power grid dynamic reactive power optimization system and method
CN108429286A (en) A kind of grid-connected current adjuster based on Active Disturbance Rejection Control
CN102623987A (en) Multiple-DC (direct current)-droppoint selection method based on multiple feed-in short circuit ratios
CN103198184A (en) Low-frequency oscillation character noise-like identification method in electric power system
CN107346944A (en) A kind of efficiently two-way mixing three-phase voltage type rectifier
CN105762789B (en) A kind of 3-phase power converter model predictive control method of Converter Without Voltage Sensor
CN106786590B (en) A kind of grid-connected Distribution Network Harmonics detection control method
CN107658960A (en) Emergency service method, apparatus and system, equipment, the storage medium of residential electricity consumption
CN103592528A (en) Photovoltaic inverter model parameter identification method based on dynamic locus sensitivity
CN104332998B (en) A kind of power system direct-current emergency algorithm for power modulation improves the control performance quantitatively evaluating index calculating method of frequency security
CN103178534A (en) Calculating method for prevention and control strategy of small interference stabilization
CN108092322A (en) A kind of AGC control methods based on frequency modulation market environment
CN104659778A (en) Priority considered power quality and noise comprehensive evaluation method for convertor transformer
CN108092272A (en) A kind of voltage stabilization on-line monitoring method based on the Kalman filtering that fades
CN104617589A (en) Control method and system for improving one-time frequency-modulated control stability of generator set
CN108964013A (en) A kind of UPQC Optimal output tracking control method and device based on state observer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant