CN102419166B - 高精度多频同步相位激光测距装置与方法 - Google Patents

高精度多频同步相位激光测距装置与方法 Download PDF

Info

Publication number
CN102419166B
CN102419166B CN 201110236265 CN201110236265A CN102419166B CN 102419166 B CN102419166 B CN 102419166B CN 201110236265 CN201110236265 CN 201110236265 CN 201110236265 A CN201110236265 A CN 201110236265A CN 102419166 B CN102419166 B CN 102419166B
Authority
CN
China
Prior art keywords
frequency
input end
output terminal
laser
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 201110236265
Other languages
English (en)
Other versions
CN102419166A (zh
Inventor
谭久彬
杨宏兴
胡鹏程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN 201110236265 priority Critical patent/CN102419166B/zh
Publication of CN102419166A publication Critical patent/CN102419166A/zh
Application granted granted Critical
Publication of CN102419166B publication Critical patent/CN102419166B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

高精度多频同步相位激光测距装置与方法,涉及激光测量技术领域,主要涉及一种相位激光测距技术,解决了相位激光测距技术中缺少一种能兼顾多测尺的同步性与稳定性的装置与方法的问题,高精度多频同步相位激光测距装置,它包括双纵模稳频He-Ne激光器、多测尺发生单元、扩束准直镜组、测量光路及电路单元和控制箱单元;高精度多频同步相位激光测距方法,它包括具体步骤如下:步骤一、开启双纵模稳频He-Ne激光器;步骤二、一束作为参考激光束,另一束作为测量激光;步骤三、以(f′+f2)-(f+f1)作为精测尺频率,以低频电信号f1-f2作为粗测尺频率;步骤四、移动测量角椎棱镜至目标端,步骤五、得到相位差φp,步骤六、得到相位差φc,步骤七、得距离;用于相位激光测距。

Description

高精度多频同步相位激光测距装置与方法
技术领域
本发明属于激光测量技术领域,主要涉及一种相位激光测距技术。
背景技术
大尺寸测量在发展大型精密机械制造、重大科技工程、航空航天工业、船舶工业和微电子装备业等大型光机电一体化装备加工制造中备受关注,其中几米至几百米范围的大尺寸测量是航空航天器和巨型船舶中及大型零部件加工和整体装配的重要基础,其测量方法与设备性能的优越直接影响工件质量及装配精度,进而影响整套装备的运行质量、性能及寿命。多测尺相位测距方法利用一组从大到小的测尺波长对被测距离进行逐级精化测量,解决了测量范围和测量精度之间的相互矛盾,能在数百米超长作用距离内达到毫米至亚毫米级的静态测量精度。
多频相位测距技术多运用在大尺寸绝对距离测量中,文献[Ke-Nung Huang,Yu-PeiHuang.Multiple-frequency ultrasonic distance measurementusing direct digitalfrequency synthesizers.Sensors and Actuators A:Physical.2009,149:42-50]描述了一种多频相位微波测距技术,尽管多测尺逐级测量的方式兼顾了测量范围与测量精度的需求,但由于粗测尺与精测尺不能够同时产生并进行相位测量,造成了测量时间过长,测量结果实时性差的问题,另一方面由于多测尺相位测距技术中以测尺波长大小为基准进行测量,测尺波长的稳定性直接影响测距的精度,而微波技术测尺波长稳定度低,且由于微波的无方向性,需建立接收口径较大的天线,增加了设备的体积及体重。因此如何获得高稳定性的粗测尺与精测尺波长,并且使之同时参与测量是目前提高多测尺相位测距精度与实时性的主要问题。
激光光源以其方向性强、波束角小、能量集中、单色性好等优点较之微波光源具有明显的优势,相位激光测距技术已广泛应用于精密测量场合。该技术中测尺的稳定性与同步产生技术与光源技术有关,通过对相位测距法光源技术的分析可知,目前国内外相位激光测量方法对激光源的调制手段有电流直接调制、光调制和模间拍频调制等。
直接电流调制法利用半导体激光器,光强随电流变化的特点,来对半导体激光器的输出光强进行调制,具有简单易调制等优点。文献[Siyuan Liu,Jiubin Tan and Binke Hou.Multicycle Synchronous Digital Phase Measurement Used to Further ImprovePhase-Shift Laser Range Finding.Meas.Sci.Technol.2007,18:1756-1762]与专利[多频同步调制的大量程高精度快速激光测距装置与方法,公开号:CN1825138]都阐述了一种基于半导体激光器的电流调制方法,其采用多频同步合成的复合信号对激光输出功率进行同步调制,实现了在同一时刻得到多频调制测距中各测尺频率针对被测距离的测量结果,但是为了获得线性调制,使工作点处于输出特性曲线的直线部分,必须在加调制信号电流的同时加一适当的偏置电流使其输出信号不失真,直流偏置的引入加大了功耗,在长时间工作时温度升高,会影响输出光功率的稳定性,导致调制波形变形,且随着调制频率的增加,调制深度会降低,导致调制波形变形,不能进行高频调制,限制了精测尺波长的大小及稳定度;另一方面在大尺寸测量实际应用过程中激光在长距离传输过程中容易造成激光功率的损失,造成对调制波波形的影响,进而影响测尺的准确度及稳定度,其测尺的频率稳定度一般小于10-7
利用光调制方法主要为声光调制法,其调制带宽受到激光光束直径、布拉格衍射角和衍射效率的影响,也会带来波形变形,特别是在高频(千兆赫兹)时就更为严重,目前成品声光调制器的带宽在20-200MHz左右,因此它所形成大的测尺,测量精度由于受到最大测尺频率200MHz的限制难以提高。
利用激光器不同模式输出所形成的拍频信号作为测尺,称为模间调制。此方法的调制带宽与激光器的腔长相关,He-Ne激光器稳频技术成熟,它的频率稳定度高,优点是测尺的稳定度高,文献[周秀云.0_6328_mHe_Ne激光器小数重合法大尺寸绝对距离测量方法的研究.中国测试技术.2003,6:15-17],与文献[周肇飞,吴斌,张涛.双纵模激光作无导轨大尺寸精密测量.光电工程.1996,23(4):50-55]都利用He-Ne激光器搭建了测距装置。但由于激光模式间的频差量级在数百MHz,它最大的测尺不超过3m进行测量,适于短距离内的高精度相位测距。另外其模间间隔固定,不能进行调节形成多测尺,如果用在大尺寸的测量,需另外加入粗测手段,增加了测量时间及难度。
综合上述,目前相位激光测距技术中缺少一种能兼顾多测尺的同步性与稳定性的装置与方法。
发明内容
本发明的目的是为了解决现有相位激光测距技术中缺少一种能兼顾多测尺的同步性与稳定性的装置与方法的问题,提供一种高精度多频同步相位激光测距装置与方法。
高精度多频同步相位激光测距装置,它由双纵模稳频He-Ne激光器、多测尺发生单元、扩束准直镜组、测量光路及电路单元和控制箱单元组成,双纵模稳频He-Ne激光器发出的激光输出到多测尺发生单元的输入端,多测尺发生单元输出的激光通过扩束准直镜组到测量光路及电路单元的输入端,测量光路及电路单元的相位信息输出端连接在控制箱单元的相位信息输入端,控制箱单元的一个控制输出端连接在多测尺发生单元的控制输入端,控制箱单元的另一个控制输出端连接在测量光路及电路单元的控制输入端;
多测尺发生单元由偏振分光镜、一号分光镜、直角反射镜、偏振旋转器、一号声光移频器、二号声光移频器、三号声光移频器、一号双路分路光纤和二号双路分路光纤组成,双纵模稳频He-Ne激光器发射的激光束到达偏振分光镜的输入端,偏振分光镜的一个输出端连接在一号声光移频器的一个输入端,偏振分光镜的另一个输出端连接在一号分光镜的输入端,一号分光镜的一个输出端通过偏振旋转器连接在二号声光移频器的输入端,一号分光镜的另一个输出端连接在直角反射镜的输入端,直角反射镜的输出端连接在三号声光移频器的一个输入端,一号声光移频器的输出端连接在一号双路分路光纤的一个输入端,二号声光移频器的输出端连接在一号双路分路光纤的另一个输入端,一号双路分路光纤的输出端连接在二号双路分路光纤的一个输入端,三号声光移频器的输出端连接在二号双路分路光纤的另一个输入端,二号双路分路光纤的输出端连接在扩束准直镜组的输入端;
测量光路及电路单元由二号分光镜、三号分光镜、一号起偏器、一号光电接收器、二号起偏器、二号光电接收器、四号分光镜、三号起偏器、三号光电接收器、四号起偏器、四号光电接收器、二号低通滤波器、四号低通滤波器、二号混频器、四号混频器、一号鉴相器、一号混频器、三号混频器、一号低通滤波器、三号低通滤波器、二号鉴相器和测量角椎棱镜组成,扩束准直镜组的输出端连接在二号分光镜的输入端,二号分光镜的一个输出端连接在三号分光镜的输入端,三号分光镜的一个输出端通过一号起偏器与一号光电接收器的输入端连通,三号分光镜的另一个输出端通过二号起偏器与二号光电接收器的输入端连通,一号光电接收器的输出端连接在一号混频器的一个输入端,一号混频器的输出端连接在一号低通滤波器的输入端,一号低通滤波器的输出端连接在二号鉴相器的一个输入端,二号光电接收器的输出端连接在二号低通滤波器的输入端,二号低通滤波器的输出端连接在二号混频器的一个输入端,二号混频器的输出端连接在一号鉴相器的一个输入端,二号分光镜的另一个输出端连接在测量角椎棱镜的输入端,测量角椎棱镜的输出端连接在四号分光镜的输入端,四号分光镜的一个输出端通过三号起偏器与三号光电接收器的输入端连通,三号光电接收器的输出端连接在三号混频器的一个输入端,三号混频器的输出端连接在三号低通滤波器的输入端,三号低通滤波器的输出端连接在二号鉴相器的另一个输入端,四号分光镜的另一个输出端通过四号起偏器与四号光电接收器的输入端连通,四号光电接收器的输出端连接在四号低通滤波器的输入端,四号低通滤波器的输出端连接在四号混频器的一个输入端,四号混频器的输出端连接在一号鉴相器的另一个输入端;
控制箱单元由温控箱、晶振、直接数字频率合成器、数据合成单元、一号驱动器、二号驱动器和三号驱动器组成,晶振和直接数字频率合成器置于温控箱内,晶振的输出端连接在直接数字频率合成器的输入端,直接数字频率合成器的第一输出端连接在三号驱动器的输入端,直接数字频率合成器的第二输出端连接在二号驱动器的输入端,直接数字频率合成器的第三输出端连接在一号驱动器的输入端,三号驱动器的输出端连接在二号声光移频器的另一个输入端,二号驱动器的输出端连接在三号声光移频器的另一个输入端,一号驱动器的输出端连接在一号声光移频器的另一个输入端,直接数字频率合成器的第四输出端分别连接在二号混频器的另一个输入端和四号混频器的另一个输入端,直接数字频率合成器的第五输出端分别连接在一号混频器的另一个输入端和三号混频器的另一个输入端,一号鉴相器的输出端连接在数据合成单元的一个输入端,二号鉴相器的输出端连接在数据合成单元的另一个输入端。
基于上述高精度多频同步相位激光测距装置的高精度多频同步相位激光测距方法,它的具体步骤如下:
步骤一、开启双纵模稳频He-Ne激光器,在经过预热和稳频过程后,双纵模稳频激光器输出频率分别为f与f′的双频激光,此双频激光经过偏振分光镜分为偏振态互相垂直的两束激光,其中频率为f的激光束经分光棱镜又分为两束,且其中一束激光经过偏振旋转器,偏振方向转动90度,使其与频率为f′的激光偏振方向相同;
步骤二、由步骤一所形成的三束激光分别射入到一号声光移频器、二号声光移频器和三号声光移频器上,直接数字频率合成器输出三种频率,分别为:f1,f2,f3,并经驱动器控制声光移频器的移频频率,经移频后所输出的三束激光频率分别为f′+f3,f+f1,f+f2,经过移频后三束激光出射到分路光纤的耦合器,经耦合变为一束激光出射,出射光经扩束准直镜组入射到分光棱镜分为两束光,一束作为参考激光束,另一束作为测量激光束出射到测量角椎棱镜;
步骤三、参考激光束经分光棱镜分为两束激光,一束激光经偏振方向与f′相同的水平方向一号起偏器后,频率为f′+f3与f+f1的水平方向偏振激光进入到一号光电接收器进行光电转换,其输出电信号频率为(f′+f3)-(f+f1),以此作为精测尺频率,另一束激光经偏振方向与f′成45度的二号起偏器后入射到二号光电接收器,二号光电接收器输出的电信号频率经低通滤波滤除了高频电信号(f′+f3)-(f+f1)与(f′+f3)-(f+f2),保留了低频电信号f1-f2,以此作为粗测尺频率;
步骤四、测量开始时,移动测量角椎棱镜至目标端,测量距离为L,测量光束在经过测量角椎棱镜的反射后,反射到与参考光束对称的光路中,并由三号光电接收器与四号光电接收器接收测量信号,三号光电接收器输出电信号频率为(f′+f3)-(f+f1),四号光电接收器输出信号经低通滤波滤后输出低频电信号f1-f2
步骤五、一号光电接收器得到的信号(f′+f3)-(f+f1)连接到一号混频器,三号光电接收器得到的信号(f′+f3)-(f+f1)连接到三号混频器,控制箱内的直接数字频率合成器输出混频本振频率信号fm1同时送入一号混频器与三号混频器进行混频,并将两个混频后信号分别经低通滤波器滤波滤除高频噪声,最后将所得到的保留原信号相位信息的两个滤波后信号(f′+f3)-(f+f1)-fm1送入二号鉴相器得到相位差φp
步骤六、二号光电接收器20经低通滤波后得到的信号f1-f2连接到二号混频器,四号光电接收器经低通滤波后得到的信号f1-f2连接到四号混频器,控制箱内的直接数字频率合成器输出混频本振频率信号fm2同时送入二号混频器与四号混频器进行混频,最后将所得到的保留原信号相位信息的两个滤波后信号f1-f2-fm2送入一号鉴相器得到相位差φc
步骤七、控制箱单元接收相位信息φc与φp,控制箱单元内的数据合成单元根据公式
Figure BDA0000084035610000051
求得粗测尺的距离测量值Lc,并将其代入公式求得精测尺的相位整数值
Figure BDA0000084035610000052
其中floor(x)函数返回x值的整数部分,最后根据公式求得被测距离值: L = ( N + φ P 2 π ) × c 2 ( f ′ + f 3 ) - ( f + f 1 ) .
本发明利用三个独立声光移频器分别对由双纵模稳频He-Ne激光器输出的频率为f的两束激光与频率为f′的一束激光进行移频控制,并经光纤合光形成了包含f′+f3、f+f1与f+f2的三个频率的一束激光,此三束激光间的外差信号可形成精测尺波长f/|(f′+f3)-(f+f1)|与粗测尺波长f/|f1-f2|,因此实现了基于声光移频与He-Ne激光器的多测尺波长的同步产生与测量;粗测尺频率与精测尺频率是利用高频频率间拍频(频率求差)的形式获得,且此高频频率是在双纵模He-Ne激光器稳频激光的基础上进行声光移频后的频率,以光频外差(声光移频后频率求差)的形式获得测尺频率,在消除了单路声光移频中由于声光移频器特性如衍射效率、衍射角等引入的噪声的同时,也消除了双纵模稳频He-Ne激光器本身频率的漂移与抖动,在稳频He-Ne激光器高频率稳定技术的基础上进一步提高了测尺的稳定性;精测尺的频率(f′+f3)-(f+f1)由双纵模的模间间隔f-f′与f3和f1共同决定,粗测尺由f2与f1决定,在激光管选定的情况下可调节f3的频率值对精测测尺进行调节,且不影响粗测尺的大小,调节f2大小在不影响精测尺大小的情况下对调节粗测尺进行调节,以满足对测量精度与测量范围不同情况的要求,解决相位激光测距技术中由电子信号处理带宽的限制无法对纵模间隔高频率信号进行处理的问题;本发明利用偏振旋转器对频率f′的激光偏振方向进行旋转,使之与频率f的激光偏振方向相同,并设置起偏器的透射方向为同一偏振方向,有效分离出精测尺频率(f′+f3)-(f+f1),利用偏振方向为45度得起偏器结合低通滤波器有效分离出粗测尺频率f1-f2,为粗测尺与精测尺进行独立同步测相提供了条件;见图8的测尺波长稳定度比较图,本发明测尺波长的稳定度优于5×10-8;适用于相位激光测距技术领域。
附图说明
图1为本发明的激光测距装置的原理框图,图2多测尺发生单元的结构示意图,图3测量光路及电路单元结构示意图,图4控制箱单元结构示意图,图5为双纵模激光器其中一个纵模的短期频率漂移仿真曲线图,图6为单声光移频器移频后短期频率漂移仿真曲线图,图7为双声光移频器移频后短期频率漂移仿真曲线图,图8为不同测尺产生方法的测尺波长稳定度比较图。
具体实施方式
具体实施方式一:结合图1、图2、图3和图4说明本实施方式,高精度多频同步相位激光测距装置,它由双纵模稳频He-Ne激光器1、多测尺发生单元2、扩束准直镜组3、测量光路及电路单元4和控制箱单元5组成,双纵模稳频He-Ne激光器1发出的激光输出到多测尺发生单元2的输入端,多测尺发生单元2输出的激光通过扩束准直镜组3到测量光路及电路单元4的输入端,测量光路及电路单元4的相位信息输出端连接在控制箱单元5的相位信息输入端,控制箱单元5的一个控制输出端连接在多测尺发生单元2的控制输入端,控制箱单元5的另一个控制输出端连接在测量光路及电路单元4的控制输入端;
多测尺发生单元2由偏振分光镜6、一号分光镜7、直角反射镜8、偏振旋转器9、一号声光移频器10、二号声光移频器11、三号声光移频器12、一号双路分路光纤13和二号双路分路光纤14组成,双纵模稳频He-Ne激光器1发射的激光束到达偏振分光镜6的输入端,偏振分光镜6的一个输出端连接在一号声光移频器10的一个输入端,偏振分光镜6的另一个输出端连接在一号分光镜7的输入端,一号分光镜7的一个输出端通过偏振旋转器9连接在二号声光移频器11的输入端,一号分光镜7的另一个输出端连接在直角反射镜8的输入端,直角反射镜8的输出端连接在三号声光移频器12的一个输入端,一号声光移频器10的输出端连接在一号双路分路光纤13的一个输入端,二号声光移频器11的输出端连接在一号双路分路光纤13的另一个输入端,一号双路分路光纤13的输出端连接在二号双路分路光纤14的一个输入端,三号声光移频器12的输出端连接在二号双路分路光纤14的另一个输入端,二号双路分路光纤14的输出端连接在扩束准直镜组3的输入端;
测量光路及电路单元4由二号分光镜15、三号分光镜16、一号起偏器17、一号光电接收器18、二号起偏器19、二号光电接收器20、四号分光镜21、三号起偏器22、三号光电接收器23、四号起偏器24、四号光电接收器25、二号低通滤波器26、四号低通滤波器27、二号混频器28、四号混频器29、一号鉴相器30、一号混频器31、三号混频器32、一号低通滤波器33、三号低通滤波器34、二号鉴相器35和测量角椎棱镜36组成,扩束准直镜组3的输出端连接在二号分光镜15的输入端,二号分光镜15的一个输出端连接在三号分光镜16的输入端,三号分光镜16的一个输出端通过一号起偏器17与一号光电接收器18的输入端连通,三号分光镜16的另一个输出端通过二号起偏器19与二号光电接收器20的输入端连通,一号光电接收器18的输出端连接在一号混频器31的一个输入端,一号混频器31的输出端连接在一号低通滤波器33的输入端,一号低通滤波器33的输出端连接在二号鉴相器35的一个输入端,二号光电接收器20的输出端连接在二号低通滤波器26的输入端,二号低通滤波器26的输出端连接在二号混频器28的一个输入端,二号混频器28的输出端连接在一号鉴相器30的一个输入端,二号分光镜15的另一个输出端连接在测量角椎棱镜36的输入端,测量角椎棱镜36的输出端连接在四号分光镜21的输入端,四号分光镜21的一个输出端通过三号起偏器22与三号光电接收器23的输入端连通,三号光电接收器23的输出端连接在三号混频器32的一个输入端,三号混频器32的输出端连接在三号低通滤波器34的输入端,三号低通滤波器34的输出端连接在二号鉴相器35的另一个输入端,四号分光镜21的另一个输出端通过四号起偏器24与四号光电接收器25的输入端连通,四号光电接收器25的输出端连接在四号低通滤波器27的输入端,四号低通滤波器27的输出端连接在四号混频器29的一个输入端,四号混频器29的输出端连接在一号鉴相器30的另一个输入端;
控制箱单元5由温控箱37、晶振38、直接数字频率合成器39、数据合成单元40、一号驱动器41、二号驱动器42和三号驱动器43组成,晶振38和直接数字频率合成器39置于温控箱37内,晶振38的输出端连接在直接数字频率合成器39的输入端,直接数字频率合成器39的第一输出端连接在三号驱动器43的输入端,直接数字频率合成器39的第二输出端连接在二号驱动器42的输入端,直接数字频率合成器39的第三输出端连接在一号驱动器41的输入端,三号驱动器43的输出端连接在二号声光移频器11的另一个输入端,二号驱动器42的输出端连接在三号声光移频器12的另一个输入端,一号驱动器41的输出端连接在一号声光移频器10的另一个输入端,直接数字频率合成器39的第四输出端分别连接在二号混频器28的另一个输入端和四号混频器29的另一个输入端,直接数字频率合成器39的第五输出端分别连接在一号混频器31的另一个输入端和三号混频器32的另一个输入端,一号鉴相器30的输出端连接在数据合成单元40的一个输入端,二号鉴相器35的输出端连接在数据合成单元40的另一个输入端。
具体实施方式二:与实施方式一不同的是,本实施方式的晶振38采用温度补偿晶振,短期频率稳定度优于0.01ppm,其它组成和连接关系与实施方式一相同。
具体实施方式三:结合图1、图2、图3和图4说明本实施方式,采用具体实施方式一所述高精度多频同步相位激光测距装置实现高精度多频同步相位激光测距方法,它的具体步骤如下:
步骤一、开启双纵模稳频He-Ne激光器1,在经过预热和稳频过程后,双纵模稳频激光器1输出频率分别为f与f′的双频激光,此双频激光经过偏振分光镜6分为偏振态互相垂直的两束激光,其中频率为f的激光束经分光棱镜又分为两束,且其中一束激光经过偏振旋转器,偏振方向转动90度,使其与频率为f′的激光偏振方向相同;
步骤二、由步骤一所形成的三束激光分别射入到一号声光移频器10、二号声光移频器11和三号声光移频器12上,直接数字频率合成器39输出三种频率,分别为:f1,f2,f3,并经驱动器控制声光移频器的移频频率,经移频后所输出的三束激光频率分别为f′+f3,f+f1,f+f2,经过移频后三束激光出射到分路光纤的耦合器,经耦合变为一束激光出射,出射光经扩束准直镜组3入射到分光棱镜分为两束光,一束作为参考激光束,另一束作为测量激光束出射到测量角椎棱镜;
步骤三、参考激光束经分光棱镜分为两束激光,一束激光经偏振方向与f′相同的水平方向一号起偏器17后,频率为f′+f3与f+f1的水平方向偏振激光进入到一号光电接收器18进行光电转换,其输出电信号频率为(f′+f3)-(f+f1),以此作为精测尺频率,另一束激光经偏振方向与f′成45度的二号起偏器19后入射到二号光电接收器20,二号光电接收器20输出的电信号频率经低通滤波滤除了高频电信号(f′+f3)-(f+f1)与(f′+f3)-(f+f2),保留了低频电信号f1-f2,以此作为粗测尺频率;
步骤四、测量开始时,移动测量角椎棱镜36至目标端,测量距离为L,测量光束在经过测量角椎棱镜36的反射后,反射到与参考光束对称的光路中,并由三号光电接收器23与四号光电接收器25接收测量信号,三号光电接收器23输出电信号频率为(f′+f3)-(f+f1),四号光电接收器25输出信号经低通滤波滤后输出低频电信号f1-f2
步骤五、一号光电接收器18得到的信号(f′+f3)-(f+f1)连接到一号混频器31,三号光电接收器23得到的信号(f′+f3)-(f+f1)连接到三号混频器32,控制箱内的直接数字频率合成器39输出混频本振频率信号fm1同时送入一号混频器31与三号混频器32进行混频,并将两个混频后信号分别经低通滤波器滤波滤除高频噪声,最后将所得到的保留原信号相位信息的两个滤波后信号(f′+f3)-(f+f1)-fm1送入二号鉴相器35得到相位差φp
步骤六、二号光电接收器20经低通滤波后得到的信号f1-f2连接到二号混频器28,四号光电接收器25经低通滤波后得到的信号f1-f2连接到四号混频器29,控制箱内的直接数字频率合成器39输出混频本振频率信号fm2同时送入二号混频器28与四号混频器29进行混频,最后将所得到的保留原信号相位信息的两个滤波后信号f1-f2-fm2送入一号鉴相器30得到相位差φc
步骤七、控制箱单元5接收相位信息φc与φp,控制箱单元5内的数据合成单元40根据公式
Figure BDA0000084035610000091
求得粗测尺的距离测量值Lc,并将其代入公式求得精测尺的相位整数值
Figure BDA0000084035610000092
其中floor(x)函数返回x值的整数部分,最后根据公式求得被测距离值: L = ( N + φ P 2 π ) × c 2 ( f ′ + f 3 ) - ( f + f 1 ) .
用具体实施例来说明高精度多频同步相位激光测距方法:当装置开始工作时,开启双纵模稳频He-Ne激光器1,在经过预热和稳频过程后,双纵模稳频He-Ne激光器1输出两个偏振态互相垂直的激光,设其频率分别为f与f′,且f-f′≥600MHz,此单束双频光进入多测尺发生单元2,进行测尺的产生与控制。
结合图2说明,f与f′经过偏振分光棱镜6分为两束激光,其中f′的激光透射过偏振分光棱镜6,并进入到一号声光移频器10,进行频率控制改变;频率为f的激光束经反射进入到一号分光镜7分为两束记为反射光束a与透射光束b,光束a经过偏振旋转器9,偏振方向转动90度,使其与频率为f′的激光偏振方向相同,在经过二号声光移频器11进行频率控制改变,光束b经过直角反射镜8的反射进入三号声光移频器12进行频率控制改变;一号声光移频器10的移频值由控制箱单元5中的直接数字频率合成器39发生并由一号驱动器41提供,如图4所示。设直接数字频率合成器39其频率输出值为f3±ΔfDDS,其中ΔfDDS为频率误差;设由入射角度及衍射效率所引起的频率误差为ΔfAOM。由声光移频原理可知经过一号声光移频器10后,频率为f′的激光变为频率为f′+f3±ΔfDDS±ΔfAOM;二号声光移频器11的移频值由控制箱单元5中的直接数字频率合成器39提供并由二号驱动器42放大,输出频率为f1±ΔfDDS,因此再考虑到声光移频误差的情况下,激光经过二号声光移频器11后变为频率为f+f1±ΔfDDS±ΔfAOM;同理经过相同的控制箱单元5的移频频率的输出,光束b的激光移频后频率值为f+f2±ΔfDDS±ΔfAOM
因此激光声光移频后,我们得到三个频率值分别为f′+f3±ΔfDDS±ΔfAOM、f+f1±ΔfDDS±ΔfAOM和f+f2±ΔfDDS±ΔfAOM,其中前两者的偏振方向相同,在经过一号双路分路光纤13后合成一束光,此束光又作为二号双路分路光纤14其中的一束输入光,与f+f2±ΔfDDS±ΔfAOM的激光合为一束激光,最终三个频率合并为一束激光并经过扩束准直镜组3出射到测量光路及电路单元4。
如图3所示,在测量光路及电路单元4内,首先将经过扩束准之后激光利用二号分光镜15分为两束,一束作为参考激光束,一束作为测量激光束出射到测量角椎棱镜36;参考激光束经三号分光镜16分为两束激光,一束激光经偏振方向为水平方向的一号起偏器17后,频率为f′+f3与f+f1的水平偏振激光形成光拍,并进入到一号光电接收器18进行光电转换,由于现在光电接收器带宽的限制,只能接收到频率较小的光拍的差频信号,因此其输出电信号频率为两者信号频率之差:(f′+f3)-(f+f1),可见其中由直接数字频率合成器39引人的误差ΔfDDS以及由入射角度及衍射效率所引起的移频频率误差为ΔfAOM都作为共模误差被消除,并以此频率为精测尺频率,形成精测尺波长λp=c/|f′+f3-f-f1|,参考激光束的另一束激光经偏振方向与f′成45度的二号起偏器19后入射到二号光电接收器20,二号光电接收器20输出的电信号频率包含了三个频率的间的差频信号,由于目前声光移频器的最大移频值为200MHz,因此信号f1 f2 f3都远远小于f-f′,其中(f′+f3)-(f+f1)与(f′+f3)-(f+f2)属于高频信号,经二号低通滤波器26被滤除了,只保留了低频电信号f1-f2,且共模频率干扰误差ΔfAOM与ΔfDDS在求差过程中被抵消,以频率f1-f2此作为粗测尺频率,其粗测尺波长为λc=c/|f1-f2|。
测量开始时,移动测量角椎棱镜36至目标端,测量距离为L,测量光束在经过测量角椎棱镜36的反射后反射到四号分光镜21中,测量光束被分为两束,其中一束经偏振方向为水平方向的三号起偏器22后,频率为f′+f3与f+f1的水平偏振激光形成光拍,并进入到三号光电接收器23进行光电转换,输出电信号频率为(f′+f3)-(f+f1),测量光束的另一束激光经偏振方向与f′成45度的四号起偏器24后入射到四号光电接收器25,四号光电接收器25输出信号经四号低通滤波器27后输出频率为f1-f2的低频电信号。
将分别由一号光电接收器18与三号光电接收器23得到的信号(f′+f3)-(f+f1)连接到一号混频器31与三号混频器32,控制箱内的直接数字频率合成器39输出混频本振频率信号fm1分别送入一号混频器31与三号混频器32进行混频,得到fm1与(f′+f3)-(f+f1)的差频信号,且为了保障足够的相位分辨率应使此差频信号尽量的小,满足fm1-(f′+f3)-(f+f1)<1KHz,将两个混频后信号分别经一号低通滤波器33与三号低通滤波器34滤波滤除高频噪声,最后将所得到的保留原信号相位信息的两个滤波后信号(频率为(f′+f3)-(f+f1)-fm1)送入鉴相器得到相位差φp
在上述电信号接收及转换的同时,将分别由二号光电接收器20与四号光电接收器25得到的信号f1-f2连接到二号低通滤波器26与四号低通滤波器27,控制箱内的直接数字频率合成器39输出混频本振频率信号fm2分别送入二号混频器28和四号混频器29进行混频,最后将所得到的保留原信号相位信息的两个滤波后信号(频率为f1-f2-fm2,且f1-f2-fm2<1KHz)送入鉴相器得到相位差φc
如图4所示,控制箱单元5接收相位信息φc与φp,控制箱单元5内的数据融合单元40根据公式
Figure BDA0000084035610000121
求得粗测尺的距离测量值Lc,并将其代入公式求得精测尺的相位整数值其中floor(x)函数返回x值的整数部分,最后根据公式求得被测距离值: L = ( N + φ P 2 π ) × c 2 ( f ′ + f 3 ) - ( f + f 1 ) .
图5为双纵模激光器其中一个纵模的短期频率漂移仿真曲线图,其中纵轴相对频率漂移定义为(Δf-Δfave)/fro,其中Δf=|f-fro|,f为纵模频率,fro为基准频率(稳定度高比f两个数量级以上),Δfave为Δf的算术平均值。从图中可以看出双纵模激光器其中一个纵模的频率总体上短期相对频率漂移为1.2×10-8
图6为单声光移频器移频后短期频率漂移仿真曲线图,以图5纵模激光为原对象,在进行移频后加入噪声后的频率仿真。其纵轴相对频率漂移定义为(ΔfAOM-Δfave)/fro,其中ΔfAOM=|fAOM-fro|,fAOM为移频后加入噪声的频率,,Δfave为ΔfAOM的算术平均值。从仿真结果可以看出,图6仿真曲线图的频率相对漂移小于9.7×10-8,与图5相比频率相对漂移增大。
图7为双声光移频器移频后短期频率漂移仿真曲线图,以图5纵模激光为原对象,在对两个原频率进行移频后加入噪声后求差获得拍频频率。从仿真结果可以看出,图7的频率相对漂移优于图5与图6的仿真结果,证明本方法在测尺频率稳定度具有较高的优势。
图8为不同测尺产生方法的测尺波长稳定度比较图,通过对国内外研究现状的分析可知,以半导体电流调制产生的激光测尺,其测尺波长稳定度一般在10-6量级,效果好的可达到10-7量级;一般单声光调制方法产生的测尺,其测尺波长稳定度在10-7量级;模间拍频得到的测尺波长稳定度较高,可达到5×10-8量级,但其测尺波长不可调节,应用范围受到限制;本文所提出的激光测距方法,在双纵模激光器波长稳定度优于10-8量级时,其所得到测尺波长的稳定度优于5×10-8,因此本发明的方法与其他测尺产生方法相比在测尺波长稳定度方面具有明显的优势,减小了测尺波长的漂移引起的测距误差,提高了激光测距的精度。

Claims (4)

1.高精度多频同步相位激光测距装置,其特征是它由双纵模稳频He-Ne激光器(1)、多测尺发生单元(2)、扩束准直镜组(3)、测量光路及电路单元(4)和控制箱单元(5)组成,双纵模稳频He-Ne激光器(1)发出的激光输出到多测尺发生单元(2)的输入端,多测尺发生单元(2)输出的激光通过扩束准直镜组(3)到测量光路及电路单元(4)的输入端,测量光路及电路单元(4)的相位信息输出端连接在控制箱单元(5)的相位信息输入端,控制箱单元(5)的一个控制输出端连接在多测尺发生单元(2)的控制输入端,控制箱单元(5)的另一个控制输出端连接在测量光路及电路单元(4)的控制输入端;
多测尺发生单元(2)由偏振分光镜(6)、一号分光镜(7)、直角反射镜(8)、偏振旋转器(9)、一号声光移频器(10)、二号声光移频器(11)、三号声光移频器(12)、一号双路分路光纤(13)和二号双路分路光纤(14)组成,双纵模稳频He-Ne激光器(1)发射的激光束到达偏振分光镜(6)的输入端,偏振分光镜(6)的一个输出端连接在一号声光移频器(10)的一个输入端,偏振分光镜(6)的另一个输出端连接在一号分光镜(7)的输入端,一号分光镜(7)的一个输出端通过偏振旋转器(9)连接在二号声光移频器(11)的输入端,一号分光镜(7)的另一个输出端连接在直角反射镜(8)的输入端,直角反射镜(8)的输出端连接在三号声光移频器(12)的一个输入端,一号声光移频器(10)的输出端连接在一号双路分路光纤(13)的一个输入端,二号声光移频器(11)的输出端连接在一号双路分路光纤(13)的另一个输入端,一号双路分路光纤(13)的输出端连接在二号双路分路光纤(14)的一个输入端,三号声光移频器(12)的输出端连接在二号双路分路光纤(14)的另一个输入端,二号双路分路光纤(14)的输出端连接在扩束准直镜组(3)的输入端;
测量光路及电路单元(4)由二号分光镜(15)、三号分光镜(16)、一号起偏器(17)、一号光电接收器(18)、二号起偏器(19)、二号光电接收器(20)、四号分光镜(21)、三号起偏器(22)、三号光电接收器(23)、四号起偏器(24)、四号光电接收器(25)、二号低通滤波器(26)、四号低通滤波器(27)、二号混频器(28)、四号混频器(29)、一号鉴相器(30)、一号混频器(31)、三号混频器(32)、一号低通滤波器(33)、三号低通滤波器(34)、二号鉴相器(35)和测量角椎棱镜(36)组成,扩束准直镜组(3)的输出端连接在二号分光镜(15)的输入端,二号分光镜(15)的一个输出端连接在三号分光镜(16)的输入端,三号分光镜(16)的一个输出端通过一号起偏器(17)与一号光电接收器(18)的输入端连通,三号分光镜(16)的另一个输出端通过二号起偏器(19)与二号光电接收器(20)的输入端连通,一号光电接收器(18)的输出端连接在一号混频器(31)的一个输入端,一号混频器(31)的输出端连接在一号低通滤波器(33)的输入端,一号低通滤波器(33)的输出端连接在二号鉴相器(35)的一个输入端,二号光电接收器(20)的输出端连接在二号低通滤波器(26)的输入端,二号低通滤波器(26)的输出端连接在二号混频器(28)的一个输入端,二号混频器(28)的输出端连接在一号鉴相器(30)的一个输入端,二号分光镜(15)的另一个输出端连接在测量角椎棱镜(36)的输入端,测量角椎棱镜(36)的输出端连接在四号分光镜(21)的输入端,四号分光镜(21)的一个输出端通过三号起偏器(22)与三号光电接收器(23)的输入端连通,三号光电接收器(23)的输出端连接在三号混频器(32)的一个输入端,三号混频器(32)的输出端连接在三号低通滤波器(34)的输入端,三号低通滤波器(34)的输出端连接在二号鉴相器(35)的另一个输入端,四号分光镜(21)的另一个输出端通过四号起偏器(24)与四号光电接收器(25)的输入端连通,四号光电接收器(25)的输出端连接在四号低通滤波器(27)的输入端,四号低通滤波器(27)的输出端连接在四号混频器(29)的一个输入端,四号混频器(29)的输出端连接在一号鉴相器(30)的另一个输入端;
控制箱单元(5)由温控箱(37)、晶振(38)、直接数字频率合成器(39)、数据合成单元(40)、一号驱动器(41)、二号驱动器(42)和三号驱动器(43)组成,晶振(38)和直接数字频率合成器(39)置于温控箱(37)内,晶振(38)的输出端连接在直接数字频率合成器(39)的输入端,直接数字频率合成器(39)的第一输出端连接在三号驱动器(43)的输入端,直接数字频率合成器(39)的第二输出端连接在二号驱动器(42)的输入端,直接数字频率合成器(39)的第三输出端连接在一号驱动器(41)的输入端,三号驱动器(43)的输出端连接在二号声光移频器(11)的另一个输入端,二号驱动器(42)的输出端连接在三号声光移频器(12)的另一个输入端,一号驱动器(41)的输出端连接在一号声光移频器(10)的另一个输入端,直接数字频率合成器(39)的第四输出端分别连接在二号混频器(28)的另一个输入端和四号混频器(29)的另一个输入端,直接数字频率合成器(39)的第五输出端分别连接在一号混频器(31)的另一个输入端和三号混频器(32)的另一个输入端,一号鉴相器(30)的输出端连接在数据合成单元(40)的一个输入端,二号鉴相器(35)的输出端连接在数据合成单元(40)的另一个输入端。
2.根据权利要求1所述高精度多频同步相位激光测距装置,其特征在于晶振(35)采用温度补偿晶振,短期频率稳定度优于0.01ppm。
3.采用权利要求1所述高精度多频同步相位激光测距装置实现高精度多频同步相位激光测距方法,其特征在于它包括具体步骤如下:
步骤一、开启双纵模稳频He-Ne激光器(1),在经过预热和稳频过程后,双纵模稳频激光器(1)输出频率分别为f与f′的双频激光,此双频激光经过偏振分光镜(6)分为偏振态互相垂直的两束激光,其中频率为f的激光束经分光棱镜又分为两束,且其中一束激光经过偏振旋转器,偏振方向转动90度,使其与频率为f′的激光偏振方向相同;
步骤二、由步骤一所形成的三束激光分别射入到一号声光移频器(10)、二号声光移频器(11)和三号声光移频器(12)上,直接数字频率合成器(39)输出三种频率,分别为:f1,f2,f3,并经驱动器控制声光移频器的移频频率,经移频后所输出的三束激光频率分别为f′+f3,f+f1,f+f2,经过移频后三束激光出射到分路光纤的耦合器,经耦合变为一束激光出射,出射光经扩束准直镜组(3)入射到分光棱镜分为两束光,一束作为参考激光束,另一束作为测量激光束出射到测量角椎棱镜;
步骤三、参考激光束经分光棱镜分为两束激光,一束激光经偏振方向与f′相同的水平方向一号起偏器(17)后,频率为f′+f3与f+f1的水平方向偏振激光进入到一号光电接收器(18)进行光电转换,其输出电信号频率为(f′+f3)-(f+f1),以此作为精测尺频率,另一束激光经偏振方向与f′成45度的二号起偏器(19)后入射到二号光电接收器(20),二号光电接收器(20)输出的电信号频率经低通滤波滤除了高频电信号(f′+f3)-(f+f1)与(f′+f3)-(f+f2),保留了低频电信号f1-f2,以此作为粗测尺频率;
步骤四、测量开始时,移动测量角椎棱镜(36)至目标端,测量距离为L,测量光束在经过测量角椎棱镜(36)的反射后,反射到与参考光束对称的光路中,并由三号光电接收器(23)与四号光电接收器(25)接收测量信号,三号光电接收器(23)输出电信号频率为(f′+f3)-(f+f1),四号光电接收器(25)输出信号经低通滤波滤后输出低频电信号f1-f2
步骤五、一号光电接收器(18)得到的信号(f′+f3)-(f+f1)连接到一号混频器(31),三号光电接收器(23)得到的信号(f′+f3)-(f+f1)连接到三号混频器(32),控制箱内的直接数字频率合成器(39)输出混频本振频率信号fm1同时送入一号混频器(31)与三号混频器(32)进行混频,并将两个混频后信号分别经低通滤波器滤波滤除高频噪声,最后将所得到的保留原信号相位信息的两个滤波后信号(f′+f3)-(f+f1)-fm1送入二号鉴相器(35)得到相位差φp
步骤六、二号光电接收器(20)经低通滤波后得到的信号f1-f2连接到二号混频器(28),四号光电接收器(25)经低通滤波后得到的信号f1-f2连接到四号混频器(29),控制箱内的直接数字频率合成器(39)输出混频本振频率信号fm2同时送入二号混频器(28)与四号混频器(29)进行混频,最后将所得到的保留原信号相位信息的两个滤波后信号f1-f2-fm2送入一号鉴相器(30)得到相位差φc
步骤七、控制箱单元(5)接收相位信息φc与φp,控制箱单元(5)内的数据合成单元(40)根据公式
Figure FDA0000084035600000041
求得粗测尺的距离测量值Lc,并将其代入公式求得精测尺的相位整数值
Figure FDA0000084035600000042
其中floor(x)函数返回x值 的整数部分,最后根据公式求得被测距离值: L = ( N + φ P 2 π ) × c 2 ( f ′ + f 3 ) - ( f + f 1 ) .
4.根据权利要求3所述高精度多频同步相位激光测距方法,其特征在于相位差φp与相位差φc的测量在同一时刻进行。
CN 201110236265 2011-08-17 2011-08-17 高精度多频同步相位激光测距装置与方法 Active CN102419166B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110236265 CN102419166B (zh) 2011-08-17 2011-08-17 高精度多频同步相位激光测距装置与方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110236265 CN102419166B (zh) 2011-08-17 2011-08-17 高精度多频同步相位激光测距装置与方法

Publications (2)

Publication Number Publication Date
CN102419166A CN102419166A (zh) 2012-04-18
CN102419166B true CN102419166B (zh) 2013-08-21

Family

ID=45943693

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110236265 Active CN102419166B (zh) 2011-08-17 2011-08-17 高精度多频同步相位激光测距装置与方法

Country Status (1)

Country Link
CN (1) CN102419166B (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL224130A (en) * 2013-01-07 2017-01-31 Brightway Vision Ltd Identify objects using a confusion system
CN104049250B (zh) * 2014-06-14 2016-07-06 哈尔滨工业大学 抗多频混叠的高精度同步测尺半导体激光测距装置与方法
CN104035087B (zh) * 2014-06-14 2017-01-18 哈尔滨工业大学 基于高精度同步多测尺的半导体激光测距装置与方法
CN104035086B (zh) * 2014-06-14 2016-07-06 哈尔滨工业大学 混合外差式可溯源精测尺He-Ne激光测距装置与方法
CN104049251B (zh) * 2014-06-14 2016-06-29 哈尔滨工业大学 抗光学混叠的多频激光测距装置与方法
CN104034265B (zh) * 2014-06-14 2016-11-09 哈尔滨工业大学 抗光学混叠的可溯源精测尺相位激光测距装置与方法
CN104049249B (zh) * 2014-06-14 2016-06-29 哈尔滨工业大学 抗多频混叠的高精度同步测尺相位激光测距装置与方法
CN104035089B (zh) * 2014-06-14 2017-07-18 哈尔滨工业大学 抗光学混叠的可溯源精测尺半导体激光测距装置与方法
CN104166131B (zh) * 2014-06-14 2017-01-25 哈尔滨工业大学 基于可溯源同步测尺的双纵模激光测距装置与方法
CN104049248B (zh) * 2014-06-14 2016-10-12 哈尔滨工业大学 超外差与外差结合式抗光学混叠激光测距装置与方法
CN104155642B (zh) * 2014-06-14 2016-08-24 哈尔滨工业大学 基于可溯源同步测尺的混合双光源激光测距装置与方法
CN104035088B (zh) * 2014-06-14 2016-08-24 哈尔滨工业大学 抗多频混叠的可溯源同步测尺双光源激光测距装置与方法
CN105318839A (zh) * 2014-06-14 2016-02-10 哈尔滨工业大学 基于可溯源同步多测尺的混合激光器测距装置与方法
CN104865577A (zh) * 2015-05-25 2015-08-26 上海翌森信息科技有限公司 一种激光测距系统
CN106597462B (zh) * 2016-12-26 2019-08-06 艾普柯微电子(上海)有限公司 测距方法及测距装置
CN108594254B (zh) * 2018-03-08 2021-07-09 北京理工大学 一种提高tof激光成像雷达测距精度的方法
CN109917368B (zh) * 2019-04-18 2022-11-29 重庆大学 一种实现有源反射式微波雷达绝对距离测量的方法
CN111725697B (zh) * 2020-06-22 2021-09-28 中国航空工业集团公司北京长城计量测试技术研究所 一种多波长激光束产生方法及装置
CN113671521B (zh) * 2021-08-12 2024-03-26 哈尔滨工业大学 一种粗精测尺差频调制与解调的相位激光测距装置及方法
CN113630232B (zh) * 2021-08-17 2023-09-01 哈尔滨工业大学 一种多频混合外差式干涉信号同步分离与同步测相系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2482053Y (zh) * 2001-06-06 2002-03-13 南京师范大学 半导体红激光无配合目标测距测厚装置
CN101086530A (zh) * 2007-07-04 2007-12-12 中国航空工业第一集团公司第六一三研究所 1.064μm激光测距机发射天线调试方法及调试设备
CN101261322A (zh) * 2008-04-18 2008-09-10 清华大学 双频He-Ne激光器光回馈测距仪
US7466229B2 (en) * 2003-04-23 2008-12-16 Korea Advance Institute Of Science And Technology Device for generating plane beam/conical shape beam and security device using generated plane beam/cone beam

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2482053Y (zh) * 2001-06-06 2002-03-13 南京师范大学 半导体红激光无配合目标测距测厚装置
US7466229B2 (en) * 2003-04-23 2008-12-16 Korea Advance Institute Of Science And Technology Device for generating plane beam/conical shape beam and security device using generated plane beam/cone beam
CN101086530A (zh) * 2007-07-04 2007-12-12 中国航空工业第一集团公司第六一三研究所 1.064μm激光测距机发射天线调试方法及调试设备
CN101261322A (zh) * 2008-04-18 2008-09-10 清华大学 双频He-Ne激光器光回馈测距仪

Also Published As

Publication number Publication date
CN102419166A (zh) 2012-04-18

Similar Documents

Publication Publication Date Title
CN102419166B (zh) 高精度多频同步相位激光测距装置与方法
CN102305591B (zh) 基于双声光移频的多频同步相位激光测距装置与方法
CN102508231B (zh) 基于飞秒光频梳的法-珀干涉绝对距离测量方法及装置
CN106505403A (zh) 一种基于光学反馈产生的重复频率可调光频梳
CN101354248A (zh) 频率扫描干涉法高精度绝对距离测量仪
CN113687378B (zh) 一种基于单光源多频混合外差式激光绝对测距系统及测距方法
CN113687377B (zh) 一种基于粗精测尺差频调制与解调的协作式相位激光测距装置
CN110133679B (zh) 一种基于单片集成双频激光器的多普勒测速系统
CN104049248B (zh) 超外差与外差结合式抗光学混叠激光测距装置与方法
CN101261179A (zh) 法珀干涉仪频率稳定性的测量方法和测量装置
CN104035088B (zh) 抗多频混叠的可溯源同步测尺双光源激光测距装置与方法
CN104155642B (zh) 基于可溯源同步测尺的混合双光源激光测距装置与方法
CN100451581C (zh) 利用外差干涉法对激光波长进行测量的方法及装置
CN112129229B (zh) 基于光电振荡器的准分布式位移测量装置和方法
CN104049250B (zh) 抗多频混叠的高精度同步测尺半导体激光测距装置与方法
CN104035087B (zh) 基于高精度同步多测尺的半导体激光测距装置与方法
CN104034265B (zh) 抗光学混叠的可溯源精测尺相位激光测距装置与方法
CN104166131A (zh) 基于可溯源同步测尺的双纵模激光测距装置与方法
CN104049251B (zh) 抗光学混叠的多频激光测距装置与方法
CN104133207B (zh) 可溯源超外差式精测尺混合激光器测距装置与方法
CN104035086B (zh) 混合外差式可溯源精测尺He-Ne激光测距装置与方法
CN104048642A (zh) 混合外差式多频抗混叠激光测距装置与方法
CN104049249A (zh) 抗多频混叠的高精度同步测尺相位激光测距装置与方法
CN104155643B (zh) 高精度同步混合外差式相位激光测距装置与方法
EP4199349A1 (en) Rf signal generation using birefringent elements in an optical resonator

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant