CN102407331A - 用sls选择性激光烧结制取四类骨质模型的方法 - Google Patents

用sls选择性激光烧结制取四类骨质模型的方法 Download PDF

Info

Publication number
CN102407331A
CN102407331A CN2011103913338A CN201110391333A CN102407331A CN 102407331 A CN102407331 A CN 102407331A CN 2011103913338 A CN2011103913338 A CN 2011103913338A CN 201110391333 A CN201110391333 A CN 201110391333A CN 102407331 A CN102407331 A CN 102407331A
Authority
CN
China
Prior art keywords
sintering
laser
laser power
bone
sclerotin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011103913338A
Other languages
English (en)
Inventor
董星涛
泮海松
游嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HANGZHOU LIUWEI DENTAL MEDICAL TECHNOLOGY CO LTD
Original Assignee
HANGZHOU LIUWEI DENTAL MEDICAL TECHNOLOGY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HANGZHOU LIUWEI DENTAL MEDICAL TECHNOLOGY CO LTD filed Critical HANGZHOU LIUWEI DENTAL MEDICAL TECHNOLOGY CO LTD
Priority to CN2011103913338A priority Critical patent/CN102407331A/zh
Publication of CN102407331A publication Critical patent/CN102407331A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

用SLS选择性激光烧结制取四类骨质的力学模型的方法,包括以下步骤:绘制待制备骨质的三维轮廓模型,成型机自动识别该三维轮廓模型对应的激光扫描层次和每个层次的激光扫描路径;初始化成型机参数,确定待制备骨质属于第几类骨质,根据骨质类型设定激光烧结成型机的激光功率;每个激光扫描层次中,激光束沿着该层次的激光扫描路径扫描铺层在工作台上的材料粉末;当前激光扫描层次完成时,判断当前激光扫描层次是否最后一个层次,若是,则完成烧结;若否,则进行下一层次的烧结。本发明具有无需寻找木料,且能够精确地模拟四类骨质的力学模型,制作方便的优点。

Description

用SLS选择性激光烧结制取四类骨质模型的方法
技术领域
本发明涉及一种用SLS选择性激光烧结制取四类骨质的力学模型的方法。
背景技术
在现有骨的分类当中,按骨密度可以分为四类。D1类骨基本上都是由同类的密质骨组成,密度:>850HU,根据其密度、硬度可以用橡木来代替;D2类骨是中心为密集排列的骨小梁2外周包含着一层厚的密质骨,密度:700~850HU,可以用白松木代替;D3类骨是中心为密集排列的骨小梁2外周包含着一层薄的密质骨,密度:500~700HU,可以用轻木代替;D4类类骨的特点是中心为疏松排列的骨小梁2外周包含着一层薄的密质骨1,密度:<500HU,可以用聚苯乙烯泡沫代替。但是很难寻找到适合做骨模型的橡木、白松木和轻木这些木料,而且不同产地的木质差异也比较大,造成用木料制成的四类骨质模型准确度低。
另外,骨的力学性能与骨密度有很密切的关系,随着骨密度的减小,骨的力学性能也在不断降低,其性能的下降有的是非线性的。木料都是天然生成,无法人为控制木料的力学性能,所以采用木料来模拟四类骨质的力学模型精确性差。
发明内容
为克服现有的采用木料来模拟四类骨质无法精确地模拟骨质的力学模型的缺点,本发明提供了一种能够精确地模拟四类骨质的力学模型的用SLS选择性激光烧结制取四类骨质的力学模型的方法。
用SLS选择性激光烧结制取四类骨质的力学模型的方法,包括以下步骤:
1)、使用三维制图软件绘制待制备骨质的三维轮廓模型,将该三维轮廓模型输入激光烧结成型机中,成型机自动识别该三维轮廓模型对应的激光扫描层次和每个层次的激光扫描路径;
2)、初始化成型机参数,确定待制备骨质属于第几类骨质,根据骨质类型设定激光烧结成型机的激光功率,激光功率决定烧结成型的骨质模型的力学性能,骨质模型的力学性能包括骨的密度、弹性模量和机械性能;激光功率越大,产生的热量越高,烧结形成的模型密度越大;
3)、每个激光扫描层次中,激光束沿着该层次的激光扫描路径扫描铺层在工作台上的材料粉末,材料粉末均匀地铺层在工作台上;经激光扫描过的材料粉末被激光熔融并连接在一起,未被激光扫描过的材料粉末仍然呈松散状;
4)当前激光扫描层次完成时,判断当前激光扫描层次是否最后一个层次,若是,则完成烧结;若否,则进行下一层次的烧结,重复步骤3)。
进一步,步骤2)中,若待制备骨质属于D1类骨,则采用D1激光功率烧结;
若待制备骨质属于D2类骨,则与骨质轮廓外缘的距离小于或等于密质骨厚度的区域采用D2外层激光功率烧结,与骨质轮廓外缘的距离大于密质骨厚度的区域采用D2内层激光功率烧结;
若待制备骨质属于D3类骨,则与骨质轮廓外缘的距离小于或等于密质骨厚度的区域采用D3外层激光功率烧结,与骨质轮廓外缘的距离大于密质骨厚度的区域采用D3内层激光功率烧结;
若待制备骨质属于D4类骨,则采用D4激光功率烧结;
D1激光功率≧D2外层激光功率烧结﹥D3外层激光功率烧结;且D2内层激光功率烧结﹥D3内层激光功率烧结﹥D4激光功率烧结。
进一步,制备D1类骨时,激光功率为12w;制备D2类骨时,内部烧结的激光功率为11w,外部烧结激光功率为12w;制备D3类骨时,内部烧结激光功率为10w,外部烧结的激光功率为11w;制备D4类骨时,激光功率为9w。 
进一步,成型机参数包括光斑直径、扫描层后、扫描速度和扫描间距,初始化参数为:光斑直径0.45mm,扫描层后0.1mm,扫描速度9.53m/s,扫描间距0.1mm。
进一步,铺层在工作台上的材料粉末为尼龙粉末,材料粉末铺层于工作台的厚度为0.1mm。
本发明的技术构思是:通过激光烧结成型制作四类骨质的力学模型,模拟骨质的密度、弹性模量和机械性能。
从各类文献中,我们得出四类骨质的密度不同,其弹性模量等力学性能也不同。当为D1类骨时,骨的弹性模量为>1258MPa;为D2类骨时,骨的弹性模量为1050~1258MPa;为D3类骨时,骨的弹性模量为770~1050MPa;为D4类骨时,骨的弹性模量为<770MPa。
为制造出与这四类骨质力学性能相符合的模型,采用SLS(选择性激光烧结技术),通过调节SLS的加工参数如激光功率、扫描速度等来控制模型内部的微观结构。
控制SLS的激光功率在12W时,我们可得到D1类骨,测得其成型件的密度为                                               
Figure 2011103913338100002DEST_PATH_IMAGE002
,换算可得到其弹性模量为1278MPa,其值>1258MPa,满足D1类骨的力学性质。
控制SLS的激光功率在11W,我们可得到D2类骨的内层骨质,即骨小梁,测得其成型件的密度为
Figure 2011103913338100002DEST_PATH_IMAGE004
,换算可得到其弹性模量为1118MPa,在1050~1258MPa之间;控制SLS的激光功率在12W时,我们可得到D2类骨的外层骨质,即密质骨,测得其成型件的密度为
Figure 97408DEST_PATH_IMAGE002
,换算可得到其弹性模量为1278MPa,其值>1258MPa;满足D2类骨的力学性质。
控制SLS的激光功率在10W,我们可得到D3类骨的内层骨质(骨小梁),测得其成型件的密度为
Figure 2011103913338100002DEST_PATH_IMAGE006
,换算可得到其弹性模量为900MPa,在770~1050MPa之间;控制SLS的激光功率在11W,我们可得到D3类骨的外层骨质(密骨质),测得其成型件的密度为
Figure 326133DEST_PATH_IMAGE004
,换算可得到其弹性模量为1118MPa,在1050~1258MPa之间;满足D3类骨的力学性质。
控制SLS的激光功率在9W时,我们可得到D4类骨,测得其成型件的密度为
Figure 2011103913338100002DEST_PATH_IMAGE008
,换算可得到其弹性模量为750MPa,其值<770MPa,满足D4类骨的力学性质。
本发明具有无需寻找木料,且能够精确地模拟四类骨质的力学模型的优点。
附图说明
图1是四类骨质的剖切面视图。
图2是待模拟骨质的三维视图。
具体实施方式
结合附图,进一步说明本发明:
用SLS选择性激光烧结制取四类骨质的力学模型的方法,包括以下步骤:
1)、使用三维制图软件绘制待制备骨质的三维轮廓模型,将该三维轮廓模型输入激光烧结成型机中,成型机自动识别该三维轮廓模型对应的激光扫描层次和每个层次的激光扫描路径;
2)、初始化成型机参数,确定待制备骨质属于第几类骨质,根据骨质类型设定激光烧结成型机的激光功率,激光功率决定烧结成型的骨质模型的力学性能,骨质模型的力学性能包括骨的密度、弹性模量和机械性能;激光功率越大,产生的热量越高,烧结形成的模型密度越大;
3)、每个激光扫描层次中,激光束沿着该层次的激光扫描路径扫描铺层在工作台上的材料粉末,材料粉末均匀地铺层在工作台上;经激光扫描过的材料粉末被激光熔融并连接在一起,未被激光扫描过的材料粉末仍然呈松散状;
4)当前激光扫描层次完成时,判断当前激光扫描层次是否最后一个层次,若是,则完成烧结;若否,则进行下一层次的烧结,重复步骤3)。
步骤2)中,若待制备骨质属于D1类骨,则采用D1激光功率烧结;
若待制备骨质属于D2类骨,则与骨质轮廓外缘的距离小于或等于密质骨厚度的区域采用D2外层激光功率烧结,与骨质轮廓外缘的距离大于密质骨厚度的区域采用D2内层激光功率烧结;
若待制备骨质属于D3类骨,则与骨质轮廓外缘的距离小于或等于密质骨厚度的区域采用D3外层激光功率烧结,与骨质轮廓外缘的距离大于密质骨厚度的区域采用D3内层激光功率烧结;
若待制备骨质属于D4类骨,则采用D4激光功率烧结;
D1激光功率≧D2外层激光功率烧结﹥D3外层激光功率烧结;且D2内层激光功率烧结﹥D3内层激光功率烧结﹥D4激光功率烧结。
制备D1类骨时,激光功率为12w;制备D2类骨时,内部烧结的激光功率为11w,外部烧结激光功率为12w;制备D3类骨时,内部烧结激光功率为10w,外部烧结的激光功率为11w;制备D4类骨时,激光功率为9w。
成型机参数包括光斑直径、扫描层后、扫描速度和扫描间距,初始化参数为:光斑直径0.45mm,扫描层后0.1mm,扫描速度9.53m/s,扫描间距0.1mm。
铺层在工作台上的材料粉末为尼龙粉末,材料粉末铺层于工作台的厚度为0.1mm。
本发明的技术构思是:通过激光烧结成型制作四类骨质的力学模型,模拟骨质的密度、弹性模量和机械性能。
从各类文献中,我们得出四类骨质的密度不同,其弹性模量等力学性能也不同。当为D1类骨时,骨的弹性模量为>1258MPa;为D2类骨时,骨的弹性模量为1050~1258MPa;为D3类骨时,骨的弹性模量为770~1050MPa;为D4类骨时,骨的弹性模量为<770MPa。
为制造出与这四类骨质力学性能相符合的模型,采用SLS(选择性激光烧结技术),通过调节SLS的加工参数如激光功率、扫描速度等来控制模型内部的微观结构。
控制SLS的激光功率在12W时,我们可得到D1类骨,测得其成型件的密度为
Figure 168187DEST_PATH_IMAGE002
,换算可得到其弹性模量为1278MPa,其值>1258MPa,满足D1类骨的力学性质。
控制SLS的激光功率在11W,我们可得到D2类骨的内层骨质,即骨小梁,测得其成型件的密度为
Figure 563397DEST_PATH_IMAGE004
,换算可得到其弹性模量为1118MPa,在1050~1258MPa之间;控制SLS的激光功率在12W时,我们可得到D2类骨的外层骨质,即密质骨,测得其成型件的密度为,换算可得到其弹性模量为1278MPa,其值>1258MPa;满足D2类骨的力学性质。
控制SLS的激光功率在10W,我们可得到D3类骨的内层骨质(骨小梁),测得其成型件的密度为
Figure 13281DEST_PATH_IMAGE006
,换算可得到其弹性模量为900MPa,在770~1050MPa之间;控制SLS的激光功率在11W,我们可得到D3类骨的外层骨质(密骨质),测得其成型件的密度为
Figure 280314DEST_PATH_IMAGE004
,换算可得到其弹性模量为1118MPa,在1050~1258MPa之间;满足D3类骨的力学性质。
控制SLS的激光功率在9W时,我们可得到D4类骨,测得其成型件的密度为
Figure 541531DEST_PATH_IMAGE008
,换算可得到其弹性模量为750MPa,其值<770MPa,满足D4类骨的力学性质。
本发明具有无需寻找木料,且能够精确地模拟四类骨质的力学模型,制作方便的优点。
本说明书实施例所述的内容仅仅是对发明构思的实现形式的列举,本发明的保护范围不应当被视为仅限于实施例所陈述的具体形式,本发明的保护范围也及于本领域技术人员根据本发明构思所能够想到的等同技术手段。

Claims (5)

1.用SLS选择性激光烧结制取四类骨质的力学模型的方法,包括以下步骤:
1)、使用三维制图软件绘制待制备骨质的三维轮廓模型,将该三维轮廓模型输入激光烧结成型机中,成型机自动识别该三维轮廓模型对应的激光扫描层次和每个层次的激光扫描路径;
2)、初始化成型机参数,确定待制备骨质属于第几类骨质,根据骨质类型设定激光烧结成型机的激光功率,激光功率决定烧结成型的骨质模型的力学性能,骨质模型的力学性能包括骨的密度、弹性模量和机械性能;激光功率越大,产生的热量越高,烧结形成的模型密度越大;
3)、每个激光扫描层次中,激光束沿着该层次的激光扫描路径扫描铺层在工作台上的材料粉末,材料粉末均匀地铺层在工作台上;经激光扫描过的材料粉末被激光熔融并连接在一起,未被激光扫描过的材料粉末仍然呈松散状;
4)当前激光扫描层次完成时,判断当前激光扫描层次是否最后一个层次,若是,则完成烧结;若否,则进行下一层次的烧结,重复步骤3)。
2.如权利要求1所述的用SLS选择性激光烧结制取四类骨质的力学模型的方法,其特征在于:步骤2)中,若待制备骨质属于D1类骨,则采用D1激光功率烧结;
若待制备骨质属于D2类骨,则与骨质轮廓外缘的距离小于或等于密质骨厚度的区域采用D2外层激光功率烧结,与骨质轮廓外缘的距离大于密质骨厚度的区域采用D2内层激光功率烧结;
若待制备骨质属于D3类骨,则与骨质轮廓外缘的距离小于或等于密质骨厚度的区域采用D3外层激光功率烧结,与骨质轮廓外缘的距离大于密质骨厚度的区域采用D3内层激光功率烧结;
若待制备骨质属于D4类骨,则采用D4激光功率烧结;
D1激光功率≧D2外层激光功率烧结﹥D3外层激光功率烧结;且D2内层激光功率烧结﹥D3内层激光功率烧结﹥D4激光功率烧结。
3.如权利要求2所述的用SLS选择性激光烧结制取四类骨质的力学模型的方法,其特征在于:制备D1类骨时,激光功率为12w;制备D2类骨时,内部烧结的激光功率为11w,外部烧结激光功率为12w;制备D3类骨时,内部烧结激光功率为10w,外部烧结的激光功率为11w;制备D4类骨时,激光功率为9w。
4.如权利要求1所述的用SLS选择性激光烧结制取四类骨质的力学模型的方法,其特征在于:成型机参数包括光斑直径、扫描层后、扫描速度和扫描间距,初始化参数为:光斑直径0.45mm,扫描层后0.1mm,扫描速度9.53m/s,扫描间距0.1mm。
5.如权利要求1所述的用SLS选择性激光烧结制取四类骨质的力学模型的方法,其特征在于:铺层在工作台上的材料粉末为尼龙粉末,材料粉末铺层于工作台的厚度为0.1mm。
CN2011103913338A 2011-11-30 2011-11-30 用sls选择性激光烧结制取四类骨质模型的方法 Pending CN102407331A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011103913338A CN102407331A (zh) 2011-11-30 2011-11-30 用sls选择性激光烧结制取四类骨质模型的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011103913338A CN102407331A (zh) 2011-11-30 2011-11-30 用sls选择性激光烧结制取四类骨质模型的方法

Publications (1)

Publication Number Publication Date
CN102407331A true CN102407331A (zh) 2012-04-11

Family

ID=45909846

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011103913338A Pending CN102407331A (zh) 2011-11-30 2011-11-30 用sls选择性激光烧结制取四类骨质模型的方法

Country Status (1)

Country Link
CN (1) CN102407331A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103273065A (zh) * 2013-05-31 2013-09-04 西北有色金属研究院 一种无焊缝金属蜂窝构件的电子束选区熔化成型方法
CN104706447A (zh) * 2015-03-24 2015-06-17 李鹏 一种仿生骨小梁腰椎融合器及其制作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101780544A (zh) * 2010-01-15 2010-07-21 黑龙江科技学院 一种采用激光成形难熔金属零件的方法
CN102000821A (zh) * 2010-11-19 2011-04-06 浙江工业大学 基于sls成型的可控非匀质材料零件制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101780544A (zh) * 2010-01-15 2010-07-21 黑龙江科技学院 一种采用激光成形难熔金属零件的方法
CN102000821A (zh) * 2010-11-19 2011-04-06 浙江工业大学 基于sls成型的可控非匀质材料零件制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李秋爽: "快速成型技术在医学领域的应用研究", 《山东大学硕士学位论文》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103273065A (zh) * 2013-05-31 2013-09-04 西北有色金属研究院 一种无焊缝金属蜂窝构件的电子束选区熔化成型方法
CN104706447A (zh) * 2015-03-24 2015-06-17 李鹏 一种仿生骨小梁腰椎融合器及其制作方法

Similar Documents

Publication Publication Date Title
CN108001614B (zh) 一种大型锚台及锚唇的放样设计方法
Sun et al. Adaptive direct slicing of a commercial CAD model for use in rapid prototyping
EP2465623B1 (en) Adaptive production method for mould
CN111037917B (zh) 一种基于模型拆分与拼接打印的fdm打印方法、系统及介质
CN103692654B (zh) 立体打印技术制作三维周期结构超材料的方法
CN104057611A (zh) 一种基于扫描线倾角优化的3d打印填充路径生成方法
JP2020062887A5 (zh)
WO2012175406A3 (de) Verfahren zum fertigen eines turmsegmentes eines betonturms einer windenergieanlage
CN103694605B (zh) Pvc发泡铝塑建筑模板
CN102305280B (zh) 液力变矩器的研制方法
WO2019047926A1 (zh) 一种砂型自适应梯度打印的成形方法
CN106166599A (zh) 一种3d打印制造螺旋桨的方法
CN102029715A (zh) 一种光固化立体同心球的sla成型工艺
Afonso et al. Direct rapid tooling for polymer processing using sheet metal tools
CN105269824A (zh) 航空发动机叶片x射线检测装置的快速成形方法
CN102773420B (zh) 一种砂型的组合模具造型方法
CN102407331A (zh) 用sls选择性激光烧结制取四类骨质模型的方法
CN102430712B (zh) 一种空间复杂曲面芯盒模具的制造方法
CN114918370B (zh) 一种适用于增减材制造自适应切片的砂型成型方法
CN103752766B (zh) 一种树脂铸造模具的快速制造方法
CN107262716B (zh) 一种用于解决激光熔覆成形开放薄壁件端部塌陷的方法
Aydin et al. Vibration analysis of honeycomb sandwich composites filled with polyurethane foam by Taguchi Method
CN101987347B (zh) 一种发动机歧形排气管铸造用砂芯的制造方法
CN103358553A (zh) 超声聚焦三维快速成型方法及装置
CN104084538A (zh) 金属件铸造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120411