CN102401656A - A Position Cell Navigation Algorithm for Biomimetic Robot - Google Patents
A Position Cell Navigation Algorithm for Biomimetic Robot Download PDFInfo
- Publication number
- CN102401656A CN102401656A CN2011103489302A CN201110348930A CN102401656A CN 102401656 A CN102401656 A CN 102401656A CN 2011103489302 A CN2011103489302 A CN 2011103489302A CN 201110348930 A CN201110348930 A CN 201110348930A CN 102401656 A CN102401656 A CN 102401656A
- Authority
- CN
- China
- Prior art keywords
- cell
- robot
- transfer matrix
- matrix
- partial view
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003592 biomimetic effect Effects 0.000 title 1
- 239000011159 matrix material Substances 0.000 claims abstract description 28
- 230000001149 cognitive effect Effects 0.000 claims abstract description 13
- 230000009466 transformation Effects 0.000 claims abstract description 10
- 239000011664 nicotinic acid Substances 0.000 claims abstract description 7
- 238000009751 slip forming Methods 0.000 claims abstract 2
- 210000004027 cell Anatomy 0.000 claims description 63
- 230000000694 effects Effects 0.000 claims description 15
- 210000002569 neuron Anatomy 0.000 claims description 10
- 238000011002 quantification Methods 0.000 claims 1
- 238000004140 cleaning Methods 0.000 abstract description 3
- 238000001914 filtration Methods 0.000 abstract 1
- 230000004927 fusion Effects 0.000 description 7
- 230000008450 motivation Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000971 hippocampal effect Effects 0.000 description 2
- 210000001320 hippocampus Anatomy 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 210000001176 projection neuron Anatomy 0.000 description 1
Images
Landscapes
- Manipulator (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种位置细胞仿生机器人导航算法。根据哺乳动物海马位置细胞的导航策略制定自主运行机器人导航算法。可用于智能清洁地面机器人,战场搜救机器人等。The invention relates to a position cell bionic robot navigation algorithm. Development of an Autonomous Robot Navigation Algorithm Based on Navigation Strategies of Mammalian Hippocampal Place Cells. It can be used for intelligent cleaning ground robots, battlefield search and rescue robots, etc.
背景技术 Background technique
哺乳动物(如大鼠,人等)花费大量的时间从一个地点移动到另一个地点。有目的的移动需要对动机、空间进行编码。动物对空间和动机的编码是稳健的。关于其机制的研究对人工智能领域有重要的启示。Mammals (eg rats, humans, etc.) spend a significant amount of time moving from one location to another. Purposeful movement requires the encoding of motivation, space. The encoding of space and motivation in animals is robust Research on its mechanism has important implications for the field of artificial intelligence.
“认知地图”是指动物对空间信息的内在表达方式。认知地图可以通过一系列的地标来表达。在十几秒钟到几分钟的过程中能够熟悉环境并准确记忆。“位置细胞”是海马中的锥体神经元,当动物环境中的某个局部位置时发放率较高,离开这个位置发放率几乎为零。位置细胞有如下属性:"Cognitive maps" refer to the way animals internally represent spatial information. A cognitive map can be represented by a series of landmarks. In the process of tens of seconds to a few minutes, you can be familiar with the environment and remember it accurately. "Place cells" are pyramidal neurons in the hippocampus that fire at a high rate when the animal is in a certain local position in the environment, and almost zero when leaving this position. Place cells have the following properties:
1、在新的环境里,位置细胞能够迅速建立;1. In a new environment, place cells can be quickly established;
2、位置野(位置细胞发放对应的位置)稳定,同样地位置细胞编码相同的位置,甚至几个月后仍然稳定;2. The position field (the position corresponding to the position cell emission) is stable, and the same position cell encodes the same position, and it is still stable even after several months;
3、位置野并不紧紧依赖于视觉信息,在黑暗的环境也有效;3. The position field is not tightly dependent on visual information and is also effective in dark environments;
4、远处路标的位移和旋转引起位置野的位移和旋转;4. The displacement and rotation of distant landmarks cause the displacement and rotation of the position field;
5、相同的位置细胞可能在不同的环境发放,有完全不同的位置野;5. The same place cells may be emitted in different environments, with completely different place fields;
6、位置细胞受到头方向细胞的调制。6. Place cells are modulated by head direction cells.
发明内容 Contents of the invention
本发明根据脑海马中的位置细胞编码策略,提供了一种位置细胞仿生机器人导航算法。为达到以上目的,本发明是采取如下技术方案予以实现的:According to the place cell encoding strategy in the brain hippocampus, the present invention provides a place cell bionic robot navigation algorithm. To achieve the above object, the present invention is achieved by taking the following technical solutions:
基于特征的路标识别。首先利用摄像头得到特征点,其次利用特征点获取位置信息。通过特征点加上位置信息建立路标方向角网络。图像是用低分辨率的全景镜头获取。图像经过梯度化去除亮度干扰。梯度图像与双高斯差算子卷积进行特征识别。路标神经元学习路标。对于每一个路标,相对正北方向的相对角度由指南针读出。本模型的视觉系统提供了“what”和“where”两种信息。Feature-based road sign recognition. Firstly, the camera is used to obtain the feature points, and secondly, the feature points are used to obtain the position information. A network of landmark orientation angles is established by adding feature points and location information. Images were acquired with a low-resolution panoramic lens. The image is gradientized to remove brightness interference. Gradient image is convolved with double Gaussian difference operator for feature recognition. Signpost neurons learn signposts. For each signpost, the relative angle to true north is read by the compass. The visual system of this model provides both "what" and "where" information.
路标和方向角两个信息融合产生位置细胞,在探索的过程中出现的新位置用新的神经元编码。在某个给定的位置,多个位置细胞活动,共同定位。地标的密度与机器人所处的环境位置有关。在墙和门等位置角位置变化快速的地方,会学到更多的地标。当整个环境都学习完之后,环境会被位置细胞完全覆盖,每个位置细胞与相应的位置对应。位置细胞为机器人确定自己的位置。The information fusion of road signs and direction angles produces place cells, and new positions that appear during exploration are encoded with new neurons. At a given location, multiple place cells are active and co-localized. The density of landmarks is related to the location of the environment where the robot is located. More landmarks are learned where the position-angle positions change rapidly, such as walls and doors. When the entire environment is learned, the environment is completely covered by place cells, each of which corresponds to a corresponding location. Place cells determine where the robot is located.
转移矩阵编码。对于有计划的导航任务来说,必须要完成一定的轨迹。这些轨迹可以用位置点的序列表示。从目前的位置到下一个位置的整个矩阵(转移矩阵)可以用来表示这个轨迹。可以从矩阵中去除不可能的轨迹部分减少资源占用。Transition matrix encoding. For planned navigation tasks, certain trajectories must be completed. These trajectories can be represented by sequences of location points. The entire matrix (transition matrix) from the current position to the next position can be used to represent this trajectory. Impossible portions of trajectories can be removed from the matrix to reduce resource usage.
当转移矩阵建立后,形成认知地图。认知地图和转移矩阵共同形成运动变换矩阵。运动变换矩阵负责将命令发出。例如,从位置A到位置B产生了转移细胞AB。这个转移细胞与从A到B的方向相联系。When the transfer matrix is established, a cognitive map is formed. Cognitive maps and transfer matrices together form the motor transformation matrix. The motion transformation matrix is responsible for issuing commands. For example, transfer cell AB is generated from location A to location B. This transfer cell is associated with the direction from A to B.
自主机器人与人类似,也应该设计有动机。动机可以是某个要完成的任务,自身电量不足的时候寻找电源充电,或者完成任务后回到固定地点。Autonomous robots, like humans, should also be designed with motivation. Motivation can be a task to be completed, looking for a power source to recharge when the battery is low, or returning to a fixed place after completing a task.
本发明公开了一种位置细胞仿生机器人导航算法。根据哺乳动物基于海马位置细胞的导航策略制定机器人导航算法。可应用于是智能清洁地面机器人,战场搜救机器人等。能够自动识别陌生环境,具有无需人类干预、自组织、自适应等优点。The invention discloses a position cell bionic robot navigation algorithm. Development of robot navigation algorithms based on mammalian hippocampal place cell-based navigation strategies. It can be applied to intelligent cleaning ground robots, battlefield search and rescue robots, etc. It can automatically identify unfamiliar environments, and has the advantages of self-organization and self-adaptation without human intervention.
附图说明 Description of drawings
图1本发明的硬件框图;Fig. 1 hardware block diagram of the present invention;
图2本发明的算法流程图;Fig. 2 algorithm flowchart of the present invention;
图3本发明的路标-方位角细胞的形成示意图。Fig. 3 is a schematic diagram of formation of landmark-azimuth cells of the present invention.
具体实施方式 Detailed ways
以下结合具体实施例,对本发明进行详细说明。The present invention will be described in detail below in conjunction with specific embodiments.
如图1所示本发明位置细胞仿生机器人导航算法所基于的硬件,包含:广角摄像头,用于获取外界图像;DSP芯片,用于执行机器人学习和认知所处环境的有关算法;驱动轮,根据DSP芯片发出的运动命令驱动机器人运动。As shown in Figure 1, the hardware based on the location cell bionic robot navigation algorithm of the present invention includes: a wide-angle camera for obtaining external images; a DSP chip for performing relevant algorithms for robot learning and cognitive environment; driving wheels, Drive the robot to move according to the motion command sent by the DSP chip.
生物学上的位置细胞只和生物所处在的位置有关,与其运动的方向和运动的速度都没有关系。为了模仿生物学的位置细胞,在DSP的软件环境中用变量模拟位置细胞。Biological place cells are only related to the location of the creature, and have nothing to do with the direction and speed of its movement. In order to mimic biological place cells, place cells are modeled with variables in the software environment of the DSP.
如图2所示,首先机器人广角摄像头摄取全景照片,为了去除亮度的干扰,将其转化为梯度图,随后用高斯差分滤波器对其滤波,检测特征点。对特征点附近的局部区域做对数极坐标变换,能够提高对微小的旋转(rotation)或尺度(scale)变化的识别正确率。由于这些特征点对应于特定的路标,因此将对应于这些特征点的变量称为路标细胞(landmark cells)。As shown in Figure 2, firstly, the robot’s wide-angle camera takes a panoramic photo, and converts it into a gradient map in order to remove the interference of brightness, and then filters it with a Gaussian difference filter to detect feature points. The logarithmic polar coordinate transformation of the local area near the feature point can improve the recognition accuracy of small rotation or scale changes. Since these feature points correspond to specific landmarks, the variables corresponding to these feature points are called landmark cells.
对于每个路标获取相对于正北方向的角度(即方位角,azimuth),正北方向由指南针提供。360度的视场由NAzm个方位角细胞编码。方位角和标路共同确定当前时刻的位置细胞。For each waypoint the angle (ie azimuth) is obtained relative to the direction of true north, which is provided by the compass. A 360-degree field of view is encoded by N Azm azimuth cells. The azimuth and the road marking jointly determine the position cell at the current moment.
对于有计划的导航任务来说,必须要完成一定的轨迹。这些轨迹可以用位置点的序列表示。从目前的位置到下一个位置的整个矩阵(转移矩阵)可以用来表示这个轨迹。可以从矩阵中去除不可能的轨迹部分减少资源占用。当前时刻的位置细胞与前一个时刻的位置细胞共同确定转移矩阵。For planned navigation tasks, certain trajectories must be completed. These trajectories can be represented by sequences of location points. The entire matrix (transition matrix) from the current position to the next position can be used to represent this trajectory. Impossible portions of trajectories can be removed from the matrix to reduce resource usage. The place cells at the current moment together with the place cells at the previous moment determine the transfer matrix.
当机器人在环境中未知探索中时,不断形成转移矩阵,转移矩阵形成认知地图,转移矩阵和认知地图共同决定运动变换矩阵,输出运动命令过了一段时间,当转移矩阵建立后,就形成了所谓认知地图。认知地图可以认为是转移向量和边界组成的节点。节点自身转移权重设为1,向其它节点转移权重设为0.9。权重随着路径使用频率增加和减少。When the robot is exploring the unknown in the environment, it continuously forms a transfer matrix, and the transfer matrix forms a cognitive map. The transfer matrix and the cognitive map jointly determine the motion transformation matrix. After outputting motion commands for a period of time, when the transfer matrix is established, it forms The so-called cognitive map. A cognitive map can be considered as a node composed of transfer vectors and boundaries. The node's own transfer weight is set to 1, and the transfer weight to other nodes is set to 0.9. The weight increases and decreases with the frequency of path usage.
运动变换矩阵负责将运动命令发出。例如,从位置A到位置B产生了转移细胞AB。这个转移细胞与从A到B的方向相联系。The motion transformation matrix is responsible for issuing motion commands. For example, transfer cell AB is generated from location A to location B. This transfer cell is associated with the direction from A to B.
每个运动命令都是从某个起点位置通过一定的方向到达终点位置。例如,从位置A到位置B,产生命令AB,还包含从A到B的方向。Each movement command is to arrive at the end position through a certain direction from a certain starting position. For example, to go from location A to location B, generate the command AB, which also includes the direction from A to B.
自主机器人与人类似,也应该设计有动机。动机可以是某个要完成的任务,自身电量不足的时候寻找电源充电,或者完成任务后回到固定地点。Autonomous robots, like humans, should also be designed with motivation. Motivation can be a task to be completed, looking for a power source to recharge when the battery is low, or returning to a fixed place after completing a task.
路标和方位角两个信息融合产生路标方位角融合细胞,这个细胞是产生位置细胞的中间变量,其活动的计算方法分为三个步骤。首先得到路标细胞的最大活动和所有方向角细胞的最大活动其次,计算这两个最大活动的乘积,定义为最后,得到路标方向角融合细胞的活动:The two information fusion of road signs and azimuth angles produces landmark azimuth fusion cells, which are intermediate variables for generating position cells, and the calculation method of its activity is divided into three steps. First get the maximum activity of the signpost cell and the maximum activity of corner cells in all directions Second, the product of these two maximal activities is computed, defined as Finally, get the activity of the signpost direction angle fusion cell:
XPrd(t+1)=[XPrd(t)+p]+ X Prd (t+1)=[X Prd (t)+p] +
当所有的路标都探索完成后,重置此细胞的活动。When all waypoints have been explored, reset the activity of this cell.
位置细胞只与所在位置相关的变量,与运动速度、运动方向都没有关系,定义此变量为“位置细胞”,在功能上和生物学的位置细胞对应。在通用DSP硬件中体现为一个变量。在探索的过程中出现的新位置用新的神经元编码。在某个给定的位置,多个位置细胞活动,共同定位。位置的密度与机器人所处的环境位置有关。在墙和门等位置角位置变化快速的地方,会学到更多的地标。当整个环境都学习完之后,环境会被位置细胞完全覆盖,每个位置细胞与相应的位置对应。位置细胞为机器人确定自己的位置。A place cell is a variable that is only related to the location, and has nothing to do with the speed and direction of movement. This variable is defined as a "place cell", which corresponds to the biological place cell in function. Embodied as a variable in general-purpose DSP hardware. New locations that arise during exploration are encoded with new neurons. At a given location, multiple place cells are active and co-localized. The density of locations is related to the location of the environment where the robot is located. More landmarks are learned where the position-angle positions change rapidly, such as walls and doors. When the entire environment is learned, the environment is completely covered by place cells, each of which corresponds to a corresponding location. Place cells determine where the robot is located.
由上述过程产生的路标通过神经网络学习算法形成“位置细胞”。每个位置发放由本身活动和路标方位角融合细胞(图3)共同决定。如果机器人在位置细胞表达的精确位置,它的活动最大。当机器人从此位置移开,位置细胞的活动随着移开的距离逐渐减小。The signposts generated by the above process form "place cells" through neural network learning algorithms. Each location release is jointly determined by its own activity and landmark azimuth fusion cells (Fig. 3). If the robot is at the precise location expressed by place cells, its activity is greatest. When the robot moved away from this position, the activity of the place cells gradually decreased with the distance removed.
每一个位置细胞都与所有的路标方位角融合细胞相互连接。活动由路标方位角融合细胞的活动矢量与相应的连接权重向量进行标量积。因此,位置细胞的活动由已经学习的局部视图和当前的局部视图决定。Each place cell is interconnected with all landmark azimuth fusion cells. Activity is determined by the scalar product of the activity vector of the landmark azimuth fusion cell with the corresponding connection weight vector. Therefore, the activity of place cells is determined by the learned partial view and the current partial view.
其中
位置细胞的学习过程遵守Hebbian法则。当机器人处在新的环境中,自动产生新的神经元编码新的新的位置。此自动进行无需外界干预。当之前学习的位置细胞活动地域给定的阈值,新的神经元会自动参与编码新的位置。The learning process of place cells follows the Hebbian law. When the robot is in a new environment, new neurons are automatically generated to encode new new positions. This happens automatically without external intervention. When previously learned place cell activity is within a given threshold, new neurons are automatically involved in encoding new places.
上述路标本身是个一般的概念,这里用“特征点周围的局部视图”这个明确定义的量将“路标”定量化,表征“路标”的变量称为路标细胞,特征点周围的局部视图用路标神经元k表示,路标神经元k可以通过以下公式得到:The above-mentioned signpost itself is a general concept. Here, the “local view around the feature point” is used to quantify the “signpost”. The variable representing the “signpost” is called the signpost cell. The local view around the feature point is used. The unit k represents that the landmark neuron k can be obtained by the following formula:
ΔW=I(t)□RΔW=I(t)□R
其中ΔW是从像素点i,j到第k个路标的连接权重,初值设为0.I(t)时刻t的像素点(坐标i,j)离开特征点的距离。R是表征此神经元是否参与了此局部视图的编码,R取值为0或1,0表示连接权重为0,没有参与此局部视图的编码,1表示参与了此局部视图的编码,连接权重为I(t)。Where ΔW is the connection weight from pixel point i, j to the kth landmark, and the initial value is set to 0.I(t) The distance between the pixel point (coordinates i, j) at time t and the feature point. R is to represent whether this neuron participates in the encoding of this partial view, and the value of R is 0 or 1. 0 indicates that the connection weight is 0, and does not participate in the encoding of this partial view, and 1 indicates that it participates in the encoding of this partial view, and the connection weight is I(t).
第k个路标细胞的活动XLand(t),由下述公式获得The activity X Land (t) of the kth landmark cell is obtained by the following formula
N和M是分别是局部视图中的横坐标和纵坐标像素个数。f的定义如下N and M are respectively the number of pixels on the abscissa and ordinate in the partial view. f is defined as follows
其中Thr是识别阈值。当x≥0,[x]+=x,否则为0。where Thr is the recognition threshold. [x] + = x when x≥0, otherwise 0.
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。It should be understood that those skilled in the art can make improvements or changes based on the above description, and all these improvements and changes should fall within the protection scope of the appended claims of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103489302A CN102401656A (en) | 2011-11-08 | 2011-11-08 | A Position Cell Navigation Algorithm for Biomimetic Robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011103489302A CN102401656A (en) | 2011-11-08 | 2011-11-08 | A Position Cell Navigation Algorithm for Biomimetic Robot |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102401656A true CN102401656A (en) | 2012-04-04 |
Family
ID=45884102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011103489302A Pending CN102401656A (en) | 2011-11-08 | 2011-11-08 | A Position Cell Navigation Algorithm for Biomimetic Robot |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102401656A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106529482A (en) * | 2016-11-14 | 2017-03-22 | 叶瀚礼 | Traffic road sign identification method adopting set distance |
CN107063260A (en) * | 2017-03-24 | 2017-08-18 | 北京工业大学 | A kind of bionic navigation method based on mouse cerebral hippocampal structure cognitive map |
CN109000655A (en) * | 2018-06-11 | 2018-12-14 | 东北师范大学 | Robot bionic indoor positioning air navigation aid |
CN109240279A (en) * | 2017-07-10 | 2019-01-18 | 中国科学院沈阳自动化研究所 | A kind of robot navigation method of view-based access control model perception and spatial cognition neuromechanism |
CN109668566A (en) * | 2018-12-05 | 2019-04-23 | 大连理工大学 | Robot scene cognition map construction and navigation method based on mouse brain positioning cells |
CN109760066A (en) * | 2018-11-30 | 2019-05-17 | 南京熊猫电子股份有限公司 | A kind of service robot Orientation on map scaling method |
CN113743586A (en) * | 2021-09-07 | 2021-12-03 | 中国人民解放军空军工程大学 | An autonomous positioning method of running body based on hippocampal spatial cognition mechanism |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040034469A1 (en) * | 2002-08-16 | 2004-02-19 | Myoung-Bog Kim | Method and apparatus for managing map data in a memory |
CN1970087A (en) * | 2006-09-26 | 2007-05-30 | 东南大学 | Organic metal carborane target formulation and its preparation method |
CN102068311A (en) * | 2010-12-27 | 2011-05-25 | 李彬清 | Medical surgery-assisting navigation and photodynamic biochemical analysis system |
-
2011
- 2011-11-08 CN CN2011103489302A patent/CN102401656A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040034469A1 (en) * | 2002-08-16 | 2004-02-19 | Myoung-Bog Kim | Method and apparatus for managing map data in a memory |
CN1970087A (en) * | 2006-09-26 | 2007-05-30 | 东南大学 | Organic metal carborane target formulation and its preparation method |
CN102068311A (en) * | 2010-12-27 | 2011-05-25 | 李彬清 | Medical surgery-assisting navigation and photodynamic biochemical analysis system |
Non-Patent Citations (2)
Title |
---|
尹宝勇等: "人工多细胞模型的构建及实验", 《控制工程》 * |
徐国保等: "智能移动机器人技术现状及展望", 《机器人技术与应用》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106529482A (en) * | 2016-11-14 | 2017-03-22 | 叶瀚礼 | Traffic road sign identification method adopting set distance |
CN107063260A (en) * | 2017-03-24 | 2017-08-18 | 北京工业大学 | A kind of bionic navigation method based on mouse cerebral hippocampal structure cognitive map |
CN109240279A (en) * | 2017-07-10 | 2019-01-18 | 中国科学院沈阳自动化研究所 | A kind of robot navigation method of view-based access control model perception and spatial cognition neuromechanism |
CN109240279B (en) * | 2017-07-10 | 2021-05-11 | 中国科学院沈阳自动化研究所 | A Robot Navigation Method Based on Visual Perception and Spatial Cognitive Neural Mechanisms |
CN109000655A (en) * | 2018-06-11 | 2018-12-14 | 东北师范大学 | Robot bionic indoor positioning air navigation aid |
CN109000655B (en) * | 2018-06-11 | 2021-11-26 | 东北师范大学 | Bionic indoor positioning and navigation method for robot |
CN109760066A (en) * | 2018-11-30 | 2019-05-17 | 南京熊猫电子股份有限公司 | A kind of service robot Orientation on map scaling method |
CN109760066B (en) * | 2018-11-30 | 2021-02-26 | 南京熊猫电子股份有限公司 | Service robot map positioning and calibrating method |
CN109668566A (en) * | 2018-12-05 | 2019-04-23 | 大连理工大学 | Robot scene cognition map construction and navigation method based on mouse brain positioning cells |
CN109668566B (en) * | 2018-12-05 | 2022-05-13 | 大连理工大学 | Robot scene cognition map construction and navigation method based on mouse brain positioning cells |
CN113743586A (en) * | 2021-09-07 | 2021-12-03 | 中国人民解放军空军工程大学 | An autonomous positioning method of running body based on hippocampal spatial cognition mechanism |
CN113743586B (en) * | 2021-09-07 | 2024-04-26 | 中国人民解放军空军工程大学 | Operation body autonomous positioning method based on hippocampal space cognition mechanism |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Weerakoon et al. | Terp: Reliable planning in uneven outdoor environments using deep reinforcement learning | |
US11561544B2 (en) | Indoor monocular navigation method based on cross-sensor transfer learning and system thereof | |
Shrestha et al. | Learned map prediction for enhanced mobile robot exploration | |
Paull et al. | Duckietown: an open, inexpensive and flexible platform for autonomy education and research | |
CN102401656A (en) | A Position Cell Navigation Algorithm for Biomimetic Robot | |
CN112629520B (en) | A robot navigation and positioning method, system, device and storage medium | |
CN107450593A (en) | A kind of unmanned plane autonomous navigation method and system | |
CN111044031B (en) | Cognitive map construction method based on mouse brain hippocampus information transfer mechanism | |
CN112097769A (en) | Simultaneous positioning and mapping navigation system and method of unmanned aerial vehicle imitating carrier pigeon brain-hippocampus | |
Liu et al. | Brain-like position measurement method based on improved optical flow algorithm | |
CN111376273A (en) | A brain-like-inspired method for constructing cognitive maps for robots | |
CN113703322B (en) | Method for constructing scene memory model imitating mouse brain vision pathway and entorhinal-hippocampal structure | |
Li et al. | Learning view and target invariant visual servoing for navigation | |
CN116679711A (en) | Robot obstacle avoidance method based on model-based reinforcement learning and model-free reinforcement learning | |
CN113689502B (en) | Multi-information fusion obstacle measurement method | |
CN112509051A (en) | Bionic-based autonomous mobile platform environment sensing and mapping method | |
Zhao et al. | Learning cognitive map representations for navigation by sensory–motor integration | |
CN117685952A (en) | A cross-domain multi-robot collaborative brain-like mapping method and device based on multi-modal perception | |
CN111611869B (en) | End-to-end monocular vision obstacle avoidance method based on serial deep neural network | |
Song et al. | Collaborative processing and data optimization of environmental perception technologies for autonomous vehicles | |
Stang et al. | Evaluation of deep reinforcement learning algorithms for autonomous driving | |
CN117764119A (en) | Physical information-based control method for double-strategy network NAO robot | |
Yildiz et al. | CNN based sensor fusion method for real-time autonomous robotics systems | |
Dirik et al. | Vision-Based Mobile Robot Control and Path Planning Algorithms in Obstacle Environments Using Type-2 Fuzzy Logic | |
Karlsson et al. | Learning a directional soft lane affordance model for road scenes using self-supervision |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120404 |